A review of the diets and feeding behaviours of a family of biologically diverse marine fishes (Family Syngnathidae)

Abstract

This review compiles, summarizes and provides new analytical insights on large amounts of fragmented information on the diets and feeding behaviours of syngnathids (Family Syngnathidae). This review is broken down into two distinct sections that address two central questions: (1) How, where, when and what do syngnathids eat? And (2) How does diet differ with feeding morphology? For (1) we summarized both qualitative and quantitative information on the diets and feeding behaviours of syngnathids found in the published and grey literature. This section includes a narrative summary of syngnathid feeding events and foraging behaviours (e.g. body mechanics and feeding morphologies, habitat use, seasonal and diurnal timing of feeding, energetics) and a tabulated summary of what syngnathids eat. For (2) we performed a comparative analysis on the diets of 41 species of syngnathid, comprising 15 genera from 39 sources in peer-reviewed and grey literature. Redundancy analyses on bulk, numeric, and frequency of occurrence data, analyzed separately, all show large unexplained dietary variation, which we hypothesize is the result of large differences in prey availability. Of the explained variation, syngnathid diets were most strongly correlated with head characteristics: most notably relative snout lengths and gape sizes. Syngnathid feeding morphologies also showed high phylogenetic signal; this suggests that dietary differences across genera were largely explained by how syngnathids differed with respect to these feeding morphologies. This review identifies new taxonomic patterns, and expands on previous generalities, improving our ecological understanding of this diverse group of fishes.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abrams PA (2000) The evolution of predator-prey interactions: theory and evidence. Annu Rev Ecol Syst 31:79–105. https://doi.org/10.1146/annurev.ecolsys.31.1.79

    Article  Google Scholar 

  2. Ashley-Ross MA (2002) Mechanical properties of the dorsal fin muscle of seahorse (Hippocampus) and pipefish (Syngnathus). J Exp Zool 293:561–577. https://doi.org/10.1002/jez.10183

    Article  PubMed  Google Scholar 

  3. Barnes C, Maxwell D, Reuman DC et al (2010) Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91:222–232. https://doi.org/10.1890/08-2061.1

    Article  PubMed  Google Scholar 

  4. Bell JD, Westoby M (1986) Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia 68:205–209. https://doi.org/10.1007/BF00384788

    Article  PubMed  Google Scholar 

  5. Bennett BA (1989) The diets of fish in three south-western Cape estuarine systems. S Afr J Zool 24:163–177. https://doi.org/10.1080/02541858.1989.11448149

    Article  Google Scholar 

  6. Bennett BA, Branch GM (1990) Relationships between production and consumption of prey species by resident fish in the Bot, a cool temperate South African estuary. Estuar Coast Shelf Sci 31:139–155. https://doi.org/10.1016/0272-7714(90)90043-Q

    Article  Google Scholar 

  7. Bergert BA, Wainwright PC (1997) Morphology and kinematics of prey capture in the syngnathid fishes Hippocampus erectus and Sygnathus floridae. Mar Biol 127:563–570. https://doi.org/10.1007/s002270050046

    Article  Google Scholar 

  8. Berglund A, Rosenqvist G, Svensson I (1986) Reversed sex roles and parental energy investment in zygotes of two pipefish (Syngnathidae) species. Mar Ecol Prog Ser 29:209–215

    Google Scholar 

  9. Berglund A, Rosenqvist G, Robinson-Wolrath S (2006) Food or sex—males and females in a sex role reversed pipefish have different interests. Behav Ecol Sociobiol 60:281–287. https://doi.org/10.1007/s00265-006-0166-4

    Article  Google Scholar 

  10. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910. https://doi.org/10.1046/j.1420-9101.2002.00472.x

    Article  Google Scholar 

  11. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717. https://doi.org/10.1554/0014-3820(2003)057%5b0717:TFPSIC%5d2.0.CO;2

    Article  Google Scholar 

  12. Borcard D, Legendre P, Drapeau P (1992) Partialing out the spatial component of ecological variation. Ecology 84:511–525. https://doi.org/10.2307/1940179

    Article  Google Scholar 

  13. Bowman RE, Stillwell CE, Michaels WL, Grosslein MD (2000) Food of Northwest Atlantic fishes and two common species of squid. U.S. Department of Commerce National Oceanic and Atmospheric Administration Nation Marine Fisheries Service Northeast Region. http://nefsc.noaa.gov/nefsc/publications/tm/tm155/tm155.pdf. Accessed 15 Mar 2015

