Advancing our understanding of the connectivity, evolution and management of marine lobsters through genetics

Abstract

The genomic revolution has provided powerful insights into the biology and ecology of many non-model organisms. Genetic tools have been increasingly applied to marine lobster research in recent years and have improved our understanding of species delimitation and population connectivity. High resolution genomic markers are just beginning to be applied to lobsters and are now starting to revolutionise our understanding of fine spatial and temporal scales of population connectivity and adaptation to environmental conditions. Lobsters play an important role in the ecosystem and many species are commercially exploited but many aspects of their biology is still largely unknown. Genetics is a powerful tool that can further contribute to our understanding of their ecology and evolution and assist management. Here we illustrate how recent genetic advancements are (1) leading to a step change in our understanding of evolution and adaptation, (2) elucidating factors driving connectivity and recruitment, (3) revealing insights into ecological processes and can (4) potentially revolutionise management of this commercially important group. We discuss how improvements in sequencing technologies and statistical methods for genetic data analyses combined with increased sampling efforts and careful sampling design have transformed our understanding of lobsters biology in recent years. We also highlight possible future directions in the application of genomic tools to lobster research that can aid management, in particular, the close-kin-mark-recapture method. Finally, we identify gaps and challenges in lobster research, such as the lack of any reference genomes and predictions on how lobsters will respond to future environmental conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahyong ST, O’Meally D (2004) Phylogeny of the Decapoda reptantia: resolution using three molecular loci and morphology. Raffles Bull Zool 52:673–693

    Google Scholar 

  2. Al-Breiki RD, Kjeldsen SR, Afzal H et al (2018) Genome-wide SNP analyses reveal high gene flow and signatures of local adaptation among the scalloped spiny lobster (Panulirus homarus) along the Omani coastline. BMC Genom 19:690

    Article  Google Scholar 

  3. Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430

    Article  CAS  PubMed  Google Scholar 

  4. Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:1–7

    Article  CAS  Google Scholar 

  6. Baltazar-Soares M, Hinrichsen H-H, Eizaguirre C (2018) Integrating population genomics and biophysical models towards evolutionary-based fisheries management. ICES J Mar Sci 75:1245–1257

    Article  Google Scholar 

  7. Barrett N, Buxton C, Gardner C (2009) Rock lobster movement patterns and population structure within a Tasmanian Marine protected area inform fishery and conservation management. Mar Freshw Res 60:417–425

    Article  Google Scholar 

  8. Barson NJ, Aykanat T, Hindar K et al (2015) Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528:405–408

    Article  CAS  PubMed  Google Scholar 

  9. Bell RS, Channells PW, MacFarlane JW et al (1987) Movement and breeding of the ornate rock lobster, Panulirus ornatus, in Torres Strait and on the north-east coast of Queensland. Aust J Mar Freshw Res 38:197–210

    Article  Google Scholar 

  10. Benestan L, Gosselin T, Perrier C et al (2015) RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol 24:3299–3315

    Article  PubMed  Google Scholar 

  11. Benestan L, Quinn BK, Maaroufi H et al (2016) Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol Ecol 25:5073–5092

    Article  PubMed  Google Scholar 

  12. Booth J (1997) Long-distance movements in Jasus spp. and their role in larval recruitment. Bull Mar Sci 61:111–128

    Google Scholar 

  13. Booth JD (2006) Jasus species. In: Phillips BF (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell Scientific Publications, Oxford

    Google Scholar 

  14. Booth JD, Ovenden JR (2000) Distribution of Jasus spp. (Decapoda: Palinuridae) phyllosomas in southern waters: implications for larval recruitment. Mar Ecol Prog Ser 200:241–255

    Article  Google Scholar 

  15. Booth J, Phillips B (1994) Early life history of spiny lobster. Crustaceana 66:271–294

    Article  Google Scholar 

  16. Booth JD, Street RJ, Smith PJ et al (1990) Systematic status of the rock lobsters Jasus edwardsii from New Zealand and J. novaehollandiae from Australia. N Z J Mar Freshw Res 24:239–249

    Article  Google Scholar 

  17. Boudreau B, Bourget E, Simard Y (1993) Behavioural responses of competent lobster postlarvae to odor plumes. Mar Biol 117:63–69

    Article  Google Scholar 

  18. Bracken HD, Toon A, Felder DL et al (2009) The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthropod Syst Phylogeny 67:99–116

