Skip to main content

Advertisement

Log in

Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The silky shark, Carcharhinus falciformis, is a large-bodied, oceanic-coastal, epipelagic species found worldwide in tropical and subtropical waters. Despite its commercial importance, concerns about overexploitation, and likely ecological significance of this shark as an upper trophic-level predator, understanding of its population dynamics remains unclear for large parts of its distribution. We investigated the genetic diversity, population structure and demographic history of the silky shark along the western Atlantic Ocean based on the use of 707 bp of the mitochondrial DNA control region (mtCR). A total of 211 silky sharks were sampled, originating from five areas along the western Atlantic Ocean. The mitochondrial sequences revealed 40 haplotypes, with overall haplotype and nucleotide diversities of 0.88 (± 0.012) and 0.005 (± 0.003), respectively. The overall population structure was significantly different among the five western Atlantic Ocean regions. Phylogenetic analysis of mtCR sequences from globally sourced silky shark samples revealed two lineages, comprising a western Atlantic lineage and western Atlantic—Indo-Pacific lineage that diverged during the Pleistocene Epoch. In general, tests for the demographic history of silky sharks supported a population expansion for both the global sample set and the two lineages. Although our results showed that silky sharks have high genetic diversity, the current high level of overexploitation of this species requires long-term, scientifically informed management efforts. We recommend that fishery management and conservation plans be done separately for the two western Atlantic matrilineal populations revealed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, England PR, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337

    Article  PubMed  Google Scholar 

  • Amorim AF, Arfelli CA, Fagundes L (1998) Pelagic elasmobranchs caught by longliners off southern Brazil during 1974-1997: an overview. Mar Freshwater Res 49:621–632

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Barreto R, Ferretti F, Flemming JM, Amorim A, Andrade H, Worm B, Lessa R (2016) Trends in the exploitation of South Atlantic shark populations. Conserv Biol 30:792–804

    Article  PubMed  Google Scholar 

  • Baum JK, Myers R (2004) Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecol Lett 7:135–145

    Article  Google Scholar 

  • Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of sharks populations in the northwest Atlantic. Science 299:389–391

    Article  CAS  PubMed  Google Scholar 

  • Beerkircher L, Shivji M, Cortés E (2003) A Monte Carlo demographic analysis of the silky shark (Carcharhinus falciformis): implications of gear selectivity. Fish Bull 101:168–174

    Google Scholar 

  • Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17:3754–3774

    PubMed  Google Scholar 

  • Benavides MT, Horn RL, Feldheim KA, Shivji MS, Clarke SC, Wintner S, Natanson L, Braccini M, Boomer JJ, Gulak SJB, Chapman DD (2011) Global phylogeography of the dusky shark Carcharhinus obscurus: implications for fisheries management and monitoring the shark fin trade. Endang Species Res 14:13–22

    Article  Google Scholar 

  • Bernard AM, Shivji MS, Prince ED, Hazin FHV, Arocha F, Domingo A, Feldheim K (2014) Comparative population genetics and evolutionary history of two commonly misidentified billfishes of management and conservation concern. BMC Genet 15:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard AM, Feldheim KA, Heithaus MR, Wintner SP, Wetherbee BM, Shivji MS (2016) Population genetic dynamics of a highly migratory, apex predator shark. Mol Ecol 25:5312–5329

    Article  CAS  PubMed  Google Scholar 

  • Bonfil R (2008) The biology and ecology of the silky shark, Carcharhinus falciformis. In: Camhi MD, Pikitch EK, Babcock EA (eds) Sharks of the open ocean: biology, fisheries and conservation. Blackwell Publishing Ltd., UK, pp 114–127

    Chapter  Google Scholar 

  • Bonfil R, Mena R, Anda D (1993) Biological parameters of commercially exploited silky sharks, Carcharhinus falciformis, from the Campeche bank, México. In: Branstetter, S, editor. Conservation Biology of Elasmobranchs. NOAA Technical Report NMFS 115, NOAA/NMFS, Silver Spring, MD, 73–86

