Skip to main content
Log in

Fish telemetry in African inland waters and its use in management: a review

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Fish telemetry is a widely established technique in developed countries. However, in underdeveloped regions, its use is generally lacking. We briefly present common fish telemetry methods used globally and then reviewed their use in African inland freshwater ecosystems. We highlight telemetry studies' progress in African inland waters and evaluate its potential applications in various fields. These include the management of water resources, ecosystem response to changes, fish movement, river connectivity, conservation of species, management of fisheries, fish passages efficiency and monitoring freshwater ecosystems in Africa. We found 53 studies that used fish telemetry in inland African waters across eight countries. Radio telemetry (81%) was favoured over acoustic telemetry (11%), while the remaining studies included reviews and procedural tagging studies. Telemetry was used on 25 native fish species and two non-native species in Africa across various families and included two African native fishes studied in European laboratories. In Africa, the two most studied genera were Hydrocynus spp. (n = 19) and the Labeobarbus spp. (n = 19). Compared with developed countries, the paucity of African freshwater telemetry studies is of concern, especially as fish movement is important for water resource management decisions across Africa. Finally, we highlight the benefits derived from telemetry studies as outweighing the costs and can continue to provide evidence-based data to manage Africa’s water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data are presented in the manuscript.

References

  • Abecasis D, Steckenreuter A, Reubens J, Aarestrup K, Alós J, Badalamenti F, Bajona L, Boylan P, Deneudt K, Greenberg L, Brevé N (2018) A review of acoustic telemetry in Europe and the need for a regional aquatic telemetry network. Anim Biotelem 6:12

    Article  Google Scholar 

  • Anteneh W, Getahun A, Dejen E, Sibbing FA, Nagelkerke LAJ, De Graaf M, Wudneh T, Vijverberg J, Palstra AP (2012) Spawning migrations of the endemic Labeobarbus (Cyprinidae, Teleostei) species of Lake Tana, Ethiopia: status and threats. J Fish Biol 81:750–765

    Article  CAS  PubMed  Google Scholar 

  • Awoke A, Beyene A, Kloos H, Goethals PL, Triest L (2016) River water pollution status and water policy scenario in Ethiopia: raising awareness for better implementation in developing countries. Environ Manag 58:694–706

    Article  Google Scholar 

  • Bacheler NM, Whitfield PE, Muñoz RC, Harrison BB, Harms CA, Buckel CA (2015) Movement of invasive adult lionfish Pterois volitans using telemetry: Importance of controls to estimate and explain variable detection probabilities. Mar Ecol Prog Ser 527:205–220

    Article  Google Scholar 

  • Baras E, Westerloppe L (1999) Transintestinal expulsion of surgically implanted tags by African Catfish Heterobranchus longifilis of variable size and age. Trans Am Fish Soc 128:737–746. https://doi.org/10.1577/1548-8659(1999)128%3C0737:TEOSIT%3E2.0.CO;2

    Article  Google Scholar 

  • Baras E, Westerloppe L, Mélard C, Philippart J-C, Bénech V (1999) Evaluation of implantation procedures for PIT-tagging juvenile Nile Tilapia. N Am J Aquac 61:246–251. https://doi.org/10.1577/1548-8454(1999)061%3C0246:EOIPFP%3E2.0.CO;2

    Article  Google Scholar 

  • Baras E, Togola B, Sicard B, Bénech V (2002b) Behaviour of tigerfish Hydrocynus brevis in the River Niger, Mali, as revealed by simultaneous telemetry of activity and swimming depth. In: Thorstad EB, Fleming IA, Næsje TF (eds) Aquatic Telemetry. Springer, Dordrecht, pp 103–110. https://doi.org/10.1007/978-94-017-0771-8_12

    Chapter  Google Scholar 

  • Baras E, Bénech V, Marmulla G (2002a) Outcomes of a pilot fish telemetry workshop for developing countries. In: Thorstad EB, Fleming IA, Næsje TF (eds) Aquatic Telemetry. Springer, Dordrecht, pp 9–11. https://doi.org/10.1007/978-94-017-0771-8_2

    Chapter  Google Scholar 

  • Baxter JS, Birch GJ, Olmsted WR (2003) Assessment of a constructed fish migration barrier using radio telemetry and floy tagging. N Am J Fish Manag 23:1030–1035

    Article  Google Scholar 

  • Béguer-Pon M, Dodson JJ, Castonguay M, Jellyman D, Aarestrup K, Tsukamoto K (2018) Tracking anguillid eels: five decades of telemetry-based research. Mar Freshw Res 69:199–219

    Article  Google Scholar 

  • Belhabib D, Lam VW, Cheung WW (2016) Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar Policy 71:15–28. https://doi.org/10.1016/j.marpol.2016.05.009

    Article  Google Scholar 

  • Block BA, Whitlock R, Schallert RJ, Wilson S, Stokesbury MJ, Castleton M, Boustany A (2019) Estimating natural mortality of Atlantic bluefin tuna using acoustic telemetry. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-40065-z

    Article  CAS  Google Scholar 

  • Bootsma HA, Hecky RE (2003) A comparative introduction to the biology and limnology of the African Great Lakes. J Great Lakes Res 29:3–18

    Article  CAS  Google Scholar 

  • Brand M, Maina J, Mander M, O’Brien G (2009) Characterisation of the social and economic value of the use and associated conservation of the yellowfishes in the Vaal River. Water Research Commission, Pretoria, South Africa

    Google Scholar 

  • Bridger CJ, Booth RK, McKinley RS, Scruton DA, Lindstrom RT (2001) Monitoring fish behaviour with a remote, combined acoustic/radio biotelemetry system. J Appl Ichthyol 17:126–129. https://doi.org/10.1111/j.1439-0426.2001.00294.x