    Google Scholar 

  19. Bracken-Grissom HD, Ahyong ST, Wilkinson RD et al (2014) The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, astacidea, glypheidea, polychelida). Syst Biol 63:457–479

    Article  PubMed  Google Scholar 

  20. Bradford RW, Griffin D, Bruce BD (2015) Estimating the duration of the pelagic phyllosoma phase of the southern rock lobster, Jasus edwardsii (Hutton). Mar Freshw Res 66:213–219

    Article  Google Scholar 

  21. Brasher D, Ovenden J, White R (1992a) Mitochondrial DNA variation and phylogenetic relationships of Jasus spp. (Decapoda: Palinuridae). J Zool 227:1–16

    Article  Google Scholar 

  22. Brasher DJ, Ovenden JR, Booth JD, White RWG (1992b) Genetic subdivision of Australian and New Zealand populations of Jasus verreauxi (Decapoda: Palinuridae)—preliminary evidence from the mitochondrial genome. N Z J Mar Freshw Res 26:53–58

    Article  Google Scholar 

  23. Bravington MV, Grewe PM, Davies CR (2016a) Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture. Nat Commun 7:1–8

    Article  CAS  Google Scholar 

  24. Bravington MV, Skaug HJ, Anderson EC (2016b) Close-kin mark-recapture. Stat Sci 31:259–274

    Article  Google Scholar 

  25. Bruce B, Griffin D, Bradford R (2007) Larval transport and recruitment processes of southern rock lobster. CSIRO marine and atmospheric research, FRDC 2002/007 final report

  26. Caputi N, Melville-smith R, De LS et al (2010) The effect of climate change on the western rock lobster (Panulirus cygnus) fishery of Western Australia. Can J Fish Aquat Sci 96:85–96

    Article  Google Scholar 

  27. Caputi N, Lestang S, Frusher S, Wahle RA (2013) The impact of climate change on exploited lobster stocks. In: Phillips B (ed) Lobsters: biology, management, aquaculture and fisheries, 2nd edn. Blackwell Publishing, Oxford, pp 84–112

    Google Scholar 

  28. Chiswell SM, Booth JD (1999) Rock lobster Jasus edwardsii larval retention by the Wairarapa Eddy off New Zealand. Mar Ecol Prog Ser 183:227–240

    Article  Google Scholar 

  29. Chiswell S, Booth J (2008) Sources and sinks of larval settlement in Jasus edwardsii around New Zealand: Where do larvae come from and where do they go? Mar Ecol Prog Ser 354:201–217

    Article  Google Scholar 

  30. Chiswell S, Roemmich D (1998) The east cape current and two eddies: A mechanism for larval retention? N Z J Mar Freshw Res 32:385–397

    Article  Google Scholar 

  31. Chiswell SM, Wilkin J, Booth JD, Stanton B (2003) Trans-tasman sea larval transport: Is Australia a source for New Zealand rock lobsters? Mar Ecol Prog Ser 247:173–182

    Article  Google Scholar 

  32. Chow S, Suzuki N, Imai H, Yoshimura T (2006) Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific. Mar Biotechnol 8:260–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chu KH, Tsang LM, Ma KY et al (2009) Decapod phylogeny: What can protein-coding genes tell us? In: Martin JW, Crandall KA, Felder DL (eds) Decapod crustacean phylogenetics. Taylor & Francis, London, p 581

    Google Scholar 

  34. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  CAS  PubMed  Google Scholar 

  35. Crivello JF, Landers DF, Keser M (2005) The genetic stock structure of the American Lobster (Homarus americanus) in long Island Sound and the Hudson Canyon. J Shellfish Res 24:841–848

    Article  Google Scholar 

  36. Dao HT, Smith-Keune C, Wolanski E et al (2015) Oceanographic currents and local ecological knowledge indicate, and genetics does not refute, a contemporary pattern of larval dispersal for the ornate spiny lobster, Panulirus ornatus in the south-east Asian archipelago. PLoS ONE 10:1–19

    Google Scholar 

  37. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  Google Scholar 

  38. Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340

    Article  PubMed  Google Scholar 

  39. Deiana AM, Cau A, Coluccia E et al (1999) Genome size and AT-DNA content in thirteen species of decapoda. In: Schram FR, von Vaupel Klein JC (eds) Crustaceans and the Biodiversity Crisis. Koninklijke Brill NV, Amsterdam, pp 981–985