  • Bonfil R, Amorim A, Anderson C, Arauz R, Baum J, Clarke SC, Graham RT, Gonzalez M, Jolon M, Kyne PM, Mancini P, Márquez F, Ruíz C, Smith W (2009) Carcharhinus falciformis. The IUCN Red List of Threatened Species. Version 2015.2. Available at: http://www.iucnredlist.org

  • Bowen B, Gaither MR, DiBattista JD, Iacchei M, Andrews KR, Grant WS, Toonen RJ, Briggs JC (2016) Comparative phylogeography of the ocean planet. Proc Natl Acad Sci 113:7962–7969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branstetter S (1987) Age, growth and reproductive biology of the silky shark, Carcharhinus falciformis and the scalloped hammerhead, Sphyrna lewini, from the northwestern Gulf of Mexico. Environ Biol Fish 19:161–173

    Article  Google Scholar 

  • Brendtro KS, Graves JS, McDowell JR (2008) Population genetic structure of escolar (Lepidocybium flavobrunneum). Mar Biol 155:11–22

    Article  Google Scholar 

  • Briggs JC, Bowen BW (2013) Marine shelf habitat: biogeography and evolution. J Biogeogr 40:1023–1035

    Article  Google Scholar 

  • Cabrera-Chávez-Costa AA, Galván-Magaña F, Escobar-Sánchez OE (2010) Food habits of the silky shark Carcharhinus falciformis (Müller & Henle, 1839) off the western coast of Baja California Sur, Mexico. J Appl Ichthyol 26:499–503

    Article  Google Scholar 

  • Castro ALF, Stewart BS, Wilson SG, Hueter RE, Meekan MG, Motta PJ, Bowen BW, Karl SA (2007) Population genetic structure of Easrth’s largest fish, the whale shark (Rhincodon typus). Mol Ecol 16:5183–5192

    Article  CAS  PubMed  Google Scholar 

  • Chabot CL, Allen LG (2009) Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data. Mol Ecol 18:545–552

    Article  CAS  PubMed  Google Scholar 

  • Chapman DD, Feldheim KA, Papastamatiou YP, Hueter RE (2015) There and back again: a review of residency and return migration in sharks, with implication for populations structure and management. Annu Rev Mar Sci 7:547–570

    Article  Google Scholar 

  • Clarke SC, Magnussen JE, Abercrombie DL, McAllister MK, Shivji MS (2006) Identification of Shark Species Composition and Proportion in the Hong Kong Shark Fin Market Based on Molecular Genetics and Trade Records. Conserv Biol 20:201–211

    Article  PubMed  Google Scholar 

  • Clarke CR, Karl SA, Horn RL, Bernard AM, Lea JS, Hazin FH, Prodöhl PA, Shivji MS (2015) Global mitochondrial DNA phylogeography and population structure of the silky shark, Carcharhinus falciformis. Mar Biol 162:945–955

    Article  CAS  Google Scholar 

  • Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statitics. Evolution 47:855–863

    PubMed  Google Scholar 

  • Cortés E, Arocha F, Beerkircher L, Carvalho F, Domingo A, Heupel M, Holtzhausen H, Santos MN, Ribeira M, Simpfendorfer C (2010) Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquat Living Resour 23:25–34

    Article  Google Scholar 

  • Cortés E, Domingo A, Miller P, Forselled R, Mas F, Arocha F, Campana S, Coelho R, da Silva C, Hazin FVH, Holtzhausen H, Keene K, Lucena F, Ramirez K, Santos MN, Semba-Murakami Y, Yokawa K (2015) Expanded ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Col Vol Sci Pap ICCAT 71:2637–2688

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingues RR, Amorim AF, Hilsdorf AWS (2013) Genetic identification of Carcharhinus sharks from the southwest Atlantic Ocean (Chondrichthyes: carcharhiniformes). J Appl Ichthyol 29:738–742