  14. Brodie ED, Brodie ED (1999) Costs of exploiting poisonous prey: evolutionary trade-offs in a predator-prey arms race. Evolution 53:626–631. https://doi.org/10.1111/j.1558-5646.1999.tb03798.x

    Article  PubMed  Google Scholar 

  15. Brook IM (1977) Trophic relationships in a seagrass community (Thalassia testudinum), in Card Sound, Florida. Fish dies in relation to macrobenthic and cryptic faunal abundance. Trans Am Fish Soc 106:219–229

    Google Scholar 

  16. Brown JD (1972) A comparative life history study of four species of pipefishes (family Syngnathidae) in Florida. Dissertation, University of Florida

  17. Brown JH, Maurer BA (1989) Macroecology: the division of food and space among species on continents. Sci New Ser 243:1145–1150. https://doi.org/10.1126/science.243.4895.1145

    CAS  Article  Google Scholar 

  18. Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, MA, pp 201–218

    Google Scholar 

  19. Burchmore JJ, Pollard DA, Bell JD (1984) Community structure and trophic relationships of the fish fauna of an estuarine Posidonia australis seagrass habitat in Port Hacking, New South Wales. Aquat Bot 18:71–87. https://doi.org/10.1016/0304-3770(84)90081-0

    Article  Google Scholar 

  20. Campolmi M, Franzoi P, Mazzola A (1996) Observations on pipefish (Syngnathidae) biology in the Stagnone lagoon (west Sicily). Publ Espec I’ Inst Espana Oceanogr 21:205–209

    Google Scholar 

  21. Castro ALC, Diniz AF, Martins IZ et al (2008) Assessing diet composition of seahorses in the wild using a non-destructive method: Hippocampus reidi (Teleostei: Syngnathidae) as a study-case. Neotrop Ichthyol 6:637–644. https://doi.org/10.1590/S1679-62252008000400012

    Article  Google Scholar 

  22. Celino FT, Hilomen-Garcia GV, del Norte-Campos AGC (2012) Feeding selectivity of the seahorse, Hippocampus kuda (Bleeker), juveniles under laboratory conditions. Aquac Res 43:1804–1815. https://doi.org/10.1111/j.1365-2109.2011.02988.x

    Article  Google Scholar 

  23. Chambers RC, Trippel EA (1997) Early life history and recruitment in fish populations. Chapman & Hall, London

    Google Scholar 

  24. Colson DJ, Patek SN, Brainerd EL, Lewis SM (1998) Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environ Biol Fishes 51:221–229. https://doi.org/10.1023/A:1007434714122

    Article  Google Scholar 

  25. Consi TR, Seifert PA, Triantafyllou MS, Edelman ER (2001) The dorsal fin engine of the seahorse (Hippocampus sp.). J Morphol 97:80–97. https://doi.org/10.1002/jmor.1022

    Article  Google Scholar 

  26. Cooper SD, Smith DW, Bence JR (1985) Prey selection by freshwater predators with different foraging strategies. Can J Fish Aquat Sci 42:1720–1732. https://doi.org/10.1139/f85-216

    Article  Google Scholar 

  27. Costa GC (2009) Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology 90:2014–2019. https://doi.org/10.1890/08-1150.1

    Article  PubMed  Google Scholar 

  28. Crowder LB, Norse E (2008) Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar Policy 32:772–778. https://doi.org/10.1016/j.marpol.2008.03.012

    Article  Google Scholar 

  29. Curtis JMR, Vincent ACJ (2005) Distribution of sympatric seahorse species along a gradient of habitat complexity in a seagrass-dominated community. Mar Ecol Prog Ser 291:81–91. https://doi.org/10.3354/meps291081

    Article  Google Scholar 

  30. D’Entremont J (2002) Sex-differences in feeding behaviour and diet in Hippocampus guttulatus. In: Foster SJ, Vincent ACJ (eds) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61. https://doi.org/10.1111/j.1095-8649.2004.00429.x

  31. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205:489–511. https://doi.org/10.1098/rspb.1979.0081

    CAS  Article  PubMed  Google Scholar 

  32. Dawson CE (1982) Fishes of the Western North Atlantic, Part 8. Yale University, New Haven

    Google Scholar 

  33. Dawson CE (1985) Indo-Pacific pipefishes, Red Sea to the Americas. The Gulf Coast Research Laboratory, Ocean Springs

    Google Scholar 

  34. de Lussanet MHE, Muller M (2007) The smaller your mouth, the longer your snout: predicting the snout length of Syngnathus acus, Centriscus scutatus and other pipette feeders. J R Soc Interface 4:561–573. https://doi.org/10.1098/rsif.2006.0201