    Google Scholar 

  40. Donelson JM, Munday PL, Mccormick MI, Pitcher CR (2012) Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang 2:30–32

    Article  Google Scholar 

  41. Eddy TD, Pitcher TJ, MacDiarmid AB et al (2014) Lobsters as keystone: Only in unfished ecosystems? Ecol Modell 275:48–72

    Article  Google Scholar 

  42. Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042

    Article  PubMed  PubMed Central  Google Scholar 

  43. FAO (1995) Code of conduct for responsible fisheries

  44. FAO (2017) The world lobster market, by Graciela Pereira and Helga Josupeit, FAO Consultants. Globefish research programme volume 123. Rome, Italy

  45. FAO (2018) Impacts of climate change on fisheries and aquaculture-synthesis of current knowledge, adaptation and mitigation options, Rome

  46. Farhadi A, Jeffs AG, Farahmand H et al (2017) Mechanisms of peripheral phylogeographic divergence in the indo-Pacific: lessons from the spiny lobster Panulirus homarus. BMC Evol Biol 17:1–14

    Article  Google Scholar 

  47. Flood MJ, Stobutzki I, Andrews J et al (2016) Multijurisdictional fisheries performance reporting: how Australia’s nationally standardised approach to assessing stock status compares. Fish Res 183:559–573

    Article  Google Scholar 

  48. Frusher SD, Hoenig JM (2003) Recent developments in estimating fishing and natural mortality and tag reporting rate of lobsters using multi-year tagging models. Fish Res 65:379–390

    Article  Google Scholar 

  49. Frusher SD, Hall D, Burch P, Gardner C (2009) Combining passive integrated transponder tags with conventional T-bar tags to improve tag reporting rates in a rock lobster trap fishery. N Z J Mar Freshw Res 43:347–353

    Article  Google Scholar 

  50. Fuentes-pardo AP, Ruzzante DE (2017) Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol Ecol 26:5369–5406

    Article  CAS  PubMed  Google Scholar 

  51. García-Rodríguez FJ, Perez-Enriquez R (2006) Genetic differentiation of the California spiny lobster Panulirus interruptus (Randall, 1840) along the west coast of the Baja California Peninsula, Mexico. Mar Biol 148:621–629

    Article  Google Scholar 

  52. Gardner C, Frusher SD, Haddon M, Buxton C (2003) Movements of the southern rock lobster Jasus edwardsii in Tasmania, Australia. Bull Mar Sci 73:653–671

    Google Scholar 

  53. Gardner C, Larkin S, Seijo JC (2013) Systems to maximize economic benefits from lobster fisheries. In: Phillips B (ed) Lobsters: biology, management aquaculture and fisheries, 2nd edn. Wiley-Blackwell, New York, pp 113–132

    Google Scholar 

  54. Garner DM (1961) Hydrology of New Zealand coastal waters, 1955

  55. George RW (1997) Tectonic plate movements and the evolution of Jasus and Panulirus spiny lobsters (Palinuridae). Mar Freshw Res 48:1121–1130

    Article  Google Scholar 

  56. George RW (2005) Tethys sea fragmentation and speciation of Panulirus spiny lobsters. Crustaceana 78:1281–1309

    Article  Google Scholar 

  57. Giacalone VM, Barausse A, Gristina M et al (2015) Diel activity and short-distance movement pattern of the European spiny lobster, Palinurus elephas, acoustically tracked. Mar Ecol 36:389–399

    Article  Google Scholar 

  58. Goncalves P, Anderson K, Thompson EL, Melwani A (2016) Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification. Mol Ecol 25:4836–4849

    Article  CAS  PubMed  Google Scholar 

  59. González-Vicente L, Díaz D, Mallol S, Goñi R (2012) Tag loss in the lobster Palinurus elephas (Fabricius, 1787) and implications for population assessment with capture-mark-recapture methods. Fish Res 129–130:1–7

    Article  Google Scholar 

  60. Green BS, Gardner C, Linnane A, Hawthorne PJ (2010) The good, the bad and the recovery in an assisted migration. PLoS ONE 5:e14160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Groeneveld JC, Gopal K, George RW, Matthee CA (2007) Molecular phylogeny of the spiny lobster genus Palinurus (Decapoda: Palinuridae) with hypotheses on speciation in the NE Atlantic/Mediterranean and SW Indian Ocean. Mol Phylogenet Evol 45:102–110

