Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

Abstract

To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abell R, Thieme ML, Revenga C et al (2008) Freshwater ecoregions of the world: a new map of biogeo-graphic units for freshwater biodiversity conservation. Bioscience 58:403–414. doi:10.1641/B580507

    Article  Google Scholar 

  2. Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  3. Arlinghaus R, Mehner T, Cowx IG (2002) Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish Fish 3:261–316

    Article  Google Scholar 

  4. Beard TD, Arlinghaus R, Cooke SJ et al (2011) Ecosystem approach to inland fisheries: research needs and implementation strategies. Biol Lett 7:481–483. doi:10.1098/rsbl.2011.0046

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beitinger TL, Bennett WA (1999) Quantification of the role of accclimation temperature in temperature tolerance of fishes. Environ Biol Fishes 58:277–288

    Article  Google Scholar 

  6. Beitinger T, Bennett W, McCauley R (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fishes 58:237–275. doi:10.1023/A:1007676325825

    Article  Google Scholar 

  7. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belton B, Thilsted SH (2014) Fisheries in transition: food and nutrition security implications for the global South. Glob Food Secur 3:59–66. doi:10.1016/j.gfs.2013.10.001

    Article  Google Scholar 

  9. Béné C, Neiland A, Jolley T et al (2003) The Lake Chad Basin. J Asian Afr Stud 38:17–51

    Article  Google Scholar 

  10. Béné C, Barange M, Subasinghe R et al (2015) Feeding 9 billion by 2050—putting fish back on the menu. Food Secur 7:261–274. doi:10.1007/s12571-015-0427-z

    Article  Google Scholar 

  11. Bonar SA, Mercado-Silva N, Hubert WA et al (2017) Standard methods for sampling freshwater fishes: opportunities for international collaboration. Fisheries 42:150–156

    Article  Google Scholar 

  12. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of Sockeye Salmon (Oncorhynchus nerka). Am Zool 11:99–113. doi:10.1093/icb/11.1.99

    Article  Google Scholar 

  13. Brett JR, Groves TDD (1979) 6—Physiological energetics. Fish Physiol 8:279–352

    CAS  Article  Google Scholar 

  14. Brummett RE, Beveridge MCM, Cowx IG (2013) Functional aquatic ecosystems, inland fisheries and the millennium development goals. Fish Fish 14:312–324. doi:10.1111/j.1467-2979.2012.00470.x

    Article  Google Scholar 

  15. Chen Y, Todd AS, Murphy MH, Lomnicky G (2016) Anticipated water quality changes in response to climate change and potential consequences for inland fishes. Fisheries 41:413–416. doi:10.1080/03632415.2016.1182509

    Article  Google Scholar 

  16. Chessman BC (2013) Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol Conserv 160:40–49. doi:10.1016/j.biocon.2012.12.032

    Article  Google Scholar 

  17. Cheung WWL, Pauly D, Sarmiento JL (2013) How to make progresss in projecting climate change impacts. ICES J Mar Sci 70:1069–1074. doi:10.1093/icesjms/fst133

    Article  Google Scholar 

  18. Cheung WWL, Jones MC, Reygondeau G et al (2016) Structural uncertainty in projecting global fisheries catches under climate change. Ecol Modell 325:57–66. doi:10.1016/j.ecolmodel.2015.12.018

    CAS  Article  Google Scholar 

  19. Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 847–940

    Google Scholar 

  20. Coates D (2002) Inland capture fishery statistics of Southeast Asia: current status and information needs. Asia-Paciifc fishery commission. Bangkok, Thailand

  21. Cochrane KL, De Young C, Soto D, et al (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530. Food and Agriculture Organization, Rome, Italy

  22. Comte L, Grenouillet G (2013) Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography (Cop) 36:1236–1246. doi:10.1111/j.1600-0587.2013.00282.x