    Article  PubMed  PubMed Central  Google Scholar 

  35. Do HH, Truong SK, Ho TH (1996) Feeding behaviour and food of seahorses in Vietnam. In: Proceedings of the third international conference on the marine biology of the South China Sea. Hong Kong University Press, Hong Kong

  36. Dunham NM (2010) The life history and energy budget of Hippocampus erectus in Tampa Bay, Florida. Dissertation, University of South Florida

  37. Felicio AKC, Rosa IL, Souto A, Freitas RHA (2006) Feeding behavior of the longsnout seahorse Hippocampus reidi Ginsburg, 1933. J Ethol 24:219–225. https://doi.org/10.1007/s10164-005-0189-8

    Article  Google Scholar 

  38. Flammang BE, Ferry-Graham LA, Rinewalt C et al (2009) Prey capture kinematics and four-bar linkages in the bay pipefish, Syngnathus leptorhynchus. Zoology 112:86–96. https://doi.org/10.1016/j.zool.2008.04.003

    Article  PubMed  Google Scholar 

  39. Flynn AJ, Ritz DA (1999) Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. J Mar Biol Assoc UK 79:487–494. https://doi.org/10.1017/S0025315498000617

    Article  Google Scholar 

  40. Foster SJ, Vincent ACJ (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61. https://doi.org/10.1111/j.1095-8649.2004.00429.x

    Article  Google Scholar 

  41. Franzoi P, Maccagnani R, Rossi R, Ceccherelli VU (1993) Life cycles and feeding habits of Syngnathus taenionotus and S. abaster (Pisces, Syngnathidae) in a brackish bay of the Po River Delta (Adriatic Sea). Mar Ecol Ser 97:71–81

    Google Scholar 

  42. Froese R, Pauly D (2017) FishBase. www.fishbase.org. Accessed 15 Dec 2017

  43. Garcia AM, Geraldi RM, Vieira JP (2005) Diet composition and feeding strategy of the southern pipefish. Neotrop Ichthyol 3:427–432. https://doi.org/10.1590/S1679-62252005000300011

    Article  Google Scholar 

  44. Garcia LMB, Hilomen-Garcia GV, Celino FT et al (2012) Diet composition and feeding periodicity of the seahorse Hippocampus barbouri reared in illuminated sea cages. Aquaculture 358–359:1–5. https://doi.org/10.1016/j.aquaculture.2012.06.013

    Article  Google Scholar 

  45. Gaughan DJ, Potter IC (1997) Analysis of diet and feeding strategies within an assemblage of estuarine larval fish and an objective assessment of dietary niche overlap. Fish Bull 95:722–731

    Google Scholar 

  46. Gemmell BJ, Sheng J, Buskey EJ (2013) Morphology of seahorse head hydrodynamically aids in capture of evasive prey. Nat Commun 4:2840. https://doi.org/10.1038/ncomms3840

    CAS  Article  PubMed  Google Scholar 

  47. Gendron RP, Staddon JER (1983) Searching for cryptic prey: the effect of search rate. Am Nat 121:172–186. https://doi.org/10.1086/284049

    Article  Google Scholar 

  48. Gerking SD (1994) Feeding ecology of fish. Academic Press, San Diego

    Google Scholar 

  49. Griffiths D (1973) The food of animals in an acid moorland pond. J Anim Ecol 42:285–293

    Google Scholar 

  50. Griffiths D (1975) Prey availability and the food of predators. Ecology 56:1209–1214. https://doi.org/10.2307/1936161

    Article  Google Scholar 

  51. Gurkan S, Sever TM, Taskavak E (2011a) Seasonal food composition and prey-length relationships of pipefish Nerophis ophidion (Linnaeus, 1758) inhabiting the Aegean Sea. Acta Adriat 52:5–14

    Google Scholar 

  52. Gurkan S, Taskavak E, Sever TM, Akalin S (2011b) Gut contents of two European seahorses Hippocampus hippocampus and Hippocampus guttulatus in the Aegean Sea, coasts of Turkey. Pak J Zool 43:1197–1201. https://doi.org/10.1111/j.1095-8649.2007.01789.x