    Article  CAS  PubMed  Google Scholar 

  62. Groeneveld JC, Von der Heyden S, Matthee CA (2012) High connectivity and lack of mtDNA differentiation among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans. Mar Biol Res 8:764–770

    Article  Google Scholar 

  63. Harding GC, Kenchington EL, Bird CJ et al (1997) Genetic relationships among subpopulations of the American lobster (Homarus americanus) as revealed by random amplified polymorphic DNA. Can J Fish Aquat Sci 54:1762–1771

    Article  Google Scholar 

  64. Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002

    Article  Google Scholar 

  65. Helyar SJ, Hemmer-Hansen J, Bekkevold D et al (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136

    Article  PubMed  Google Scholar 

  66. Hinojosa IA, Green BS, Gardner C et al (2016) Reef sound as an orientation cue for shoreward migration by pueruli of the rock lobster, Jasus edwardsii. PLoS ONE 11:1–15

    Google Scholar 

  67. Hinojosa IA, Gardner C, Green BS et al (2017) Differing environmental drivers of settlement across the range of southern rock lobster (Jasus edwardsii) suggest resilience of the fishery to climate change. Fish Oceanogr 26:49–64

    Article  Google Scholar 

  68. Hoban S, Kelley JL, Lotterhos KE et al (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat 188:379–397

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hofmann GE (2017) Ecological epigenetics in marine metazoans. Front Mar Sci 4:1–7

    Article  CAS  Google Scholar 

  70. Hollenbeck CM, Johnston IA (2018) Genomic tools and selective breeding in molluscs. Front Genet 9:1–15

    Article  Google Scholar 

  71. Iacchei M, Ben-Horin T, Selkoe KA et al (2013) Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol Ecol 22:3476–3494

    Article  PubMed  PubMed Central  Google Scholar 

  72. Incze LS, Wahle RA, Palma AT (2000) Advection and settlement rates in a benthic invertebrate: recruitment to first benthic stage in Homarus americanus. ICES J Mar Sci 57:430–437

    Article  Google Scholar 

  73. Incze L, Xue H, Xu D et al (2010) Connectivity of lobster (Homarus americanus) populations in the coastal gulf of maine: part II. Coupled biophysical dynamics. Fish Oceanogr 19(1):1–20

    Article  Google Scholar 

  74. Jarman SN, Polanowski AM, Faux CE, Robbins J (2015) Molecular biomarkers for chronological age in animal ecology. Mol Ecol 24:4826–4847

    Article  CAS  PubMed  Google Scholar 

  75. Johnson MS, Black R (1982) Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70:157–164

    Article  Google Scholar 

  76. Johnson MS, Black R (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution (N Y) 38:1371–1383

    Google Scholar 

  77. Katz CH, Cobb JS, Spaulding M (1994) Larval behavior, hydrodynamic transport, and potential offshore-to-inshore recruitment in the American lobster Homarus americanus. Mar Ecol Prog Ser 103:265–273

    Article  Google Scholar 

  78. Kenchington EL, Harding GC, Jones MW, Prodöhl PA (2009) Pleistocene glaciation events shape genetic structure across the range of the American lobster, Homarus americanus. Mol Ecol 18:1654–1667

    Article  PubMed  Google Scholar 

  79. Kennington WJ, Berry O, Groth DM et al (2013a) Spatial scales of genetic patchiness in the western rock lobster Panulirus cygnus. Mar Ecol Prog Ser 486:213–221

    Article  Google Scholar 

  80. Kennington WJ, Cadee SA, Berry O et al (2013b) Maintenance of genetic variation and panmixia in the commercially exploited western rock lobster (Panulirus cygnus). Conserv Genet 14:115–124

    Article  Google Scholar 

  81. Keppel EA, Scrosati RA, Courtenay SC (2012) Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. J Northw Atl Fish Sci 44:61–66

    Article  Google Scholar 

  82. Lillis A, Snelgrove PVR (2010) Near-bottom hydrodynamic effects on postlarval settlement in the American lobster Homarus americanus. Mar Ecol Prog Ser 401:161–172

    Article  Google Scholar 

  83. Linnane A, James C, Middleton J et al (2010) Impact of wind stress anomalies on the seasonal pattern of southern rock lobster (Jasus edwardsii) settlement in South Australia. Fish Oceanogr 19(4):290–300