    Article  Google Scholar 

  23. Comte L, Buisson L, Daufresne M, Grenouillet G (2013) Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw Biol 58:625–639. doi:10.1111/fwb.12081

    Article  Google Scholar 

  24. Cooke SJ, Cowx IG (2004) The role of recreational fishing in global fish crises. Bioscience 54:857–859. doi:10.1641/0006-3568(2004)054[0857:TRORFI]2.0.CO;2

  25. Cooke SJ, Lapointe NWR, Martins EG et al (2013) Failure to engage the public in issues related to inland fishes and fisheries: strategies for building public and political will to promote meaningful conservation. J Fish Biol 83:997–1018. doi:10.1111/jfb.12222

    CAS  PubMed  Google Scholar 

  26. Cooke SJ, Allison EH, Beard TD et al (2016a) On the sustainability of inland fisheries: finding a future for the forgotten. Ambio 45:753

    Article  PubMed  Google Scholar 

  27. Cooke SJ, Arthington AH, Bonar SA et al (2016b) Assessment of inland fisheries: a vision for the future. In: Taylor WW, Bartley DM, Goddard CI et al (eds) Freshwater, fish, and the future: proceedings of the global cross-sectoral conference. American Fisheries Society Press, Bethesda, pp 45–62

    Google Scholar 

  28. Coulthard S (2008) Adapting to environmental change in artisanal fisheries-Insights from a South Indian Lagoon. Glob Environ Change 18:479–489. doi:10.1016/j.gloenvcha.2008.04.003

    Article  Google Scholar 

  29. Cowx IG, Portocarrero Aya M (2011) Paradigm shifts in fish conservation: moving to the ecosystem services concept. J Fish Biol 79:1663–1680. doi:10.1111/j.1095-8649.2011.03144.x

    CAS  Article  PubMed  Google Scholar 

  30. Cowx IG, Arlinghaus R, Cooke SJ (2010) Harmonizing recreational fisheries and conservation objectives for aquatic biodiversity in inland waters. J Fish Biol 76:2194–2215. doi:10.1111/j.1095-8649.2010.02686.x

    CAS  Article  PubMed  Google Scholar 

  31. Cromier R, Kannen A, Elliott M, et al (2013) Marine and coastal ecoystem-based risk management handbook. ICES cooperative research Report Number 317, Copenhagen, Denmark

  32. Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol 26:707–721. doi:10.1002/joc.1322

    Article  Google Scholar 

  33. Darwall W, Smith K, Allen D et al (2008) Freshwater biodiversity: a hidden resource under threat. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) The 2008 Review of The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland, pp 43–53

    Google Scholar 

  34. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi:10.1073/pnas.0709472105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73:1491–1530. doi:10.1111/j.1095-8649.2008.02061.x

    Article  Google Scholar 

  36. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/s1464793105006950

    Article  PubMed  Google Scholar 

  37. Eliason EJ, Clark TD, Hague MJ et al (2011) Differences in thermal tolerance among sockeye salmon populations. Science (80-) 1861:109–112

    Article  CAS  Google Scholar 

  38. Elliott JM (1990) The need for long-term investigations in ecology and the contribution of the freshwater biological association. Freshw Biol 23:1–5

    Article  Google Scholar 

  39. FAO (2007) Fishery country profile. National fishery sector overview. The United Republic of Tanzania, Rome

    Google Scholar 

  40. FAO (2010) Report of the FAO workshop on climate change and fisheries in the African Great Lakes. Bujumbura

  41. FAO (2012) Recreational fisheries. FAO technical guidelines for responsible fisheries, No. 13. Rome

  42. FAO (2014a) CWP handbook of fishery statistical standards. Section G: fishing areas - general. Food and Agriculture Organiztaion, Rome, Italy

  43. FAO (2014b) The state of world fisheries and aquaculture - 2014 (SOFIA). Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  44. FAO (2016) The state of world fisheries and aquaculture - 2016 (SOFIA). Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  45. Foden WB, Butchart SHM, Stuart SN et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE. doi:10.1371/journal.pone.0065427