    Article  Google Scholar 

  53. Hamilton H, Saarman N, Short G et al (2017) Molecular phylogeny and patterns of diversification in syngnathid fishes. Mol Phylogenet Evol 107:388–403. https://doi.org/10.1016/j.ympev.2016.10.003

    Article  PubMed  Google Scholar 

  54. Harasti D (2016) Declining seahorse populations linked to loss of essential marine habitats. Mar Ecol Prog Ser 546:173–181. https://doi.org/10.3354/meps11619

    Article  Google Scholar 

  55. Haris K, Chakraborty B, Menezes A et al (2014) Multifractal detrended fluctuation analysis to characterize phase couplings in seahorse (Hippocampus kuda) feeding clicks. J Acoust Soc Am 136:1972–1981. https://doi.org/10.1121/1.4895713

    CAS  Article  PubMed  Google Scholar 

  56. Hislop JRG, Robb AP, Gauld JA (1978) Observations on effects of feeding level on growth and reproduction in haddock, Melanogrammus aeglefinue (L.) in captivity. J Fish Biol 13:85–98. https://doi.org/10.1111/j.1095-8649.1978.tb03416.x

    Article  Google Scholar 

  57. Horinouchi M, Sano M (2000) Food habits of fishes in a Zostera marina bed at Aburatsubo, central Japan. Ichthyol Res 47:163–173. https://doi.org/10.1007/BF02684237

    Article  Google Scholar 

  58. Horinouchi M, Tongnunui P, Furumitsu K et al (2012) Food habits of small fishes in seagrass habitats in Trang, southern Thailand. Fish Sci 78:577–587. https://doi.org/10.1007/s12562-012-0485-5

    CAS  Article  Google Scholar 

  59. Howard RK, Koehn JD (1985) Population dynamics and feeding ecology of pipefish (Syngnathidae) associated with eelgrass beds of Western Port, Victoria. Mar Freshw Res 36:361–370. https://doi.org/10.1071/MF9850361

    Article  Google Scholar 

  60. Huh S-H, Kitting CL (1985) Trophic relationships among concentrated populations of small fishes in seagrass meadows. J Exp Mar Biol Ecol 92:29–43. https://doi.org/10.1016/0022-0981(85)90020-6

    Article  Google Scholar 

  61. Huh S-H, Kwak SN (1997) Feeding habits of Syngnathus schlegeli in eelgrass (Zostera marina) bed in Kwangyang Bay. J Korean Fish Soc 30:896–902

    Google Scholar 

  62. James PL, Heck KL (1994) The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J Exp Mar Biol Ecol 176:187–200. https://doi.org/10.1016/0022-0981(94)90184-8

    Article  Google Scholar 

  63. Jenkins GP, Walker-Smith GK, Hamer PA (2002) Elements of habitat complexity that influence harpacticoid copepod associated with seagrass beds in a temperate bay. Oecologia 131:598–605. https://doi.org/10.1007/s00442-002-0911-y

    Article  PubMed  Google Scholar 

  64. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. https://doi.org/10.2307/3545850

    Article  Google Scholar 

  65. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957. https://doi.org/10.1890/0012-9658(1997)078%5b1946:PANEOO%5d2.0.CO;2

    Article  Google Scholar 

  66. Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383

    CAS  PubMed  Google Scholar 

  67. Kanou K, Kohno H (2001) Early life history of a seahorse, Hippocampus mohnikei, in Tokyo Bay, Japan. Ichthyol Res 48:361–368. https://doi.org/10.1007/s10228-001-8159-9

    Article  Google Scholar 

  68. Kendrick AJ (2002) Resource utilisation and reproductive biology of syngnathid fishes in a seagrass-dominated marine environment in south-western Australia. Dissertation, Murdoch University

  69. Kendrick AJ, Hyndes GA (2005) Variations in the dietary compositions of morphologically diverse syngnathid fishes. Environ Biol Fishes 72:415–427. https://doi.org/10.1007/s10641-004-2597-y

    Article  Google Scholar 

  70. Kitsos MS, Tzomos T, Anagnostopoulou L, Koukouras A (2008) Diet composition of the seahorses, Hippocampus guttulatus Cuvier, 1829 and Hippocampus hippocampus (L., 1758) (Teleostei, Syngnathidae) in the Aegean Sea. J Fish Biol 72:1259–1267. https://doi.org/10.1111/j.1095-8649.2007.01789.x