    Article  Google Scholar 

  84. Linnane A, Mcgarvey R, Gardner C et al (2014) Large-scale patterns in puerulus settlement and links to fishery recruitment in the southern rock lobster (Jasus edwardsii), across south-eastern Australia. ICES J Mar Sci 71:528–536

    Article  Google Scholar 

  85. Luikart G, Luikart G, England PR et al (2004) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  Google Scholar 

  86. Machordom A, Macpherson E (2004) Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence. Mol Phylogenet Evol 33:259–279

    Article  CAS  PubMed  Google Scholar 

  87. Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  88. Metaxas A, Saunders M (2009) Quantifying the “bio-” components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. Biol Bull 216:257–272

    Article  PubMed  Google Scholar 

  89. Miller AD, Sweeney OF, Whiterod NS et al (2014) Critically low levels of genetic diversity in fragmented populations of the endangered Glenelg spiny freshwater crayfish Euastacus bispinosus. Endanger Species Res 25:43–55

    Article  Google Scholar 

  90. Morgan EMJ, Green BS, Murphy NP, Strugnell JM (2013) Investigation of genetic structure between deep and shallow populations of the southern rock lobster, Jasus edwardsii in Tasmania, Australia. PLoS ONE 8:1–10

    Google Scholar 

  91. Naro-Maciel E, Reid B, Holmes KE et al (2011) Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Mar Biol 158:2027–2041

    Article  CAS  Google Scholar 

  92. North EW, Gallego A, Petitgas P (2009) Manual of recommended practices for modelling physical-biological interactions during fish early life. In: ICES cooperative research report 295

  93. Nowoshilow S, Schloissnig S, Fei J-F et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55

    Article  CAS  PubMed  Google Scholar 

  94. O’Malley JM (2008) Evaluations of tag retention and a device for releasing discarded Hawaiian spiny lobsters Panulirus marginatus. North Am J Fish Manag 28:619–624

    Article  Google Scholar 

  95. O’Rorke R, Lavery SD, Wang M et al (2015) Phyllosomata associated with large gelatinous zooplankton: hitching rides and stealing bites. ICES J Mar Sci 72:124–127

    Article  Google Scholar 

  96. Ovenden JR, Brasher DJ, White RWG (1992) Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii supports an apparent absence of population subdivision throughout Australasia. Mar Biol 112:319–326

    Article  CAS  Google Scholar 

  97. Ovenden JR, Booth JD, Smolenski AJ (1997) Mitochondrial DNA phylogeny of red and green rock lobsters (genus Jasus). Mar Freshw Res 48:1131–1136

    Article  CAS  Google Scholar 

  98. Palero F, Abelló P, Macpherson E et al (2008) Phylogeography of the European spiny lobster (Palinurus elephas): influence of current oceanographical features and historical processes. Mol Phylogenet Evol 48:708–717

    Article  CAS  PubMed  Google Scholar 

  99. Palero F, Lopes J, Abelló P et al (2009) Rapid radiation in spiny lobsters (Palinurus spp) as revealed by classic and ABC methods using mtDNA and microsatellite data. BMC Evol Biol 9:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 80(355):6332

    Google Scholar 

  101. Pedraza-Lara C, Doadrio I, Breinholt JW, Crandall KA (2012) Phylogeny and evolutionary patterns in the dwarf crayfish subfamily (Decapoda: Cambarellinae). PLoS ONE 7:e48233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Phillips BF, McWilliam PS (1986) The pelagic phase of spiny lobster development. Can J Fish Aquat Sci 43:2153–2163

    Article  Google Scholar 

  104. Polanowski AM, Robbins J, Chandler D, Jarman SN (2014) Epigenetic estimation of age in humpback whales. Mol Ecol Resour 14:976–987

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pollock DE (1990) Palaeoceanography and Speciation in the Spiny Lobster Genus Jasus. Bull Mar Sci 46:387–405

    Google Scholar 

  106. Pollock DE (1993) Speciation in spiny lobsters-clues to climatically-induced changes in ocean circulation patterns. Bull Mar Sci 53:937–944

    Google Scholar 

  107. Porter ML, Perez-Losada M, Crandall KA (2005) Model-based multilocus estimation of decapod phylogeny and divergence times. Mol Phylogenet Evol 37:355–369