    PubMed  PubMed Central  Google Scholar 

  46. Freire KMF, Machado ML, Crepaldi D (2012) Overview of inland recreational fisheries in Brazil. Fisheries 37:484–494. doi:10.1080/03632415.2012.731867

    Article  Google Scholar 

  47. Freitas V, Cardoso JFMF, Lika K et al (2010) Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species. Philos Trans R Soc B Biol Sci 365:3553–3565. doi:10.1098/rstb.2010.0049

    Article  Google Scholar 

  48. Godfray HCJ, Beddinigton JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science (80-) 327:812–818

    CAS  Article  Google Scholar 

  49. Grimm NB, Chapin FS, Bierwagen B et al (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11:474–482. doi:10.1890/120282

    Article  Google Scholar 

  50. Guo C, Lek S, Ye S et al (2015) Predicting fish species richness and assemblages with climatic, geographic and morphometric factors: a broad-scale study in Chinese lakes. Limnologica 54:66–74. doi:10.1016/j.limno.2015.08.002

    Article  Google Scholar 

  51. Gupta N, Bower SD, Raghavan R et al (2015) Status of recreational fisheries in India: development, issues, and opportunities. Rev Fish Sci Aquac 23:291–301. doi:10.1080/23308249.2015.1052366

    Article  Google Scholar 

  52. Halls AS, Johns M (2013) Assessment of the vulnerability of the Mekong Delta Pangasius catfish industry to development and climate change in the Lower Mekong Basin. Report prepared by the sustainable fisheries partnership, Bath, United Kingdom

  53. Hanson T, Sites D (2015) 2014 U.S. Catfish database. Auburn University, Fisheries and Allied Aquacultures Departmental Series Auburn, Alabama, USA

  54. Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54. doi:10.1111/j.1469-185X.2008.00060.x

    Article  PubMed  Google Scholar 

  55. Huey RB, Kearney MR, Krockenberger A et al (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc B Biol Sci 367:1665–1679. doi:10.1098/rstb.2012.0005

    Article  Google Scholar 

  56. Hunt LM, Fenichel EP, Fulton DC et al (2016) Identifying alternate pathways for climate change to impact inland recreational fishers. Fisheries 41:362–372. doi:10.1080/03632415.2016.1187015

    Article  Google Scholar 

  57. IPCC (2001) Climate change 2001 working group II report to IPCC AR3. Cambridge University Press, Cambridge

    Google Scholar 

  58. IPCC (2014) Climate Change 2014: synthesis report. IPCC, Geneva

    Google Scholar 

  59. Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  60. Kapetsky JM (2003) Review of the state of world fishery resources: inland fisheries. FAO, Rome

    Google Scholar 

  61. Kiem AS, Hiroshi Ishidaira HPH, Zhou MC et al (2008) Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM. Hydrol Process 22:1382–1394. doi:10.1002/hyp.6947

    Article  Google Scholar 

  62. Kitchell JF, Stewart DJ, Weininger D (1977) Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J Fish Res Board Can 34:1922–1935

    Article  Google Scholar 

  63. Kovach RP, Muhlfeld CC, Al-Chokhachy R et al (2016) Impacts of climatic variation on trout: a global synthesis and path forward. Rev Fish Biol Fish 26:135–151. doi:10.1007/s11160-015-9414-x

    Article  Google Scholar 

  64. Krabbenhoft TJ, Platania SP, Turner TF (2014) Interannual variation in reproductive phenology in a riverine fish assemblage: implications for predicting the effects of climate change and altered flow regimes. Freshw Biol 59:1744–1754. doi:10.1111/fwb.12379

    Article  Google Scholar 

  65. Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(80):607–610

    CAS  Article  PubMed  Google Scholar 

  66. Logez M, Bady P, Melcher A et al (2013) A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography 36:80–91. doi:10.1111/j.1600-0587.2012.07447.x