    Article  Google Scholar 

  71. Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, New York

    Google Scholar 

  72. Kooijman SALM (2010) Dynamic energy budget theory: for metabolic organization. Cambridge University Press, New York

    Google Scholar 

  73. Krejci SE (2012) Habitat preferences and the effects of seagrass density on population demographics and feeding ecology of pipefish in the Indian River Lagoon, FL. Dissertation, Florida Institute of Technology

  74. Lauder GV (1985) Aquatic feeding in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 210–229

    Google Scholar 

  75. Lester NP, Shuter BJ, Abrams PA (2004) Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proc R Soc Lond B 271:1625–1631. https://doi.org/10.1098/rspb.2004.2778

    CAS  Article  Google Scholar 

  76. Leysen H, Roos G, Adriaens D (2011) Morphological variation in head shape of pipefishes and seahorses in relation to snout length and developmental growth. J Morphol 272:1259–1270. https://doi.org/10.1002/jmor.10982

    Article  PubMed  Google Scholar 

  77. Livingston RJ (1982) Trophic organization of fishes in a coastal seagrass system. Mar Ecol Prog Ser 7:1–12. https://doi.org/10.3354/meps007001

    Article  Google Scholar 

  78. Livingston RJ (1984) Trophic responses of fishes to habitat variability in coastal seagrass systems. Ecology 65:1258–1275. https://doi.org/10.2307/1938332

    Article  Google Scholar 

  79. Lourie SA, Pritchard JC, Casey SP, Truong SK, Hall HJ, Vincent ACJ (1999) The taxonomy of Vietnam’s exploited seahorses (family Syngnathidae). Biol J Lin Soc 66:231–256. https://doi.org/10.1111/j.1095-8312.1999.tb01886.x

    Article  Google Scholar 

  80. Lourie SA, Foster SJ, Cooper EWT, Vincent ACJ (2004). A guide to the identification of seahorses. Washington, DC: University of British Columbia and World Wildlife Fund. http://www.traffic.org/species-reports/traffic_species_fish29.pdf. Accessed 15 Mar 2015

  81. Lyons DO, Dunne JJ (2004) Inter- and intra-gender analyses of feeding ecology of the worm pipefish (Nerophis lumbriciformis). J Mar Biol Assoc UK 84:461–464. https://doi.org/10.1017/S0025315404009452h

    Article  Google Scholar 

  82. Main KL (1987) Predator avoidance in seagrass meadows: prey behavior, microhabitat selection, and cryptic coloration. Ecology 68:170–180. https://doi.org/10.2307/1938817

    Article  Google Scholar 

  83. Manning CG, Foster SJ, Harasti D, Vincent ACJ (2018) A holistic investigation of the ecological correlates of abundance and body size for the endangered White’s seahorse Hippocampus whitei. J Fish Biol 93:649–663. https://doi.org/10.1111/jfb.13745

    Article  PubMed  Google Scholar 

  84. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy models. Ecology 82:290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

    Article  Google Scholar 

  85. Mercer LP (1973) The comparative ecology of two species of pipefish (Syngnathidae) in the York River, Virginia. Dissertation, The College of William and Mary in Virginia

  86. Motta PJ, Clifton KB, Hernandez P et al (1995) Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bull Mar Sci 56:185–200

    Google Scholar 

  87. Muller M, Osse JWM (1984) Hydrodynamics of suction feeding in fish. Trans Zool Soc Lond 37:51–135. https://doi.org/10.1111/j.1096-3642.1984.tb00068.x

    Article  Google Scholar 

  88. Nakamura Y, Horinouchi M, Nakai T, Sano M (2003) Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol Res 50:15–22. https://doi.org/10.1007/s102280300002

    Article  Google Scholar 

  89. Neutens C, Adriaens D, Christiaens J et al (2014) Grasping convergent evolution in syngnathids: a unique tale of tails. J Anat 224:710–723. https://doi.org/10.1111/joa.12181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Neutens C, de Dobbelaer B, Claes P et al (2017) Prehensile and non-prehensile tails among syngnathids: what’s the difference. Zoology 120:62–72. https://doi.org/10.1016/j.zool.2016.11.002

    Article  PubMed  Google Scholar 

  91. Ocken AEJ, Ritz DA (1994) Prey capture techniques of the seahorse Hippocampus abdominalis feeding on swarming prey. Dissertation, University of Tasmania