    Article  CAS  PubMed  Google Scholar 

  108. Ptacek MB, Sarver SK, Childress MJ, Herrnkind WF (2001) Molecular phylogeny of the spiny lobster genus Panulirus (Decapoda: Palinuridae). Mar Freshw Res 52:1037–1047

    Article  Google Scholar 

  109. Quinn BK (2017) Threshold temperatures for performance and survival of American lobster larvae: a review of current knowledge and implications to modeling impacts of climate change. Fish Res 186:383–396

    Article  Google Scholar 

  110. Quinn BK, Rochette R (2015) Potential effect of variation of water temperature on development time of American lobster larvae. ICES J Mar Sci 10:i79–i90

    Article  Google Scholar 

  111. Ramos JE, Pecl GT, Moltschaniwskyj NA et al (2018) Population genetic signatures of a climate change driven marine range extension. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  112. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  113. Rochette NC, Catchen JM (2017) Deriving genotypes from RAD-seq short-read data using stacks. Nat Protoc 12:2640–2659

    Article  CAS  PubMed  Google Scholar 

  114. Sansaloni C, Petroli C, Jaccoud D et al (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5:P54

    Article  PubMed Central  Google Scholar 

  115. Selkoe KA, Watson JR, White C et al (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726

    Article  PubMed  Google Scholar 

  116. Selkoe KA, Aloia CCD, Crandall ED et al (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19

    Article  Google Scholar 

  117. Shen H, Braband A, Scholtz G (2013) Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol Phylogenet Evol 66:776–789

    Article  PubMed  Google Scholar 

  118. Shen H, Braband A, Scholtz G (2015) The complete mitogenomes of lobsters and crayfish (Crustacea: Decapoda: Astacidea) reveal surprising differences in closely related taxa and convergences to Priapulida. J Zool Syst Evol Res 53:273–281

    Article  Google Scholar 

  119. Shepherd T, Gardner C, Green B, Richardson A (2011) Estimating survival of the tayatea Astacopsis gouldi (Crustacea, Decapoda, Parastacidae), an iconic, threatened freshwater invertebrate. J Shellfish Res 30:139–145

    Article  Google Scholar 

  120. Silberman JD, Sarver SK, Walsh PJ (1994) Mitochondrial DNA variation and population structure in the spiny lobster Panulirus argus. Mar Biol 120:601–608

    Article  CAS  Google Scholar 

  121. Singh SP, Groeneveld JC, Al-Marzouqi A, Willows-Munro S (2017) A molecular phylogeny of the spiny lobster Panulirus homarus highlights a separately evolving lineage from the Southwest Indian Ocean. PeerJ 5:e3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh SP, Groeneveld JC, Hart-Davis MG et al (2018) Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol Evol 8:1–17

    Article  Google Scholar 

  123. Skerritt DJ, Robertson PA, Mill AC et al (2015) Fine-scale movement, activity patterns and home-ranges of European lobster Homarus gammarus. Mar Ecol Prog Ser 536:203–219

    Article  Google Scholar 

  124. Sloan S, Smith A, Gardner C et al (2014) National guidelines to develop fishery harvest strategies. FRDC 2010/061, p 70

  125. Souza CA, Murphy N, Villacorta-rath C et al (2017) Efficiency of ddRAD target enriched sequencing across spiny rock lobster species (Palinuridae: Jasus). Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  126. Stamatis C, Triantafyllidis A, Moutou KA, Mamuris Z (2004) Mitochondrial DNA variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol Ecol 13:1377–1390

    Article  CAS  PubMed  Google Scholar 

  127. Stillman JH, Armstrong E (2015) Genomics are transforming our understanding of responses to climate change. Bioscience 65:237–246

    Article  Google Scholar 

  128. Tanner AR, Fuchs D, Winkelmann IE et al (2017) Molecular clocks indicate turnover and diversification of cephalopod molluscs during the Mesozoic Marine Revolution. Proc R Soc B 284:20162818

    Article  PubMed  Google Scholar 

  129. Thomas L, Bell JJ (2013) Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity (Edinb) 111:345–354

    Article  CAS  Google Scholar 

  130. Thompson AP, Hanley JR, Johnson MS (1996) Genetic structure of the western rock lobster, Panulirus cygnus, with the benefit of hindsight. Mar Freshw Res 47:889–896

    Article  CAS  Google Scholar 

  131. Tolley KA, Groeneveld JC, Gopal K, Matthee CA (2005) Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar Ecol Prog Ser 297:225–231

