A morphological and geometric method for estimating the selectivity of gill nets

Abstract

We propose a new method for estimating gill net selectivity which estimates the probabilities leading to retention by analyzing both the fish morphology and the mesh geometry. This method estimates the number of fish approaching and contacting gill nets of different mesh sizes as an intermediate step towards computing the selectivity. Instead of assuming an underlying probability distribution as in indirect methods, we split the entire interaction between a fish and the gill net into several stages, each with its own probability. All the necessary parameters to compute these probabilities can be obtained from measurements of the fish, knowledge of the mesh geometry, and catch data from different mesh sizes. The framework offers three pathways for computing the total number of fish contacting the gill nets and has the capability to use both wedged and entangled fish in the analysis. As a proof of concept, the method is applied to catch data for cod (G. morhua) and Dolly Varden (S. malma) to estimate the number of fish contacting the gill nets in both cases. By estimating the number of fish contacting the gill net in addition to the selectivity, this method provides an important step towards deriving estimates of fish density in a particular fishery from gill net measurement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aleev IG (1963) Function and gross morphology in fish ([Available From the U. S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.]). Israel Program for Scientific Translations

  2. Amarasinghe US, Pushpalatha KBC (1997) Gillnet selectivity of Ompok bimaculatus (Siluridae) and Puntius dorsalis (Cyprinidae) in a small-scale riverine fishery. J Natl Sci Found Sri Lanka. https://doi.org/10.4038/jnsfsr.v25i3.5031

    Article  Google Scholar 

  3. Anderson CS (1998) Partitioning total size selectivity of gill nets for walleye (Stizostedion vitreum) into encounter, contact, and retention components. Can J Fish Aquat Sci 55(8):1854–1863. https://doi.org/10.1139/f98-070

    Article  Google Scholar 

  4. Baranov FI (1914) The capture of fish by gillnets. Mater Poznaniyu Russ Rybolov 3(6):56–99 (Partially transl. from Russian by W. E. Ricker)

    Google Scholar 

  5. Baranov FI (1948) Theory and assessment of fishing gear. Ch. 7, Theory of fishing with gillnets. Pishchepromizdat, Moscow. (Translation from Russian by Ontario Dept of Lands For., Maple, Ont., 45 pp.)

  6. Borgström R (1989) Direct estimation of gill-net selectivity for roach (Rutilus rutilus (L.)) in a small lake. Fish Res 7(3):289–298. https://doi.org/10.1016/0165-7836(89)90062-3

    Article  Google Scholar 

  7. Christiansen JS, Jobling M (1990) The behaviour and the relationship between food intake and growth of juvenile Arctic charr, Salvelinus alpinus L., subjected to sustained exercise. Can J Zool 68(10):2185–2191. https://doi.org/10.1139/z90-303

    Article  Google Scholar 

  8. Clark JR (1960) Report on selectivity of fishing gear. Can J Fish Aquat Sci 2:21–36

    Google Scholar 

  9. Doll JC, Thomas ND, Lauer TE (2014) Gill net selectivity of yellow perch. J Freshw Ecol 29(2):279–288. https://doi.org/10.1080/02705060.2014.891084

    Article  Google Scholar 

  10. Grant GC, Radomski P, Anderson CS (2004) Using underwater video to directly estimate gear selectivity: the retention probability for walleye (Sander vitreus) in gill nets. Can J Fish Aquat Sci 61(2):168–174. https://doi.org/10.1139/f03-166

    Article  Google Scholar 

  11. Hamley JM (1975) Review of gillnet selectivity. J Fish Res Board Can 32(11):1943–1969. https://doi.org/10.1139/f75-233

    Article  Google Scholar 

  12. Hamley JM, Regier HA (1973) Direct estimates of gillnet selectivity to walleye (Stizostedion vitreum vitreum). J Fish Res Board Can 30(6):817–830. https://doi.org/10.1139/f73-137

    Article  Google Scholar 

  13. Hanol Z, Cilbiz M, Çinar Ş, Korkut SO, Yener O (2015) Investigation the selectivity of gillnet used in Roach (Rutilus rutilus L., 1758) fishery in Uluabat Lake, Bursa-Turkey. Surv Fish Sci 1(2):11–20. https://doi.org/10.18331/SFS2015.1.2.2

    Article  Google Scholar 

  14. Hansen MJ, Madenjian CP, Selgeby JH, Helser TE (1997) Gillnet selectivity for lake trout (Salvelinus namaycush) in Lake Superior. Can J Fish Aquat Sci 54(11):2483–2490. https://doi.org/10.1139/f97-156