    Article  Google Scholar 

  67. Lynch AJ, Cooke SJ, Deines AM et al (2016a) The social, economic, and environmental importance of inland fishes and fisheries. Environ Rev 24:1–7. doi:10.1139/er-2015-0064

    Article  Google Scholar 

  68. Lynch AJ, Myers BJE, Chu C et al (2016b) Climate change effects on North American inland fish populations and assemblages. Fisheries 41:346–361. doi:10.1080/03632415.2016.1186016

    Article  Google Scholar 

  69. Maass M, Equihua M (2015) Earth stewardship, socioecosystems, the need for a transdisciplinary approach and the role of the international long term ecological research network (ILTER). In: Rozzi R, Chapin FSI, Callicott JB et al (eds) Earth stewardship: linking ecology and ethics in theory and practice. Springer, Heidelberg, pp 217–233

    Google Scholar 

  70. Maberly SC, Elliott JA (2012) Insights from long-term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshw Biol 57:233–243. doi:10.1111/j.1365-2427.2011.02718.x

    Article  Google Scholar 

  71. MacIntyre S (2012) Climatic variability, mixing dynamics, and ecological consequences in the African Great Lakes. Clim Chang Glob Warm Inl Waters Impacts Mitig Ecosyst Soc. doi:10.1002/9781118470596.ch18

    Google Scholar 

  72. Martin BT, Zimmer EI, Grimm V, Jager T (2012) Dynamic energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods Ecol Evol 3:445–449. doi:10.1111/j.2041-210X.2011.00168.x

    Article  Google Scholar 

  73. Marx A (2015) The state of food insecurity in the world: meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organiztaion of the United Nations, Rome

  74. Mehner T, Brucet S, Argillier C et al (2017) Metadata of European Lake fishes dataset. Freshw Metadata J. doi:10.15504/fmj.2017.23

    Google Scholar 

  75. Midway SR, Wagner T, Zydlewski JD et al (2016) Transboundary fisheries science: meeting the challenges of inland fisheries 41:536–546. doi:10.1080/03632415.2016.1208090

    Google Scholar 

  76. MOA (Ministry of Agriculture) (2015) China fishery statistical yearbook. MOA, Beijing

    Google Scholar 

  77. Moore CM, Minns CK, Moore JE (1995) Factors limiting the distributions of Ontario’s freshwater fishes: the role of climate and other variables, and the potential impacts of climate change. In: Beamish RJ (ed) Climate change and northern fish populations. National Research Council of Canada, Ottawa, pp 137–160

    Google Scholar 

  78. Muhlfeld CC, Kovach RP, Jones LA et al (2014) Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change 4:620–624. doi:10.1038/NCLIMATE2252

    Article  Google Scholar 

  79. Nam S, Phommakone S, Vuthy L et al (2015) Lower Mekong fisheries estimated to be worth around $17 billion a year. Catch Cult Fish Res Dev Mekong Reg 21(3):4–7

    Google Scholar 

  80. Newton JR, Smith-Keune C, Jerry DR (2010) Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308:S128–S132. doi:10.1016/j.aquaculture.2010.05.040

    Article  Google Scholar 

  81. Ney JJ (1993) Bioenergetics modeling today: growing pains on the cutting edge. Trans Am Fish Soc 122:736–748. doi:10.1577/1548-8659(1993)122<0736

    Article  Google Scholar 

  82. Norin T, Malte H, Clark TD (2016) Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct Ecol 30:369–378. doi:10.1111/1365-2435.12503

    Article  Google Scholar 

  83. Noyes PD, McElwee MK, Miller HD et al (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986. doi:10.1016/j.envint.2009.02.006