  92. Oliveira F, Erzini K, Gonçalves JMS (2007) Feeding habits of the deep-snouted pipefish Syngnathus typhle in a temperate coastal lagoon. Estuar Coast Shelf Sci 72:337–347. https://doi.org/10.1016/j.ecss.2006.11.003

    Article  Google Scholar 

  93. Orav-Kotta H, Kotta J (2004) Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia 514:79–85. https://doi.org/10.1023/B:hydr.0000018208.72394.09

    Article  Google Scholar 

  94. Orth RJ, Heck KL (1980) Structural components of eelgrass (Zostera marina) meadows in the lower Chesapeake Bay—fishes. Estuaries 3:278–288. https://doi.org/10.2307/1352083

    Article  Google Scholar 

  95. Paczolt KA, Jones AG (2015) The effects of food limitation on life history tradeoffs in pregnant male Gulf pipefish. PLoS ONE 10(5):e0124147. https://doi.org/10.1371/journal.pone.0124147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Paine RT (1966) Food web complexity and species diversity. Am Nat 103:91–93. https://doi.org/10.1086/282400

    Article  Google Scholar 

  97. Perante NC, Pajaro MG, Meeuwig JJ, Vincent ACJ (2002) Biology of a seahorse species, Hippocampus comes in the central Philippines. J Fish Biol 60:821–837. https://doi.org/10.1111/j.1095-8649.2002.tb02412.x

    Article  Google Scholar 

  98. Pimm SL (1982) Food webs. Springer, Dordrecht

    Google Scholar 

  99. Prein M, Kunzmann A (1987) Structural organization of the gills of pipefish (Teleostei, Syngnathidae). Zoomorphology 107:161–168. https://doi.org/10.1007/BF00312309

    Article  Google Scholar 

  100. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154. https://doi.org/10.1086/409852

    Article  Google Scholar 

  101. Revell LJ, Harmon LJ, Collar DC (2008) Phylogenetic signal, evolutionary process, and rate. Syst Biol 57:591–601. https://doi.org/10.1080/10635150802302427

    Article  PubMed  Google Scholar 

  102. Richardson H, Verbeek NAM (1986) Diet selection and optimization by northwestern crows feeding on Japanese littleneck clams. Ecology 67:1219–1226. https://doi.org/10.2307/1938677

    Article  Google Scholar 

  103. Ripley JL, Foran CM (2007) Influence of estuarine hypoxia on feeding and sound production by two sympatric pipefish species (Syngnathidae). Mar Environ Res 63:350–367. https://doi.org/10.1016/j.marenvres.2006.10.003

    CAS  Article  PubMed  Google Scholar 

  104. Roos G, Leysen H, Van Wassenbergh S et al (2009a) Linking morphology and motion: a test of a four-bar mechanism in seahorses. Physiol Biochem Zool 82:7–19. https://doi.org/10.1086/589838

    Article  PubMed  Google Scholar 

  105. Roos G, Van Wassenbergh S, Herrel A, Aerts P (2009b) Kinematics of suction feeding in the seahorse Hippocampus reidi. J Exp Biol 212:3490–3498. https://doi.org/10.1242/jeb.033050

    Article  PubMed  Google Scholar 

  106. Roos G, Van Wassenbergh S, Herrel A et al (2010) Snout algometry in seahorses: insights on optimisation of pivot feeding performance during ontogeny. J Exp Biol 213:2184–2193. https://doi.org/10.1242/jeb.040972

    Article  PubMed  Google Scholar 

  107. Roos G, Van Wassenbergh S, Aerts P et al (2011) Effects of snout dimensions on the hydrodynamics of suction feeding in juvenile and adult seahorses. J Theor Biol 269:307–317. https://doi.org/10.1016/j.jtbi.2010.10.023

    Article  PubMed  Google Scholar 

  108. Rose KA (2000) Why are quantitative relationships between environmental quality and fish populations so elusive. Ecol Appl 10:367–385. https://doi.org/10.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2

    Article  Google Scholar 

  109. Ryer CH (1988) Pipefish foraging: effects of fish size, prey size and altered habitat complexity. Mar Ecol Prog Ser 48:37–45. https://doi.org/10.3354/meps048037

    Article  Google Scholar 

  110. Ryer CH, Boehlert GW (1983) Feeding chronology, daily ration, and the effects of temperature upon gastric evacuation in the pipefish, Syngnathus fuscus. Environ Biol Fishes 9:301–306. https://doi.org/10.1007/BF00692379