    Article  Google Scholar 

  • Brink, K, Gough P, Royte J, Schollema PP, Wanningen H. (2018) From sea to source 2.0. Protection and restoration of fish migration in rivers worldwide. World Fish Migration Foundation: Groningen, Netherlands. http://www.fromseatosource.com/download/download.php?code=112196&file=from_sea_to_source_2_0.pdf. Accessed 4 July 2019

  • Brisman A, McClanahan B, South N, Walters R (2018) Too Little: Water and Access. In: Brisman A, McClanahan B, South N, Walters R (eds) Water, crime and security in the twenty-first century: Too dirty, too little, too much. Springer, Dordrecht, pp 53–90

    Chapter  Google Scholar 

  • Broadhurst BT, Ebner BC, Clear RC (2009) Radio-tagging flexible-bodied fish: temporary confinement enhances radio-tag retention. Mar Freshw Res 60:356–360

    Article  Google Scholar 

  • Brooks JL, Boston C, Doka S, Gorsky D, Gustavson K, Hondorp D, Isermann D, Midwood JD, Pratt TC, Rous AM, Withers JL (2017) Use of fish telemetry in rehabilitation planning, management, and monitoring in areas of concern in the Laurentian Great Lakes. Environ Manag 60:1139–1154. https://doi.org/10.1007/s00267-017-0937-x

    Article  CAS  Google Scholar 

  • Brooks JL, Chapman JM, Barkley AN, Kessel ST, Hussey NE, Hinch SG, Patterson DA, Hedges KJ, Cooke SJ, Fisk AT, Gruber SH, Nguyen VM (2018) Biotelemetry informing management: case studies exploring successful integration of biotelemetry data into fisheries and habitat management. Can J Fish Aquat Sci 76:1–15. https://doi.org/10.1139/cjfas-2017-0530

    Article  Google Scholar 

  • Brownscombe JW, Lédée EJ, Raby GD, Struthers DP, Gutowsky LF, Nguyen VM, Young N, Stokesbury MJ, Holbrook CM, Brenden TO, Vandergoot CS (2019) Conducting and interpreting fish telemetry studies: considerations for researchers and resource managers. Rev Fish Biol Fish 29:369–400

    Article  Google Scholar 

  • Burnett M, O’Brien G, Wepener V, Pienaar D (2018) The spatial ecology of adult Labeobarbus marequensis and their response to flow and habitat variability in the Crocodile River, Kruger National Park. Afr J Aquat Sci 43:375–384. https://doi.org/10.2989/16085914.2018.1517077

    Article  CAS  Google Scholar 

  • Burnett MJ, O’Brien GC, Jacobs FJ, Botha F, Jewitt G, Downs CT (2020) Southern African inland fish tracking programme (FISHTRAC): an evaluation of the approach for monitoring ecological consequences of multiple water resource stressors, remotely and in real time. Ecol Ind 111:106001. https://doi.org/10.1016/j.ecolind.2019.106001

    Article  Google Scholar 

  • Capon SJ, Lynch AJJ, Bond N, Chessman BC, Davis J, Davidson N, Finlayson M, Gell PA, Hohnberg D, Humphrey C, Kingsford RT, Nielsen D, Thomson JR, Ward K, Nally RM (2015) Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Sci Total Environ 534:122–130. https://doi.org/10.1016/j.scitotenv.2015.02.045

    Article  CAS  PubMed  Google Scholar 

  • Chan CY, Tran N, Pethiyagoda S, Crissman CC, Sulser TB, Phillips MJ (2019) Prospects and challenges of fish for food security in Africa. Global Food Secur 20:17–25. https://doi.org/10.1016/j.gfs.2018.12.002

    Article  Google Scholar 

  • Chovanec A, Hofer R, Schiemer F (2003) Fish as bioindicators. In: Markett BA, Breure AM, Zechmeister HG (eds) (2003) Trace metals and other contaminants in the environment, vol 6. Elsevier, New York, pp 639–676

    Google Scholar 

  • Cooke SJ (2008) Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endanger Species Res 4:165–185. https://doi.org/10.3354/esr00063

    Article  Google Scholar 

  • Cooke SJ, Hinch SG, Lucas MC, Lutcavage M (2012) Biotelemetry and biologging. Fisheries techniques, 3rd edn. American Fisheries Society, Bethesda, Maryland, pp 819–860

    Google Scholar 

  • Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, Eiler J, Holbrook C, Ebner BC (2013) Tracking animals in freshwater with electronic tags: past, present and future. Anim Biotelem 1:5. https://doi.org/10.1186/2050-3385-1-5

    Article  Google Scholar 

  • Cooke SJ, Martins EG, Struthers DP, Gutowsky LF, Power M, Doka SE, Dettmers JM, Crook DA, Lucas MC, Holbrook CM, Krueger CC (2016b) A moving target—incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environ Monit Assess 188:239. https://doi.org/10.1007/s10661-016-5228-0

    Article  PubMed  Google Scholar 

  • Cooke SJ, Brownscombe JW, Raby GD, Broell F, Hinch SG, Clark TD, Semmens JM (2016a) Remote bioenergetics measurements in wild fish: opportunities and challenges. Comp Biochem Physiol A: Mol Integr Physiol 202:23–37. https://doi.org/10.1016/j.cbpa.2016.03.022

    Article  CAS  Google Scholar 

  • Cooke SJ, Birnie-Gauvin K, Lennox RJ, Taylor JJ, Rytwinski T, Rummer JL, Franklin CE, Bennett JR, Haddaway NR (2017) How experimental biology and ecology can support evidence-based decision-making in conservation: avoiding pitfalls and enabling application. Conserv Physiol 5:1–7. https://doi.org/10.1093/conphys/cox043