    CAS  Article  PubMed  Google Scholar 

  84. Olsson P, Folke C (2001) Local ecological knowledge and institutional dynamics for ecosystem management: a study of Lake Racken Watershed, Sweden. Ecosystems 4:85–104. doi:10.1007/s100210000061

    Article  Google Scholar 

  85. Orians GH (1993) Endangered at what level? Ecol Appl 3:206–208

    Article  PubMed  Google Scholar 

  86. Paukert C, Glazer B, Hansen GJA et al (2016a) Adapting fisheries management to a changing climate. Fisheries 41:374–384. doi:10.1080/03632415.2016.1185009

    Article  Google Scholar 

  87. Paukert CP, Lynch AJ, Whitney JE (2016b) Effects of climate change on North American inland fishes: introduction to the special issue. Fisheries 41:329–330. doi:10.1080/03632415.2016.1187011

    Article  Google Scholar 

  88. Peck LS, Clark MS, Morley SA et al (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256. doi:10.1111/j.1365-2435.2008.01537.x

    Article  Google Scholar 

  89. Petersen JH, Paukert CP (2005) Development of a bioenergetics model for humpback chub and evaluation of water temperature changes in the Grand Canyon, Colorado River. Trans Am Fish Soc 134:960–974. doi:10.1577/T04-090.1

    Article  Google Scholar 

  90. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science (80-) 322:690–693

    Article  Google Scholar 

  91. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779. doi:10.1111/j.1095-8649.2010.02783.x

    Article  PubMed  Google Scholar 

  92. Rice JA, Cochran PA (1984) Independent evaluation of a bioenergetics model for largemouth bass. Ecology 65:732–739. doi:10.2307/1938045

    Article  Google Scholar 

  93. Rijnsdorp AD, Peck MA, Engelhard GH et al (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:000

    Article  Google Scholar 

  94. Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275. doi:10.1007/s11160-004-6749-0

    Article  Google Scholar 

  95. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 104:19703–19708. doi:10.1073/pnas.0701976104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Sievert NA, Paukert CP, Tsang YP, Infante D (2016) Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration. Ecol Indic 67:403–416. doi:10.1016/j.ecolind.2016.03.013

    Article  Google Scholar 

  97. Smith LED, Khoa SN, Lorenzen K (2005) Livelihood functions of inland fisheries: policy implications in developing countries. Water Policy 7:359–383

    Google Scholar 

  98. Staudt A, Leidner AK, Howard J et al (2013) The added complications of climate change: understanding and managing biodiversity and ecosystems. Front Ecol Environ 11:494–501

    Article  Google Scholar 

  99. Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science (80-) 301:65. doi:10.1126/science.1083073

    CAS  Article  Google Scholar 

  100. Terblanche JS, Deere JA, Clusella-Trullas S et al (2007) Critical thermal limits depend on methodological context. Philos Trans R Soc B Biol Sci 274:2935–2942. doi:10.1098/rspb.2007.0985

    Article  Google Scholar 

  101. Terblanche JS, Hoffmann AA, Mitchell KA et al (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725. doi:10.1242/jeb.061283

    Article  PubMed  Google Scholar 

  102. Tytler P, Calow P (1985) Fish energetics. Croom Helm, London

    Google Scholar 

  103. UN (United Nations) (2016) The sustainable development goals report. UN, New York

    Google Scholar 

  104. Urban MC, Tewksbury JJ, Sheldon KS (2012) On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc R Soc B Biol Sci 279:2072–2080. doi:10.1098/rspb.2011.2367

    Article  Google Scholar 

  105. USFWS - USCB (U.S. Fish & Wildlife Service and U.S. Census Bureau) (2011) 2011 National survey of fishing, hunting, and wildlife-associated recreation. Washington

  106. Wang L, Infante D, Riseng C, Wehrly K (2016) Geostatistics: an overview advancement of geospatial capability by NRiSD and GLAHF in enhancing aquatic ecosystem research and management. Geoinformatics Geostat: Overview 4:2. doi:10.4172/2327-4581.1000142.