    Article  CAS  Google Scholar 

  • Domingues RR, Caltabellotta FP, Amorim AF (2016) Length-length and length-weight relationships of Carcharhinus falciformis and C. signatus (Carcharhinidae: carcharhinus) caught by commercial fisheries in the Southwest Atlantic Ocean. Reg Studies Mar Sci 6:83–86

    Article  Google Scholar 

  • Drummond AJ, Bouckaert RR (2015) Bayesian and evolutionary analysis with BEAST. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR (2012) A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. J Fish Biol 80:1789–1843

    Article  CAS  PubMed  Google Scholar 

  • Duncan KM, Martin AP, Bowen BW, De Couet G (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251

    Article  CAS  PubMed  Google Scholar 

  • Ebert DA, Fowler S, Compagno L (2013) Sharks of the world: A fully illustrated guide. Wild Nature Press, Plympton

    Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin ver. 3.5: an integrated software for population genetic data analysis. Switzerland: Computational and Molecular Population Genetics Lab, Institute of Zoology, University of Berne

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetic 131:479–491

    CAS  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaither MR, Bowen BW, Rocha LA, Briggs JC (2016) Fishes that rule the world: circumtropical distributions revisited. Fish Fish 17:664–669

    Article  Google Scholar 

  • Galván-Tirado C, Díaz-Jaimes P, García-de León FJ, Galván-Magaña FG, Uribe-Alcocer M (2013) Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean. Fish Res 147:36–46

    Article  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

    Article  PubMed  Google Scholar 

  • Grant WS (2015) Problems and cautions with sequence mismatch analysis ad Bayesian skyline plots to infer historical demography. J Hered 1:1–14

    Google Scholar 

  • Graves JE (1998) Molecular insights into the population structures of cosmopolitan marine fishes. J Hered 89:427–437

    Article  CAS  Google Scholar 

  • Graves JE, McDowell JR (2003) Stock structure of the world’s Istiophorid billfishes; a genetic perspective. Mar Freshwater Res 54:287–298

    Article  Google Scholar 

  • Han Z, Yanagimoto T, Zhang Y, Gao T (2012) Phylogeography study of Ammodytes personatus in Northwestern Pacific: pleistocene Isolation, temperature and current conducted secondary contact. PLoS ONE 7(5):e37425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Am J Hum Biol 66:591–600

    CAS  Google Scholar 

  • Hazin FH, Oliveira PGV, Macena BCL (2007) Aspects of the reproductive biology of the silky shark, Carcharhinus falciformis (Nardo, 1987), in the Vicinity of Archipelago of Saint Peter and Saint Paul, in the Equatorial Atlantic Ocean. Col Vol Sci Pap ICCAT 60:648–651

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • ICCAT (2011) Recommendation by ICCAT on the conservation of silky sharks caught in association with ICCAT fisheries, 11-08 BYC. Available at: http://www.ccsbt.org/userfiles/file/other_rfmo_measures/iccat/ICCAT_2011-08.pdf

  • ICCAT (2015) 2014 Intersessions meeting of the shark species group (Piriapolis, Uruguay, 10-1 March 2014). Collect Vol Sci Pap ICCAT 71:2458–2550

    Google Scholar 

  • Karl SA, Castro ALF, Lopez JA, Charvet P, Burgess GH (2011) Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conserv Genet 12:371–382

    Article  Google Scholar 

  • Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679

    Article  CAS  PubMed  Google Scholar 

  • Keeney DB, Heupel M, Hueter RE, Heist EJ (2005) Microsatellite and mitochondrial analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14:1911–1923

    Article  CAS  PubMed  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Proc Appl 13:235–248

    Article  Google Scholar 

  • Kohler NE, Casey JG, Turner PA (1998) NMFS cooperative shark tagging program, 1962-93: an atlas of shark tag and recapture data. Mar Fish Rev 60:1–87

    Google Scholar 

  • Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Ludt WB, Rocha LA (2015) Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J Biogeogr 42:25–38