    Article  Google Scholar 

  • Cooper N, Swan A, Townend D (2014) A confluence of new technology and the right to water: experience and potential from South Africa’s constitution and commons. Ethics Inf Technol 16:119–134

    Article  Google Scholar 

  • Cowley P, Naesje T (2004) Telemetry–a means to investigate the lives of fishes underwater. Ichthos 72:1–3

    Google Scholar 

  • Cowley P, Bennett R, Childs A-R, Murray T (2017) Reflection on the first five years of South Africa’s acoustic tracking array platform (ATAP): status, challenges and opportunities. Afr J Mar Sci 39:363–372. https://doi.org/10.2989/1814232X.2017.1399927

    Article  Google Scholar 

  • Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, Raby GD, Cooke SJ (2017) Acoustic telemetry and fisheries management. Ecol Appl 27:1031–1049

    Article  PubMed  Google Scholar 

  • Cutler JS, Olivos JA, Sidlauskas B, Arismendi I (2020) Evaluating the distribution of freshwater fish diversity using a multispecies habitat suitability model to assess impacts of proposed dam development in Gabon, Africa . Conserv Sci Pract 2:151

    Google Scholar 

  • Darwall WR, Freyhof JÖRG (2016) Lost fishes, who is counting? The extent of the threat to freshwater fish biodiversity. In: Closs GP, Krkosek M, Olden JD (eds) Conservation of freshwater fishes. Cambridge University Press , Cambridge, pp 1–36

    Google Scholar 

  • De Graaf G, Garibaldi L (2015) The value of African fisheries. In: FAO fisheries and aquaculture circular, (C1093), p.I. Rome.

  • Depledge MH, Galloway TS (2005) Healthy animals, healthy ecosystems. Front Ecol Environ 3:251–258. https://doi.org/10.1890/1540-9295(2005)003[0251:HAHE]2.0.CO;2

    Article  Google Scholar 

  • Dickens C, Smakhtin V, McCartney M, O’Brien G, Dahir L (2019) Defining and quantifying national-level targets, indicators and benchmarks for management of natural resources to achieve the sustainable development goals. Sustainability 11:462. https://doi.org/10.3390/su11020462

    Article  Google Scholar 

  • Dlodlo N (2012) Adopting the internet of things technologies in environmental management in South Africa. In: 2nd international conference on environment science and engineering (ICESE 2012), Bangkok, Thailand, pp 45–55

  • Donaldson MR, Hinch SG, Suski CD, Fisk AT, Heupel MR, Cooke SJ (2014) Making connections in aquatic ecosystems with acoustic telemetry monitoring. Front Ecol Environ 12:565–573. https://doi.org/10.1890/130283

    Article  Google Scholar 

  • Du Plessis A (2019) Evaluation of Southern and South Africa’s freshwater resources. In: Du Plessis A (ed) Water as an inescapable risk. Springer, Cham, pp 147–172. https://doi.org/10.1007/978-3-030-03186-2_7

    Chapter  Google Scholar 

  • Dube T, Mutanga O, Seutloali K, Adelabu S, Shoko C (2015) Water quality monitoring in sub-Saharan African lakes: a review of remote sensing applications. Afr J Aquat Sci 40:1–7. https://doi.org/10.2989/16085914.2015.1014994

    Article  Google Scholar 

  • Dudgeon CL, Pollock KH, Braccini JM, Semmens JM, Barnett A (2015) Integrating acoustic telemetry into mark–recapture models to improve the precision of apparent survival and abundance estimates. Oecologia 178:761–772. https://doi.org/10.1007/s00442-015-3280-z

    Article  PubMed  Google Scholar 

  • Ebner BC, Lintermans M, Jekabsons M, Dunford M, Andrews WA (2009) cautionary tale: surrogates for radio-tagging practice do not always simulate the responses of closely related species. Mar Freshw Res 60:371–378

    Article  Google Scholar 

  • Emerson JW, Hsu A, Levy MA, de Sherbinin A, Mara V, Esty DC, Jaiteh M (2012) Environmental performance index and pilot trend environmental performance index. Yale Center for Environmental Law and Policy, New Haven, pp 1–98

    Google Scholar 

  • Enders EC, Clarke KD, Pennell CJ, Ollerhead LMN, Scruton DA (2007) Comparison between PIT and radio telemetry to evaluate winter habitat use and activity patterns of juvenile Atlantic salmon and brown trout. In: Almeida PR, Quintella BR, Costa MJ, Moore A (eds) Developments in fish telemetry. Developments in hydrobiology, vol 195. Springer, Dordrecht

    Google Scholar 

  • FISHBASE (2019) http://fishbase.sinica.edu.tw/search.php. Accessed June 201

  • Flitcroft RL, Lewis SL, Arismendi I, LovellFord R, Santelmann MV, Safeeq M, Grant G (2016) Linking hydroclimate to fish phenology and habitat use with ichthyographs. PLoS ONE 11(1–12):e0168831. https://doi.org/10.1371/journal.pone.0168831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouché PSO, Heath RG (2013) Functionality evaluation of the Xikundu fishway, Luvuvhu River, South Africa. Afr J Aquat Sci 38:69–84

    Article  Google Scholar 

  • Franklin PA, Baker CF (2016) Fish passage research in the Southern Hemisphere: challenges, lessons and the need for novel solutions. International Symposium on Ecohydraulics, Melbourne, Australia

    Google Scholar 

  • Fuchs NT, Caudill CC (2019) Classifying and inferring behaviors using real-time acceleration biotelemetry in reproductive steelhead trout (Oncorhynchus mykiss). Ecol Evol 9:11329–11343