    Article  CAS  Google Scholar 

  132. Toon A, Finley M, Staples J, Crandall K (2009) Decapod phylogenetics and molecular evolution. In: Martin JW, Crandall KA, Felder DL (eds) Decapod crustacean phylogenetics. Taylor & Francis, London, p 581

    Google Scholar 

  133. Tracey ML, Nelson K, Hedgecock D et al (1975) Biochemical genetics of lobsters: genetic variation and the structure of American Lobster (Homarus americanus) populations. J Fish Res Board Can 32:2091–2101

    Article  CAS  Google Scholar 

  134. Truelove NK, Griffiths S, Ley-Cooper K et al (2015a) Genetic evidence from the spiny lobster fishery supports international cooperation among Central American marine protected areas. Conserv Genet 16:347–358

    Article  CAS  Google Scholar 

  135. Truelove NK, Ley-Cooper K, Segura-García I et al (2015b) Genetic analysis reveals temporal population structure in Caribbean spiny lobster (Panulirus argus) within marine protected areas in Mexico. Fish Res 172:44–49

    Article  Google Scholar 

  136. Truelove NK, Kough AS, Behringer DC et al (2017) Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs 36:233–244

    Article  Google Scholar 

  137. Tsang LM, Ma KY, Ahyong ST et al (2008) Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Mol Phylogenet Evol 48:359–368

    Article  CAS  PubMed  Google Scholar 

  138. Tsang LM, Chan TY, Cheung MK, Chu KH (2009) Molecular evidence for the Southern Hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae). Mol Phylogenet Evol 51:304–311

    Article  CAS  PubMed  Google Scholar 

  139. Tsoi KH, Chan TY, Chu KH (2011) Phylogenetic and biogeographic analysis of the spear lobsters Linuparus (Decapoda: Palinuridae), with the description of a new species. Zool Anz 250:302–315

    Article  Google Scholar 

  140. Tyler AD, Mataseje L, Urfano CJ et al (2018) Evaluation of Oxford Nanopore’s MinION sequencing device for microbial whole genome sequencing applications. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  141. van Gennip SJ, Popova EE, Yool A et al (2017) Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob Change Biol 23:1–16

    Article  Google Scholar 

  142. Villacorta-Rath C, Ilyushkina I, Strugnell JM et al (2016) Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii. Mar Biol 163:1–11

    Article  Google Scholar 

  143. Villacorta-Rath C, Souza CA, Murphy NP et al (2018) Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster. Mol Ecol 27:54–65

    Article  CAS  PubMed  Google Scholar 

  144. Wahle RA, Dellinger L, Olszewski S, Jekielek P (2015) American lobster nurseries of southern New England receding in the face of climate change. ICES J Mar Sci 72:69–78

    Article  Google Scholar 

  145. Wang MH, Marinotti O, Zhong D et al (2013) Gene expression-based biomarkers for Anopheles gambiae age grading. PLoS ONE 8:1–8

    Article  Google Scholar 

  146. Woodings LN, Murphy NP, Doyle SR et al (2018) Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi. Mar Biol 165:1–17

    Article  CAS  Google Scholar 

  147. Woodings LN, Murphy NP, Jeffs A et al (2019) Distribution of Palinuridae and Scyllaridae phyllosoma larvae within the East Australian current: a climate change hot spot. Mar Freshw Res 70(7):1020–1033

    Article  Google Scholar 

  148. Yoshizaki J, Brownie C, Pollock KH, Link WA (2011) Modeling misidentification errors that result from use of genetic tags in capture-recapture studies. Environ Ecol Stat 18:27–55

    Article  Google Scholar 

  149. Yu Y, Zhang X, Yuan J et al (2015) Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Sci Rep 5:1–14

    Google Scholar 

  150. Zhang D, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations practice, problems and prospects. Mol Ecol 12:563–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by an Australian Research Council Discovery Project awarded to JMS, NPM, BSG and JJB (Project No. DP150101491).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catarina N. S. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 187 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, C.N.S., Villacorta-Rath, C., Woodings, L.N. et al. Advancing our understanding of the connectivity, evolution and management of marine lobsters through genetics. Rev Fish Biol Fisheries 29, 669–687 (2019). https://doi.org/10.1007/s11160-019-09573-z

Download citation

Keywords

  • Adaptation
  • Close-kin-mark-recapture
  • Connectivity
  • Genomics
  • Lobster
  • Management