Reviews in Fish Biology and Fisheries

, Volume 27, Issue 2, pp 393–409 | Cite as

Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

  • Craig P. PaukertEmail author
  • Abigail J. Lynch
  • T. Douglas BeardJr.
  • Yushun Chen
  • Steven J. Cooke
  • Michael S. Cooperman
  • Ian G. Cowx
  • Lilian Ibengwe
  • Dana M. Infante
  • Bonnie J. E. Myers
  • Hòa Phú Nguyễn
  • Ian J. Winfield
Research Paper


To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.


Climate change Food security Freshwater Inland Livelihoods Recreational fishing 



We thank all the expert panel workshop participants who contributed to this effort, which were all the authors in addition to Doug Austen, Roger Pullin, Paul Simonin, and Dongdavanh Sibounthong. This work was developed through an expert panel workshop hosted and funded by the U.S. Geological Survey National Climate Change and Wildlife Science Center, the Missouri Cooperative Fish and Wildlife Research Unit, and the University of Missouri. The Missouri Cooperative Fish and Wildlife Research Unit is sponsored jointly by the U.S. Geological Survey, Missouri Department of Conservation, University of Missouri, the Wildlife Management Institute, and the U.S. Fish and Wildlife Service. Cooke was supported by the Canada Research Chairs Program, the Too Big to Ignore Network, and NSERC. Chen was supported by Chinese Academy of Sciences (Projects Y45Z04, Y62302) and World Wide Fund for Nature (Project 10002550). The contribution of Cowx was supported under the CERES Project funded from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 678193.