    Article  Google Scholar 

  15. Hansen MJ, Schorfhaar RG, Selgeby JH (1998) Gill-net saturation by lake trout in michigan waters of lake superior. North Am J Fish Manag 18(4):847–853. https://doi.org/10.1577/1548-8675(1998)018%3c0847:GNSBLT%3e2.0.CO;2

    Article  Google Scholar 

  16. Helser TE, Condrey RE, Geaghan JP (1991) A new method of estimating gillnet selectivity, with an example for spotted seatrout, Cynocion nehulosus. Can J Fish Aquat Sci 48(3):487–492. https://doi.org/10.1139/f91-062

    Article  Google Scholar 

  17. Henderson BA, Wong JL (1991) A method for estimating gillnet selectivity of walleye (Stizostedion vitreum vitreum) in muitimesh multifilament gill nets in Lake Erie, and its application. Can J Fish Aquat Sci 48(12):2420–2428. https://doi.org/10.1139/f91-283

    Article  Google Scholar 

  18. Kawamura G (1972) Gill-net mesh selectivity curve developed from length-girth relationship. Bull Jpn Soc Sci Fish 30(10):1119–1127

    Article  Google Scholar 

  19. Kendall MG, Moran PA (1963) Geometric probability. Charles Griffin and Company, London

    Google Scholar 

  20. Kennedy W (1951) The relationship of fishing effort by gill nets to the interval between lifts. Can J Fish Aquat Sci 8(4):264–274. https://doi.org/10.1139/f50-016

    Article  Google Scholar 

  21. Lucas CE, Schaefer MB, Holt SJ, Beverton RJ (1960) Report on fishing effort and the effect of fishing on resources. J Fish Res Board Can 2:5–26

    Google Scholar 

  22. Mahon R, Khokiattiwong S, Oxenford HA (2000) Selectivity of experimental gillnets for Fourwing Flyingfish, Hirundichthys affinis, off Barbados. Environ Biol Fishes 59(4):459–463. https://doi.org/10.1023/A:1026525311594

    Article  Google Scholar 

  23. Millar RB, Fryer RJ (1999) Estimating the size-selection curves of towed gears, traps, nets and hooks. Rev Fish Biol Fish 9(1):89–116. https://doi.org/10.1023/A:1008838220001

    Article  Google Scholar 

  24. Olin M, Kurkilahti M, Peitola P, Ruuhijärvi J (2004) The effects of fish accumulation on the catchability of multimesh gillnet. Fish Res 68(1–3):135–147. https://doi.org/10.1016/j.fishres.2004.01.005

    Article  Google Scholar 

  25. Olsen S, Tjemsland J (1963) A method of finding an empirical total selection curve for gill nets, describing all means of attachment. S. 88–94. https://brage.bibsys.no/xmlui/handle/11250/114584

  26. Parrish BB (1963) Some remarks on selection processes in fishing operations. J Fish Res Board Can 5:166–170

    Google Scholar 

  27. Prchalová M, Mrkvička T, Peterka J, Čech M, Berec L, Kubečka J (2011) A model of gillnet catch in relation to the catchable biomass, saturation, soak time and sampling period. Fish Res 107(1–3):201–209. https://doi.org/10.1016/j.fishres.2010.10.021

    Article  Google Scholar 

  28. Randall D (2014) Hughes and Shelton: the fathers of fish respiration. J Exp Biol 217(18):3191–3192. https://doi.org/10.1242/jeb.095513

    Article  PubMed  Google Scholar 

  29. Regier HA, Robson DS (2011) Selectivity of gill nets, especially to lake white fish. Can J Fish Aquat Sci 23(3):423–454. https://doi.org/10.1139/f66-034

    Article  Google Scholar 

  30. Saadet Karakulak F, Karakulak FS, Erk H (2008) Gill net and trammel net selectivity in the northern Aegean Sea, Turkey. Scientia Marina 72(3):527–540. https://doi.org/10.3989/scimar.2008.72n3527

    Article  Google Scholar 

  31. Santos MND, Gaspar M, Monteiro CC, Erzini K (2003) Gill net selectivity for European hake Merluccius merluccius from southern Portugal: implications for fishery management. Fish Sci 69(5):873–882. https://doi.org/10.1046/j.1444-2906.2003.00702.x

    Article  Google Scholar 

  32. Shoup DE, Ryswyk RG (2016) Length selectivity and size-bias correction for the north american standard gill net. North Am J Fish Manag 36(3):485–496. https://doi.org/10.1080/02755947.2016.1141809