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfrey JD, Bryant DM (2003) Effects of radio transmitters: Review of recent radio-tracking studies. Sci Conserv 214:83–95

    Google Scholar 

  • Grubich JR, Odenkirk J (2014) Initial observations of movement patterns in the apex fish predator, the Nile perch (Lates niloticus), in Lake Nasser, Egypt. Egypt J Aquat Resarch 40:65–69. https://doi.org/10.1016/j.ejar.2014.03.003

    Article  Google Scholar 

  • Hanzen C (2020a) Slippery customers for conservation: diversity, distribution and spatial ecology of freshwater eels (Anguilla spp.) in South. Ph.D. thesis, University of KwaZulu-Natal. Pietermaritzburg, South Africa

  • Hanzen C, Weyl O, Lucas M, Brink K, Downs C, O’Brien G (2019) Distribution, ecology and status of anguillid eels in East Africa and the Western Indian Ocean. In: Coulson P, Don A (eds) Eels—biology, monitoring, management, culture and exploitation. Proceedings of the International Eels Sciences Symposium (2017). 5M Publishing, Sheffield, UK. Pp 33–58

  • Hanzen C, Lucas M, O’Brien G, Calverley P, Downs C (2020b) Surgical implantation of radio tags in three eel species (Anguilla spp.) in South Africa (in review)

  • Harris JH (1995) The use of fish in ecological assessments. Austral Ecol 20:65–80

    Article  Google Scholar 

  • Hocutt CH (1988) Behaviour of a radio-tagged Tilapia rendalli Boulenger in Lake Ngezi, Zimbabwe. J Limnol Soc Sout Afr 14:124–126. https://doi.org/10.1080/03779688.1988.9632849

    Article  Google Scholar 

  • Hocutt CH (1989) Seasonal and diel behaviour of radio-tagged Clarias gariepinus in Lake Ngezi, Zimbabwe (Pisces: Clariidae). J Zool 219:181–199. https://doi.org/10.1111/j.1469-7998.1989.tb02575.x

    Article  Google Scholar 

  • Hocutt CH, Seibold SE, Jesien RV (1994) Potential use of biotelemetry in tropical continental waters. Revue d’hydrobiologie Tropicale 27:77–95

    Google Scholar 

  • Howell DH, Cowley PD, Childs A-R, Weyl OLF (2015) Movement behaviour of largemouth bass Micropterus salmoides in a South African impoundment. Afr Zool 50:219–225. https://doi.org/10.1080/15627020.2015.1040837

    Article  Google Scholar 

  • Huchzermeyer C, Weyl O, Cowley P (2013) Evaluation of acoustic transmitter implantation and determination of post-translocation behaviour of largemouth bass Micropterus salmoides in a South African impoundment. Afr J Aquat Sci 38:229–236. https://doi.org/10.2989/16085914.2012.752716

    Article  Google Scholar 

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Mills Flemming JE, Whoriskey FG (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642–1255642. https://doi.org/10.1126/science.1255642

    Article  CAS  Google Scholar 

  • Impson ND, Bills IR, Wolhuter L (2008) Technical report on the state of yellowfishes in South Africa. Water Research Commission, Pretoria South Africa

    Google Scholar 

  • Jackson MC, Weyl OLF, Altermatt F, Durance I, Friberg N, Dumbrell AJ, Piggott JJ, Tiegs SD, Tockner K, Krug CB, Leadley PW (2016) Recommendations for the next generation of global freshwater biological monitoring tools. Adv Ecol Res 55:615–636. https://doi.org/10.1016/bs.aecr.2016.08.008

    Article  Google Scholar 

  • Jacobs FJ (2018) The conservation ecology of the African tigerfish, Hydrocynus vittatus, in the Kavango River, Namibia. Ph.D. thesis, University of KwaZulu-Natal. Pietermaritzburg, South Africa

  • Jacobs F, O’Brien G, Smit N (2016) Diel movement of smallmouth yellowfish Labeobarbus aeneus in the Vaal River, South Africa. Afr J Aquat Sci 41:73–76. https://doi.org/10.2989/16085914.2015.1136804

    Article  Google Scholar 

  • Jacobs FJ, Naesje TF, Ulvan EM, Weyl OLF, Tiyeho D, Hay CJ, O’Brien GC, Downs CT (2019) Implications of the movement behaviour of African tigerfish Hydrocynus vittatus for the design of freshwater protected areas. J Fish Biol 2019:1–9

    Google Scholar 

  • Jacobs FJ, Weyl OL, Ulvan EM, Hay C, Naesje TF (2020) First observation of fouling of externally attached radio transmitters in an African river. Water SA 46:672–674

    Google Scholar 

  • Jellyman D (2009) A review of radio and acoustic telemetry studies of freshwater fish in New Zealand. Mar Freshw Res 60:321–327

    Article  Google Scholar 

  • Jepsen N, Thorstad EB, Havn T, Lucas MC (2015) The use of external electronic tags on fish: an evaluation of tag retention and tagging effects. Anim Biotelem 3:49. https://doi.org/10.1186/s40317-015-0086-z

    Article  Google Scholar 

  • Jewitt G (2002) Can integrated water resources management sustain the provision of ecosystem goods and services? Phys Chem Earth Parts A/B/C 27:887–895. https://doi.org/10.1016/S1474-7065(02)00091-8

    Article  Google Scholar 

  • Kadye WT, Booth AJ (2013) Movement patterns and habitat selection of invasive African sharptooth catfish. J Zool 289:41–51. https://doi.org/10.1111/j.1469-7998.2012.00960.x

    Article  Google Scholar 

  • Klinard NV, Matley JK (2020) Living until proven dead: addressing mortality in acoustic telemetry research. Rev Fish Biol Fish 30:485–499