    Article  Google Scholar 

  • Maltagliati F, Giuseppe GD, Barbieri M, Castelli A, Dini F (2010) Phylogeography and genetic structure of the edible sea urchin Paracentrotus lividus (Echnodermata: echinoidea) inferred from the mitochondrial cytochrome b gene. Biol J Linnaen Soc 100:910–923

    Article  Google Scholar 

  • Martinez P, González EG, Castillo R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416

    Article  CAS  PubMed  Google Scholar 

  • Mendonça FF, Oliveira C, Gadig OBF, Foresti F (2011) Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus. Rev Fish Biol Fisheries 21:799–814

    Article  Google Scholar 

  • Mendonça FF, Oliveira C, Gadig OBF, Foresti F (2013) Diversity and genetic population structure of the Brazilian sharpnose shark Rhizoprionodon lalandii. Aquat Conserv 23:850–857

    Article  Google Scholar 

  • O’Brien SM, Gallucci VF, Hauser L (2013) Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conserv Genet 14:125–144

    Article  Google Scholar 

  • Ovenden JR (2013) Crinkles in connectivity: combining genetic and others types of biological data to estimate movement and interbreeding between populations. Mar Freshwater Res 64:201–207

    Article  Google Scholar 

  • Peeters FJC, Acheson R, Brummer GJA, Ruijter WPM, Schneider RR, Ganssen GM, Ufkes E, Kroon D (2004) Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430:661–665

    Article  CAS  PubMed  Google Scholar 

  • Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39

    Article  PubMed  Google Scholar 

  • Portnoy DS, Heist EJ (2012) Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs. J Fish Biol 80:1120–1140

    Article  CAS  PubMed  Google Scholar 

  • Portnoy DS, McDowell JR, Heist EJ, Musick JA, Graves JE (2010) World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Mol Ecol 19:1994–2010

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org/

  • Rambaut A (2008) FIGTREE v. 1. 2. Available at http://tree.bio.ed.ac.uk/software/FigTree/

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171

    Article  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc London B 272:573–579

    Article  Google Scholar 

  • Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512

    Article  Google Scholar 

  • Rodríguez-Zárate CJ, Rocha-Olivares A, Beheregaray LB (2013) Genetic signature of a recent metapopulation bottleneck in the olive ridley turtle (Lepydochelys olivacea) after intensive commercial exploitation in Mexico. Conserv Biol 168:10–18

    Article  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615

    Article  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Sánchez-de Ita JA, Quiñonez-Velázquez C, Gálvan-Magaña F, Bocanegra-Castillo N, Félix-Uraga R (2011) Age and growth of the silky shark Carcharhinus falciformis from the west coast of Baja California Sur, Mexico. J Appl Ichthyol 27:20–24

    Article  Google Scholar 

  • Santos S, Farias IP, Schneider H, Sampaio I (2006) Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol Ecol 15:4361–4373

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theisen TC, Bowen BW, Lanier W, Baldwin JD (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 17:4233–4247

    Article  CAS  PubMed  Google Scholar 

  • Veríssimo A, Sampaio Í, McDowell JR, Alexandrino P, Mucientes G, Queiroz N, da Silva C, Jones CS, Nobles LR (2017) World without borders – genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca). Ecol Evol. https://doi.org/10.1002/ece3.2987

    PubMed  PubMed Central  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B 277:1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Fernando Mendonça for providing samples from Pará, Brazil. This work was developed as part of the requirements for the Ph.D. dissertation of author RRD in Zoology at the Sao Paulo State University - UNESP. This work was funded by the São Paulo Research Foundation (FAPESP #2009/59660-6 and #2013/08675-7) and Save Our Seas Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo R. Domingues.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 180 kb)

Supplementary material 2 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingues, R.R., Hilsdorf, A.W.S., Shivji, M.M. et al. Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Rev Fish Biol Fisheries 28, 213–227 (2018). https://doi.org/10.1007/s11160-017-9504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-017-9504-z

Keywords

Navigation