  107. Ward EJ, Anderson JH, Beechie TJ et al (2015) Increasing hydrologic variability threatens depleted anadromous fish populations. Glob Change Biol 21:2500–2509. doi:10.1111/gcb.12847

    Article  Google Scholar 

  108. Welcomme RL, Cowx IG, Coates D et al (2010) Inland capture fisheries. Philos Trans R Soc B Biol Sci 365:2881–2896. doi:10.1098/rstb.2010.0168

    Article  Google Scholar 

  109. Westhoff JT, Paukert CP (2014) Climate change simulations predict altered biotic response in a thermally heterogeneous stream system. PLoS ONE 9:1–15. doi:10.1371/journal.pone.0111438

    Article  CAS  Google Scholar 

  110. Whitney JE, Al-Chokhachy R, Bunnell DB et al (2016) Physiological basis of climate change impacts on North American inland fishes. Fisheries 41:332–345. doi:10.1080/03632415.2016.1186656

    Article  Google Scholar 

  111. Whittier J, Sievert N, Loftus A et al (2016) Leveraging BIG data from BIG databases to answer big question. Fisheries 41:417–419. doi:10.1080/03632415.2016.1191911

    Article  Google Scholar 

  112. Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change: special section. Conserv Biol 24:51–62. doi:10.1111/j.1523-1739.2009.01409.x

    Article  PubMed  Google Scholar 

  113. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46. doi:10.1016/j.tree.2005.10.018

    Article  PubMed  Google Scholar 

  114. Wilder M, Nguyen TP (2002) The status of aquaculture in the Mekong delta region of Vietnam: sustainable production and combined farming systems. Fish Sci 68:847–850

    Google Scholar 

  115. Williams M (1996) The transition in the contribution of living aquatic resources to food security. International Food Policy Research Institute, Washington, D.C.

  116. Yang Z, Chen Y, Yu R et al (2016) Responsible recreational fisheries: a Chinese perspective. Fisheries XX:XX–XX

    Google Scholar 

  117. Youn S-J, Taylor WW, Lynch AJ et al (2014) Inland capture fishery contributions to global food security and threats to their future. Glob Food Secur 3:142–148. doi:10.1016/j.gfs.2014.09.005

    Article  Google Scholar 

  118. Yu H (ed) (2009) Recreational fisheries. Northeast Forestry University Press, Harbin

    Google Scholar 

Download references

Acknowledgements

We thank all the expert panel workshop participants who contributed to this effort, which were all the authors in addition to Doug Austen, Roger Pullin, Paul Simonin, and Dongdavanh Sibounthong. This work was developed through an expert panel workshop hosted and funded by the U.S. Geological Survey National Climate Change and Wildlife Science Center, the Missouri Cooperative Fish and Wildlife Research Unit, and the University of Missouri. The Missouri Cooperative Fish and Wildlife Research Unit is sponsored jointly by the U.S. Geological Survey, Missouri Department of Conservation, University of Missouri, the Wildlife Management Institute, and the U.S. Fish and Wildlife Service. Cooke was supported by the Canada Research Chairs Program, the Too Big to Ignore Network, and NSERC. Chen was supported by Chinese Academy of Sciences (Projects Y45Z04, Y62302) and World Wide Fund for Nature (Project 10002550). The contribution of Cowx was supported under the CERES Project funded from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 678193.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig P. Paukert.

Ethics declarations

Conflict of interest

None.

Additional information

Authors are listed alphabetically after the first two authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paukert, C.P., Lynch, A.J., Beard, T.D. et al. Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs. Rev Fish Biol Fisheries 27, 393–409 (2017). https://doi.org/10.1007/s11160-017-9477-y

Download citation

Keywords

  • Climate change
  • Food security
  • Freshwater
  • Inland
  • Livelihoods
  • Recreational fishing