  • Koehn JD (2000) Why use radio tags to study freshwater fish. In: Hancock DA, Smith D, Koehn JD (eds) Fish movement and migration. Australian Society for Fish Biology, Sydney, Australia, pp 24–32

    Google Scholar 

  • Koster WM, Crook DA (2017) Using telemetry data to develop conceptual models of movement to support the management of riverine fishes. Mar Freshw Res 68:1567–1575. https://doi.org/10.1071/MF16415

    Article  Google Scholar 

  • Krueger CC, Holbrook CM, Binder TR, Vandergoot CS, Hayden TA, Hondorp DW, Nate N, Paige K, Riley SC, Fisk AT, Cooke SJ (2017) Acoustic telemetry observation systems: challenges encountered and overcome in the Laurentian Great Lakes. Can J Fish Aquat Sci 75:1755–1763

    Article  Google Scholar 

  • Landsman SJ, Nguyen VM, Gutowsky LFG, Gobin J, Cook KV, Binder TR, Lower N, McLaughlin RL, Cooke SJ (2011) Fish movement and migration studies in the Laurentian Great Lakes: Research trends and knowledge gaps. J Great Lakes Res 37:365–379. https://doi.org/10.1016/j.jglr.2011.03.003

    Article  Google Scholar 

  • Larinier M, Chanseau M, Bau F, Croze O (2005) The use of radio telemetry for optimizing fish pass design. In: Spedicato MT, Lembo G, Marmulla G (eds) Aquatic telemetry: advances and applications: proceedings from the fifth conference on fish telemetry. Italy, Rome, pp 53–60

    Google Scholar 

  • Lennox RJ, Aarestrup K, Cooke SJ, Cowley PD, Deng ZD, Fisk AT, Harcourt RG, Heupel M, Hinch SG, Holland KN, Hussey NE (2017) Envisioning the future of aquatic animal tracking: technology, science, and application. Bioscience 67:884–896. https://doi.org/10.1093/biosci/bix098

    Article  Google Scholar 

  • Liu J, Liu Q, Yang H (2016) Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol Ind 60:434–441. https://doi.org/10.1093/biosci/bix098

    Article  CAS  Google Scholar 

  • Lucas MC, Baras E (2000) Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish 1:283–316. https://doi.org/10.1046/j.1467-2979.2000.00028.x

    Article  Google Scholar 

  • Lynch AJ, Cooke SJ, Deines AM, Bower SD, Bunnell DB, Cowx IG, Nguyen VM, Nohner J, Phouthavong K, Riley B, Rogers MW (2016) The social, economic, and environmental importance of inland fish and fisheries. Environ Rev 24:115–121. https://doi.org/10.1139/er-2015-0064

    Article  Google Scholar 

  • Lynch AJ, Cowx IG, Fluet-Chouinard E, Glaser SM, Phang SC, Beard TD, Bower SD, Brooks JL, Bunnell DB, Claussen JE, Cooke SJ (2017) Inland fisheries–invisible but integral to the UN sustainable development agenda for ending poverty by 2030. Glob Environ Change 47:167–173

    Article  Google Scholar 

  • Lynch AJ, Baumgartner LJ, Boys CA, Conallin J, Cowx IG, Finlayson CM, Franklin PA, Hogan Z, Koehn JD, McCartney MP, O’Brien GC, Phouthavong K, Silva LGM, Tob CA, Valbo-Jørgensen J, Vi VuA, Whiting L, Wibowo A, Duncan P (2019b) Speaking the same language: can the sustainable development goals translate the needs of inland fisheries into irrigation decisions? Mar Freshw Res 70:1211–1228. https://doi.org/10.1071/MF19176

    Article  Google Scholar 

  • Lynch AJ, Bartley DM, Beard TD Jr, Cowx IG, Funge-Smith S, Taylor WW, Cooke SJ (2019a) Examining progress towards achieving the ten steps of the rome declaration on responsible inland fisheries. Fish Fish 21:190–203

    Article  Google Scholar 

  • Maggs JQ, Cowley PD (2016) Nine decades of fish movement research in southern Africa: a synthesis of research and findings from 1928 to 2014. Rev Fish Biol Fish 26:287–302. https://doi.org/10.1007/s11160-016-9425-2

    Article  Google Scholar 

  • Mantel SK, Rivers-Moore N, Ramulifho P (2017) Small dams need consideration in riverscape conservation assessments. Aquat Conserv: Mar Freshw Ecosyst 27:748–754. https://doi.org/10.1002/aqc.2739

    Article  Google Scholar 

  • Marconi V, McRae L, Baumgartner LJ, Brink K, Claussen JE, Cooke SJ, Darwall W, Eriksson BK, Garcia de Leaniz C, Hogan Z, Royte J, Silva LGM, Thieme ML, Tickner D, Waldman J, Wanningen H, Weyl OLF, Berkhuysen A (2020) The living planet index (LPI) for migratory freshwater fish—technical report. World Fish Migration Foundation, The Netherlands

    Google Scholar 

  • Marmulla G, Bénech V (2000) Necessity for an exchange network for fisheries projects using biotelemetry in developing countries. In: Moore A, Russell IC (eds) Advances in fish telemetry. CEFAS, Lowestoft, pp 197–205

    Google Scholar 

  • Melnychuk MC (2010) Estimation of survival and detection probabilities for multiple tagged salmon stocks with nested migration routes, using a large-scale telemetry array. Mar Freshw Res 60:1231–1243. https://doi.org/10.1071/MF08361

    Article  Google Scholar 

  • Mingist M, Gebremedhin S (2016) Could sand mining be a major threat for the declining endemic Labeobarbus species of Lake Tana, Ethiopia? Singap J Trop Geogr 37:195–208