    Article  Google Scholar 

  111. Ryer CH, Orth RJ (1987) Feeding ecology of the northern pipefish, Syngnathus fuscus, in a seagrass community of the Lower Chesapeake Bay. Estuaries 10:330–336. https://doi.org/10.1007/BF02689864

    Article  Google Scholar 

  112. Sakurai I, Kaneta T, Nakayama T et al (2009) Food habits of fish communities in a Sargassum confusum bed off the coast of Ishikari, Hokkaido, Japan. Nippon Suisan Gakkaishi 75:365–375

    Google Scholar 

  113. Scharf FS, Juanes F, Rountree RA (2000) Predator size—prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248. https://doi.org/10.3354/meps208229

    Article  Google Scholar 

  114. Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2:369–404. https://doi.org/10.1146/annurev.es.02.110171.002101

    Article  Google Scholar 

  115. Sheng J, Lin Q, Chen Q et al (2006) Effects of food, temperature and light intensity on the feeding behavior of three-spot juvenile seahorses, Hippocampus trimaculatus Leach. Aquaculture 256:596–607. https://doi.org/10.1016/j.aquaculture.2006.02.026

    Article  Google Scholar 

  116. Smith TM, Hindell JS, Jenkins GP et al (2011) Fine-scale spatial and temporal variations in diets of the pipefish Stigmatopora nigra within seagrass patches. J Fish Biol 78:1824–1832. https://doi.org/10.1111/j.1095-8649.2011.02977.x

    CAS  Article  PubMed  Google Scholar 

  117. Steffe AS, Westoby M, Bell JD (1989) Habitat selection and diet in two species of pipefish from seagrass: sex differences. Mar Ecol Prog Ser 55:23–30. https://doi.org/10.3354/meps055023

    Article  Google Scholar 

  118. Stoner AW (1980) The role of seagrass biomass in the organization of benthic macrofaunal assemblages. Bull Mar Sci 30:537–551

    Google Scholar 

  119. Storero LP, Gonzalez RA (2008) Feeding habits of the seahorse Hippocampus patagonicus in San Antonio Bay (Patagonia, Argentina). J Mar Biol Assoc UK 88:1503–1508. https://doi.org/10.1017/S0025315408002506

    Article  Google Scholar 

  120. Svensson I (1988) Reproductive costs in two sex-role reversed pipefish species (Syngnathidae). J Anim Ecol 57:929–942. https://doi.org/10.2307/5102

    Article  Google Scholar 

  121. Taskavak E, Gurkan S, Sever TM et al (2010) Gut contents and feeding habits of the Great Pipefish, Syngnathus acus Linnaeus, 1758, in Izmir Bay (Aegean Sea, Turkey). Zool Middle East 50:75–82. https://doi.org/10.1080/09397140.2010.10638414

    Article  Google Scholar 

  122. Teixeira RL, Musick JA (1995) Trophic ecology of two congeneric pipefishes (Syngnathidae) of the lower York River, Virginia. Environ Biol Fishes 43:295–309. https://doi.org/10.1007/BF00005862

    Article  Google Scholar 

  123. Teixeira RL, Musick JA (2001) Reproduction and food habits of the lined seahorse, Hippocampus erectus (Teleostei: Syngnathidae) of Chesapeake Bay, Virginia. Rev Bras Biol 61:79–90. https://doi.org/10.1590/S0034-71082001000100011

    CAS  Article  Google Scholar 

  124. Thorne-Miller B (1999) The living ocean: understanding and protecting marine biodiversity. Island Press, Washington

    Google Scholar 

  125. Tipton K, Bell SS (1988) Foraging patterns of two syngnathid fishes: importance of harpacticoid copepods. Mar Ecol Prog Ser 47:31–43. https://doi.org/10.3354/meps047031

    Article  Google Scholar 

  126. Truong SK, Nga TNM (1995) Reproduction of two species of seahorses, Hippocampus histrix and H. trimaculatus, in Binh Thuan waters. Bao Cao Khoa Hoc 27:68

    Google Scholar 

  127. Uncumusaoglu AA, Gurkan S, Taskavak E (2017) Seasonally prey composition of Broad-nosed pipefish, Syngnathus typle, distributed in the coasts of Aegean Sea, Turkey. Fresenius Environ Bull 26:2673–2677

    CAS  Google Scholar 

  128. Van Den Wollenberg AN (1977) Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42:207–219. https://doi.org/10.1007/BF02294050