    Article  Google Scholar 

  33. Smith BJ, Blackwell BG, Wuellner MR, Graeb BDS, Willis DW (2017) Contact selectivity for four fish species sampled with north american standard gill nets. North Am J Fish Manag 37(1):149–161. https://doi.org/10.1080/02755947.2016.1254129

    Article  Google Scholar 

  34. Tanaka EA (2002) Method for calculating numerical estimates of gear selectivity curve. Fish Sci 68:1081–1087

    CAS  Article  Google Scholar 

  35. Treshev AI (1974) Scientific basis of fishery selectivity. Food Industry, Moscow

    Google Scholar 

  36. Wegner NC, Sepulveda CA, Bull KB, Graham JB (2010) Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: scombrids and billfishes. J Morphol 271(1):36–49. https://doi.org/10.1002/jmor.10777

    Article  PubMed  Google Scholar 

  37. Yan L, Yan J, Reid K (2011) Gill-net saturation in Lake Erie: effects of soak time and fish accumulation on catch per unit effort of walleye and yellow Perch. North Am J Fish Manag 31(2):280–290. https://doi.org/10.1080/02755947.2011.574931

    CAS  Article  Google Scholar 

  38. Yokota K, Fujimori Y, Shiode D, Tokai T (2001) Effect of thin twine on gill net size-selectivity analyzed with the direct estimation method. Fish Sci 67(5):851–856. https://doi.org/10.1046/j.1444-2906.2001.00332.x

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Gregory Markevich for organizing the expedition to Kamchatka for data collection, A. Boosh, E. Saltykova, G. Sedash for their assistance in fishing and processing the fish, professor Kriksunov E.A., Burmensky V.A. and Charles Anderson, Adjunct Assistant Professor (Minnesota Department of Natural Resources). Partial funding to make this collaboration possible was provided by Anthony Vodacek through the Paul and Francena Miller Chair in International Education at RIT.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Hoffman.

Appendices

Appendix 1

If the saturation curve is described by function (17), the reduction of vacant net area is described by the following function:

$$f(t)^{*} = \exp \left( { - \frac{t}{{\tilde{\tau }}}} \right).$$

Let the number of fish caught by the net be proportional to the net area where fish are retained, and let \(t = \tilde{\tau }\). Then, \(\exp \left( { - \frac{{t = \tilde{\tau }}}{{\tilde{\tau }}}} \right) = \exp \left( { - 1} \right) \approx 0.368\). Next, we compare the vacant net area at time \(\tilde{\tau }\) (its share is 0.368 from the total space) with the net area at the beginning of fishing where there are no fish in the net (share is 1). Then, 1/0.368 ≈ 2.717 ≈ e.

Appendix 2

According to “Appendix 1”, if \(t = \tilde{\tau }\), then \(N_{{AP,\tilde{\tau }}} = Q_{{\tilde{\tau }}} \cdot e + SL_{{\tilde{\tau }}}\), where \(Q_{{\tilde{\tau }}} \cdot e = Q_{{\tilde{\tau }}} + B_{{\tilde{\tau }}}\). Then, for 1 h of fishing \(N_{AP,1} = \frac{{Q_{{\tilde{\tau }}} \cdot e + SL_{{\tilde{\tau }}} }}{{\tilde{\tau }}}\), where \(Q_{{\tilde{\tau }}} = N_{\lim } \left( {1 - \exp \left( { - \frac{{\tilde{\tau }}}{{\tilde{\tau }}}} \right)} \right) \approx N_{\lim } \cdot 0.63\). Hence, \(\frac{{N_{\lim } \cdot 0.63 \cdot e + SL_{{\tilde{\tau }}} }}{{\tilde{\tau }}} \approx \frac{{N_{\lim } \cdot 0.63 \cdot 2.72 + SL_{{\tilde{\tau }}} }}{{\tilde{\tau }}} \approx \frac{{N_{\lim } \cdot 1.71 + SL_{{\tilde{\tau }}} }}{{\tilde{\tau }}}\)—that is the angular coefficient k of \(f(t) = kt\) (Eq. 18).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lobyrev, F., Hoffman, M.J. A morphological and geometric method for estimating the selectivity of gill nets. Rev Fish Biol Fisheries 28, 909–924 (2018). https://doi.org/10.1007/s11160-018-9534-1

Download citation

Keywords

  • Gill nets
  • Mathematical modeling
  • Selectivity