    Article  Google Scholar 

  • Mlewa CM, Green JM, Simms A (2005) Movement and habitat use by the marbled lungfish Protopterus aethiopicus Heckel 1851 in Lake Baringo, Kenya. Hydrobiologia 537:229–238. https://doi.org/10.1007/s10750-004-3076-3

    Article  Google Scholar 

  • Mlewa CM, Green JM, Dunbrack R (2007) Are wild African lungfish obligate air breathers? Some evidence from radio telemetry. Afr Zool 42:131–134. https://doi.org/10.1080/15627020.2007.11407386

    Article  Google Scholar 

  • Morand P, Kodio A, Andrew N, Sinaba F, Lemoalle J, Béné C (2012) Vulnerability and adaptation of African rural populations to hydro-climate change: experience from fishing communities in the Inner Niger Delta (Mali). Clim Change 115:463–483. https://doi.org/10.1007/s10584-012-0492-7

    Article  Google Scholar 

  • Murchie KJ, Hair KPE, Pullen CE, Redpath TD, Stephens HR, Cooke SJ (2008) Fish response to modified flow regimes in regulated rivers: research methods, effects and opportunities. River Res Appl 24:197–217. https://doi.org/10.1002/rra.1058

    Article  Google Scholar 

  • Nel JL, Roux DJ, Maree G, Kleynhans CJ, Moolman J, Reyers B, Rouget M, Cowling RM (2007) Rivers in peril inside and outside protected areas: a systematic approach to conservation assessment of river ecosystems. Divers Distrib 13:341–352. https://doi.org/10.1111/j.1472-4642.2007.00308.x

    Article  Google Scholar 

  • Nel JL, Le Maitre DC, Roux DJ, Colvin C, Smith JS, Smith-Adao LB, Maherry A, Sitas N (2017) Strategic water source areas for urban water security: making the connection between protecting ecosystems and benefiting from their services. Ecosyst Serv 28:251–259

    Article  Google Scholar 

  • Nguyen VM, Young N, Cooke SJ (2018) Applying a knowledge–action framework for navigating barriers to incorporating telemetry science into fisheries management and conservation: a qualitative study. Can J Fish Aquat Sci 75:1733–1743

    Article  Google Scholar 

  • Nkhata B, Mosimane A, Downsborough L, Breen C, Roux D (2012) A typology of benefit sharing arrangements for the governance of social-ecological systems in developing countries. Ecol Soc 17:1–9. https://doi.org/10.5751/ES-04662-170117

    Article  Google Scholar 

  • Nyboer EA, Chapman LJ (2013) Movement and home range of introduced Nile perch (Lates niloticus) in Lake Nabugabo, Uganda: implications for ecological divergence and fisheries management. Fish Res 137:18–29. https://doi.org/10.1016/j.fishres.2012.08.003

    Article  Google Scholar 

  • O’Brien GC, Bulfin JB, Husted A, Smit NJ (2012) Comparative behavioural assessment of an established and a new tigerfish Hydrocynus vittatus population in two man-made lakes in the Limpopo River catchment, southern Africa. Afr J Aquat Sci 37:253–263. https://doi.org/10.2989/16085914.2012.723196

    Article  Google Scholar 

  • O’Brien GC, Jacobs F, Cronje L, Wepener V, Smit NJ (2013) Habitat preferences and movement of adult yellowfishes in the Vaal River, South Africa. S Afr J Sci 109:01–08

    Google Scholar 

  • O’Brien GC, Jacobs F, Evans SW, Smit NJ (2014) First observation of African tigerfish Hydrocynus vittatus predating on barn swallows Hirundo rustica in flight. J Fish Biol 84:263–266. https://doi.org/10.1111/jfb.12278

    Article  PubMed  Google Scholar 

  • O’Brien GC, Dickens C, Hines E, Wepener V, Stassen R, Quayle L, Fouchy K, MacKenzie J, Graham PM, Landis WG (2018) A regional-scale ecological risk framework for environmental flow evaluations. Hydrol Earth Syst Sci 22:957–975. https://doi.org/10.5194/hess-22-957-2018

    Article  Google Scholar 

  • O’Brien GC, Ross M, Hanzen C, Dlamini V, Petersen R, Diedericks GJ, Burnett MJ (2019) River connectivity and fish migration considerations in the management of multiple stressors in South Africa. Mar Freshw Res 70:1254–1264. https://doi.org/10.1071/MF19183

    Article  Google Scholar 

  • O’Keeffe J, Rogers KH (2003) Heterogeneity and management of the Lowveld rivers. In: Sinclair AR, Walker B (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington, DC, pp 447–468

    Google Scholar 

  • Ogutu-Ohwayo R (1990) The decline of the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of introduced species, especially the Nile perch, Lates niloticus, and the Nile tilapia, Oreochromis niloticus. Environ Biol Fishes 27:81–96. https://doi.org/10.1007/BF00001938

    Article  Google Scholar 

  • Økland F, Hay CJ, Naesje TF, Nickandor N, Thorstad EB (2003) Learning from unsuccessful radio tagging of common carp in a Namibian reservoir. J Fish Biol 62:735–739. https://doi.org/10.1046/j.1095-8649.2003.00043.x

    Article  Google Scholar 

  • Økland F, Thorstad EB, Hay CJ, Naesje TF, Chanda B (2005) Patterns of movement and habitat use by tigerfish (Hydrocynus vittatus) in the Upper Zambezi River (Namibia). Ecol Freshw Fish 14:79–86. https://doi.org/10.1111/j.1600-0633.2004.00080.x