    Article  Google Scholar 

  129. Van Wassenbergh S, Strother JA, Flammang BE et al (2008) Extremely fast prey capture in pipefish is powered by elastic recoil. J R Soc Interface 5:285–296. https://doi.org/10.1098/rsif.2007.1124

    Article  PubMed  Google Scholar 

  130. Van Wassenbergh S, Roos G, Genbrugge A et al (2009) Suction is kid’s play: extremely fast suction in newborn seahorses. Biol Lett. https://doi.org/10.1098/rsbl.2008.0765

    Article  PubMed  PubMed Central  Google Scholar 

  131. Van Wassenbergh S, Roos G, Aerts P et al (2011a) Why the long face? A comparative study of feeding kinematics of two pipefishes with different snout lengths. J Fish Biol 78:1786–1798. https://doi.org/10.1111/j.1095-8649.2011.02991.x

    Article  PubMed  Google Scholar 

  132. Van Wassenbergh S, Roos G, Ferry L (2011b) An adaptive explanation for the horse-like shape of seahorses. Nature 2:164. https://doi.org/10.1038/ncomms1168

    CAS  Article  Google Scholar 

  133. Van Wassenbergh S, Leysen H, Adriaens D, Aerts P (2013) Mechanics of snout expansion in suction-feeding seahorses: musculoskeletal force transmission. J Exp Biol 216:407–417. https://doi.org/10.1242/jeb.074658

    Article  PubMed  Google Scholar 

  134. Van Wassenbergh S, Dries B, Herrel A (2014) New insights into muscle function during pivot feeding in seahorses. PLoS ONE 9:e109068. https://doi.org/10.1371/journal.pone.0109068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Vincent ACJ, Foster SJ, Koldewey HJ (2011) Conservation and management of seahorses and other Syngnathidae. J Fish Biol 78:1681–1724. https://doi.org/10.1111/j.1095-8649.2011.03003.x

    CAS  Article  PubMed  Google Scholar 

  136. Wilson AB, Ahnesjö I, Vincent ACJ et al (2003) The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (Family Syngnathidae). Evolution 57:1374–1386. https://doi.org/10.1111/j.0014-3820.2003.tb00345.x

    Article  PubMed  Google Scholar 

  137. Woods CMC (2002) Natural diet of the seahorse Hippocampus abdominalis. N Z J Mar Freshw Res 36:655–660. https://doi.org/10.1080/00288330.2002.9517121

    Article  Google Scholar 

  138. Wotton RJ (1990) Ecology of teleost fishes. Chapman and Hall, London

    Google Scholar 

  139. Yip MY, Lim ACO, Chong VC et al (2015) Food and feeding habits of the seahorses Hippocampus spinosissimus and Hippocampus trimaculatus (Malaysia). J Mar Biol Assoc UK 95:1033–1040. https://doi.org/10.1017/S0025315414001660

    Article  Google Scholar 

  140. Zamzow JP, Amsler CD, Mcclintock JB, Baker BJ (2010) Habitat choice and predator avoidance by Antarctic amphipods: the roles of algal chemistry and morphology. Mar Ecol Prog Ser 400:155–163. https://doi.org/10.3354/meps08399

    Article  Google Scholar 

  141. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

This is a contribution from Project Seahorse. We would like to thank Mark McGrouther and the Australian Museum for providing us with access to their ichthyology collections. We appreciate input from Diane Srivastava, John Richardson, Nathan Price and additional readers Kyle Gillespie, Ting-Chun Kuo, Tanvi Vaidyanathan and all other members of Project Seahorse. This project was financed by the Natural Sciences and Engineering Research Council of Canada (NSERC), and Guylian Chocolates Belgium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. G. Manning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Summary table of morphological characteristics for syngnathids used in this study, and the references used to generate the data (DOCX 54 kb)

Online Resource 2

Summary table of syngnathid feeding kinematics in the literature (DOCX 42 kb)

Online Resource 3

Correlation matrices for candidate independent variables in bulk, numeric, and frequency of occurrence dietary data models (DOCX 99 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manning, C.G., Foster, S.J. & Vincent, A.C.J. A review of the diets and feeding behaviours of a family of biologically diverse marine fishes (Family Syngnathidae). Rev Fish Biol Fisheries 29, 197–221 (2019). https://doi.org/10.1007/s11160-019-09549-z

Download citation

Keywords

  • Ecomorphology
  • Foraging behaviour
  • Feeding ecology
  • Hippocampus
  • Predator–prey interactions
  • Syngnathus