    Article  Google Scholar 

  • Økland F, Hay CJ, Næsje TF, Chanda B, Thorstad EB (2007) Movements of, and habitat utilisation by, threespot tilapia Oreochromis andersonii (Teleostei: Cichlidae) in the Upper Zambezi River, Namibia. Afr J Aquat Sci 32:35–38

    Article  Google Scholar 

  • Opperman JJ, Kendy E, Tharme RE, Warner AT, Barrios E, Richter BD (2018) A three-level framework for assessing and implementing environmental flows. Front Environ Sci 6:76. https://doi.org/10.3389/fenvs.2018.00076

    Article  Google Scholar 

  • Paxton BR (2004a) Catchment-wide movement patterns and habitat utilisation of freshwater fish in rivers: implications for dam location, design and operation: a review and methods development for South Africa. Water Research Commission, Pretoria

    Google Scholar 

  • Paxton BR (2004b) Tracking movement of large fish species through a river system: methods development (no. KV157/04). Water Research Commission, Pretoria

  • Pine WE, Pollock KH, Hightower JE, Kwak TJ, Rice JA (2003) A review of tagging methods for estimating fish population size and components of mortality. Fisheries 28:10–23. https://doi.org/10.1577/1548-8446(2003)28[10:AROTMF]2.0.CO;2

    Article  Google Scholar 

  • Ramesh T, Downs CT, O’Brien GC (2018) Movement response of Orange-Vaal largemouth yellowfish (Labeobarbus kimberleyensis) to water quality and habitat features in the Vaal River, South Africa . Environ Biol Fishes 101:9971009. https://doi.org/10.1007/s10641-018-0754-y

    Article  Google Scholar 

  • Roberts DT, Udyawer V, Franklin C, Dwyer RG, Campbell HA (2017) Using an acoustic telemetry array to assess fish volumetric space use: a case study on impoundments, hypoxia and an air-breathing species (Neoceratodus forsteri). Mar Freshw Res 68:1532–1543. https://doi.org/10.1071/MF16124

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, Lo MH (2018) Emerging trends in global freshwater availability. Nature 557:651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux F, Steyn G, Hay C, Wagenaar I (2018) Movement patterns and home range size of tigerfish (Hydrocynus vittatus) in the Incomati River system, South Africa. Koedoe 60:1–13. https://doi.org/10.4102/koedoe.v60i1.1397

    Article  Google Scholar 

  • Schabetsberger R, Økland F, Aarestrup K, Kalfatak D, Sichrowsky U, Tambets M, Dall’Olmo G, Kaiser R, Miller PI (2013) Oceanic migration behaviour of tropical Pacific eels from Vanuatu. Mar Ecol Prog Ser 475:177–190

    Article  Google Scholar 

  • Siciliano G, Urban F (2017) Equity-based natural resource allocation for infrastructure development: Evidence from large hydropower dams in Africa and Asia. Ecol Econ 134:130–139

    Article  Google Scholar 

  • Silva AT, Lucas MC, Castro-Santos T, Katopodis C, Baumgartner LJ, Thiem JD, Aarestrup K, Pompeu PS, O’Brien GC, Braun DC, Burnett NJ (2018) The future of fish passage science, engineering, and practice. Fish Fish 19:340–362. https://doi.org/10.1111/faf.12258

    Article  Google Scholar 

  • Smit NJ, Howatson G, Greenfield R (2009) Blood lactate levels as a biomarker for angling-induced stress in tigerfish Hydrocynus vittatus from the Okavango Delta, Botswana. Afr J Aquat Sci 34:255–259. https://doi.org/10.2989/AJAS.2009.34.3.7.983

    Article  Google Scholar 

  • Smit NJ, Wepener V, Vlok W, Wagenaar GM, van Vuuren JHJ (2013) Conservation of tigerfish, Hydrocynus vittatus, in the Kruger National Park with the emphasis on establishing the suitability of the water quantity and quality requirements for the Olifants and Luvuvhu Rivers. Water Research Commission. Pretoria, South Africa

    Google Scholar 

  • Sokolow SH, Jones IJ, Jocque M, La D, Cords O, Knight A, Lund A, Wood CL, Lafferty KD, Hoover CM, Collender PA (2017) Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philos Trans R Soc B: Biol Sci 372:1–12. https://doi.org/10.1098/rstb.2016.0127

    Article  Google Scholar 

  • Sonamzi B, Burnett M, Petersen R, O’Brien G, Downs CT (2020) Assessing the effect of tagging and the vulnerability to predation in tigerfish (Hydrocynus vittatus, Castelnau 1861) in a water-stressed system using telemetry methods. Koedoe 62:1–12

    Article  Google Scholar 

  • Tagliacollo VA, Camelier P, Zanata AM, Reis RE (2020) A shocking discovery of threat risks on newly described species of weakly electric fishes. J Fish Biol 96:1077–1086

    Article  PubMed  Google Scholar 

  • Taylor MD, Babcock RC, Simpfendorfer CA, Crook DA (2017) Where technology meets ecology: acoustic telemetry in contemporary Australian aquatic research and management. Mar Freshw Res 68:1397–1402. https://doi.org/10.1071/MF17054

    Article  Google Scholar 

  • Thiem JD, Wooden IJ, Baumgartner LJ, Butler GL, Forbes J, Taylor MD, Watts RJ (2018) Abiotic drivers of activity in a large, free-ranging, freshwater teleost, Murray cod (Maccullochella peelii). PLoS ONE 13:0198972

    Article  Google Scholar 

  • Thomas B, Holland JD, Minot EO (2012) Wildlife tracking technology options and cost considerations. Wildl Res 38:653–663. https://doi.org/10.1071/WR10211

    Article  Google Scholar 

  • Thorstad EB, Hay CJ, Næsje TF, Økland F (2001) Movements and habitat utilization of three cichlid species in the Zambezi River, Namibia. Ecol Freshw Fish 10:238–246. https://doi.org/10.1034/j.1600-0633.2001.100406.x

    Article  Google Scholar 

  • Thorstad EB, Hay CJ, Næsje TF, Chanda B, Økland F (2003) Space use and habitat utilisation of tigerfish and the two cichlid species nembwe and threespot tilapia in the Upper Zambezi River. Implications for fisheries management. NINA Proj Rep 24:1–22

    Google Scholar 

  • Thorstad EB, Hay CJ, Næsje TF, Chanda B, Økland F (2004) Effects of catch-and-release angling on large cichlids in the subtropical Zambezi River. Fish Res 69:141–144. https://doi.org/10.1016/j.fishres.2004.04.005

    Article  Google Scholar 

  • Thorstad EB, Rikardsen AH, Alp A, Økland F (2013) The use of electronic tags in fish research—an overview of fish telemetry methods. Turk J of Fish Aquat Sci 13:881–896. https://doi.org/10.4194/1303-2712-v13_5_13

    Article  Google Scholar 

  • Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, Cooke SJ, Dalton J, Darwall W, Edwards G, Harrison I (2020) Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70:330–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Trancart T, Tétard S, Acou A, Feunteun E, Schaeffer F, de Oliveira E (2018) Silver eel downstream migration in the River Rhine, route choice, and its impacts on escapement: a 6-year telemetry study in a highly anthropized system. Ecol Eng 123:202–211. https://doi.org/10.1016/j.ecoleng.2018.09.002

    Article  Google Scholar 

  • Tweddle D, Cowx IG, Peel RA, Weyl OLF (2015) Challenges in fisheries management in the Zambezi, one of the great rivers of Africa. Fish Manag Ecol 22:99–111. https://doi.org/10.1111/fme.12107

    Article  Google Scholar 

  • Vaccaro I, Chapman CA, Nyboer EA, Luke M, Byekwaso A, Morgan C, Mbabazi D, Twinomugisha D, Chapman LJ (2013) An interdisciplinary method to harmonise ecology, economy and co-management: fisheries exploitation in Lake Nabugabo, Uganda. Afr J Aquat Sci 38:97–104. https://doi.org/10.2989/16085914.2013.842535

    Article  Google Scholar 

  • Verhelst P, Buysse D, Reubens J, Pauwels I, Aelterman B, Van Hoey S, Goethals P, Coeck J, Moens T, Mouton A (2018) Downstream migration of European eel (Anguilla anguilla) in an anthropogenically regulated freshwater system: Implications for management. Fish Res 199:252–262. https://doi.org/10.1016/j.fishres.2017.10.018

    Article  Google Scholar 

  • Vollset KW, Lennox RJ, Thorstad EB, Auer S, Bär K, Larsen MH, Mahlum S, Näslund J, Stryhn H, Dohoo I (2020) Systematic review and meta-analysis of PIT tagging effects on mortality and growth of juvenile salmonids. In: Reviews in fish biology and fisheries, pp 1–16.

  • Weyl OL, Chakona A (2020) Journal of fish biology special issue on the biology and ecology of African freshwater fishes. J Fish Biol 96:1075–1076

    Article  PubMed  Google Scholar 

  • Weyl OL, Schirrmann MK, Hargrove JS, Bodill T, Swartz ER (2017) Invasion status of Florida bass Micropterus floridanus (Lesueur, 1822) in South Africa. Afr J Aquat Sci 42:359–365

    Article  Google Scholar 

  • Whoriskey K, Martins EG, Auger-Méthé M, Gutowsky LF, Lennox RJ, Cooke SJ, Power M, Mills FJ (2019) Current and emerging statistical techniques for aquatic telemetry data: a guide to analysing spatially discrete animal detections. Methods Ecol Evol 10:7. https://doi.org/10.1111/2041-210X.13188

    Article  Google Scholar 

  • Wilby RL, Orr H, Watts G, Battarbee RW, Berry PM, Chadd R, Dugdale SJ, Dunbar MJ, Elliott JA, Extence C, Hannah DM (2010) Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Sci Total Environ 408:4150–4164. https://doi.org/10.1016/j.scitotenv.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170

    Article  Google Scholar 

Download references

Acknowledgements

We thank the University of KwaZulu-Natal (ZA), especially the Centre for Functional Biodiversity, Aquatic Ecosystem Research Group, and the Centre for Water Resource and Research for their support.

Funding

We thank the University of KwaZulu-Natal (ZA), the University of Mpumalanga (ZA), the National Research Foundation (NRF) (ZA, Grant 98404), the NRF BRICS Multilateral Joint Science and Technology Research Collaboration study titled, ‘Global and local water quality monitoring by multimodal sensor systems’, the NRF Community of Practice Grant, the Water Research Commission (ZA), the Durban Research Action Partnership (ZA) and Umgeni Water (ZA) for funding us.

Author information

Authors and Affiliations

Authors

Contributions

MJB conceived paper with input from GOB, FJJ, GJ and CTD. GOB and CTD sought funding. MJB collected and analysed data and wrote the paper. CTD, GJ, GCOB and FJJ contributed valuable comments to the manuscript.

Corresponding author

Correspondence to Colleen T. Downs.

Ethics declarations

Conflicts of interest

The authors declare they have no conflict of interest nor competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, M.J., O’Brien, G.C., Jacobs, F.J. et al. Fish telemetry in African inland waters and its use in management: a review. Rev Fish Biol Fisheries 31, 337–357 (2021). https://doi.org/10.1007/s11160-021-09650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-021-09650-2

Keywords

Navigation