Compliance with ethical standards

Conflict of interest



  1. Abell R, Thieme ML, Revenga C et al (2008) Freshwater ecoregions of the world: a new map of biogeo-graphic units for freshwater biodiversity conservation. Bioscience 58:403–414. doi: 10.1641/B580507 CrossRefGoogle Scholar
  2. Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  3. Arlinghaus R, Mehner T, Cowx IG (2002) Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish Fish 3:261–316CrossRefGoogle Scholar
  4. Beard TD, Arlinghaus R, Cooke SJ et al (2011) Ecosystem approach to inland fisheries: research needs and implementation strategies. Biol Lett 7:481–483. doi: 10.1098/rsbl.2011.0046 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beitinger TL, Bennett WA (1999) Quantification of the role of accclimation temperature in temperature tolerance of fishes. Environ Biol Fishes 58:277–288CrossRefGoogle Scholar
  6. Beitinger T, Bennett W, McCauley R (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fishes 58:237–275. doi: 10.1023/A:1007676325825 CrossRefGoogle Scholar
  7. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Belton B, Thilsted SH (2014) Fisheries in transition: food and nutrition security implications for the global South. Glob Food Secur 3:59–66. doi: 10.1016/j.gfs.2013.10.001 CrossRefGoogle Scholar
  9. Béné C, Neiland A, Jolley T et al (2003) The Lake Chad Basin. J Asian Afr Stud 38:17–51CrossRefGoogle Scholar
  10. Béné C, Barange M, Subasinghe R et al (2015) Feeding 9 billion by 2050—putting fish back on the menu. Food Secur 7:261–274. doi: 10.1007/s12571-015-0427-z CrossRefGoogle Scholar
  11. Bonar SA, Mercado-Silva N, Hubert WA et al (2017) Standard methods for sampling freshwater fishes: opportunities for international collaboration. Fisheries 42:150–156CrossRefGoogle Scholar
  12. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of Sockeye Salmon (Oncorhynchus nerka). Am Zool 11:99–113. doi: 10.1093/icb/11.1.99 CrossRefGoogle Scholar
  13. Brett JR, Groves TDD (1979) 6—Physiological energetics. Fish Physiol 8:279–352CrossRefGoogle Scholar
  14. Brummett RE, Beveridge MCM, Cowx IG (2013) Functional aquatic ecosystems, inland fisheries and the millennium development goals. Fish Fish 14:312–324. doi: 10.1111/j.1467-2979.2012.00470.x CrossRefGoogle Scholar
  15. Chen Y, Todd AS, Murphy MH, Lomnicky G (2016) Anticipated water quality changes in response to climate change and potential consequences for inland fishes. Fisheries 41:413–416. doi: 10.1080/03632415.2016.1182509 CrossRefGoogle Scholar
  16. Chessman BC (2013) Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol Conserv 160:40–49. doi: 10.1016/j.biocon.2012.12.032 CrossRefGoogle Scholar
  17. Cheung WWL, Pauly D, Sarmiento JL (2013) How to make progresss in projecting climate change impacts. ICES J Mar Sci 70:1069–1074. doi: 10.1093/icesjms/fst133 CrossRefGoogle Scholar
  18. Cheung WWL, Jones MC, Reygondeau G et al (2016) Structural uncertainty in projecting global fisheries catches under climate change. Ecol Modell 325:57–66. doi: 10.1016/j.ecolmodel.2015.12.018 CrossRefGoogle Scholar
  19. Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 847–940Google Scholar
  20. Coates D (2002) Inland capture fishery statistics of Southeast Asia: current status and information needs. Asia-Paciifc fishery commission. Bangkok, ThailandGoogle Scholar
  21. Cochrane KL, De Young C, Soto D, et al (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530. Food and Agriculture Organization, Rome, ItalyGoogle Scholar
  22. Comte L, Grenouillet G (2013) Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography (Cop) 36:1236–1246. doi: 10.1111/j.1600-0587.2013.00282.x CrossRefGoogle Scholar
  23. Comte L, Buisson L, Daufresne M, Grenouillet G (2013) Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw Biol 58:625–639. doi: 10.1111/fwb.12081 CrossRefGoogle Scholar
  24. Cooke SJ, Cowx IG (2004) The role of recreational fishing in global fish crises. Bioscience 54:857–859. doi:10.1641/0006-3568(2004)054[0857:TRORFI]2.0.CO;2Google Scholar
  25. Cooke SJ, Lapointe NWR, Martins EG et al (2013) Failure to engage the public in issues related to inland fishes and fisheries: strategies for building public and political will to promote meaningful conservation. J Fish Biol 83:997–1018. doi: 10.1111/jfb.12222 PubMedGoogle Scholar
  26. Cooke SJ, Allison EH, Beard TD et al (2016a) On the sustainability of inland fisheries: finding a future for the forgotten. Ambio 45:753CrossRefPubMedGoogle Scholar
  27. Cooke SJ, Arthington AH, Bonar SA et al (2016b) Assessment of inland fisheries: a vision for the future. In: Taylor WW, Bartley DM, Goddard CI et al (eds) Freshwater, fish, and the future: proceedings of the global cross-sectoral conference. American Fisheries Society Press, Bethesda, pp 45–62Google Scholar
  28. Coulthard S (2008) Adapting to environmental change in artisanal fisheries-Insights from a South Indian Lagoon. Glob Environ Change 18:479–489. doi: 10.1016/j.gloenvcha.2008.04.003 CrossRefGoogle Scholar
  29. Cowx IG, Portocarrero Aya M (2011) Paradigm shifts in fish conservation: moving to the ecosystem services concept. J Fish Biol 79:1663–1680. doi: 10.1111/j.1095-8649.2011.03144.x CrossRefPubMedGoogle Scholar
  30. Cowx IG, Arlinghaus R, Cooke SJ (2010) Harmonizing recreational fisheries and conservation objectives for aquatic biodiversity in inland waters. J Fish Biol 76:2194–2215. doi: 10.1111/j.1095-8649.2010.02686.x CrossRefPubMedGoogle Scholar
  31. Cromier R, Kannen A, Elliott M, et al (2013) Marine and coastal ecoystem-based risk management handbook. ICES cooperative research Report Number 317, Copenhagen, DenmarkGoogle Scholar
  32. Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol 26:707–721. doi: 10.1002/joc.1322 CrossRefGoogle Scholar
  33. Darwall W, Smith K, Allen D et al (2008) Freshwater biodiversity: a hidden resource under threat. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) The 2008 Review of The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland, pp 43–53Google Scholar
  34. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi: 10.1073/pnas.0709472105 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73:1491–1530. doi: 10.1111/j.1095-8649.2008.02061.x CrossRefGoogle Scholar
  36. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi: 10.1017/s1464793105006950 CrossRefPubMedGoogle Scholar
  37. Eliason EJ, Clark TD, Hague MJ et al (2011) Differences in thermal tolerance among sockeye salmon populations. Science (80-) 1861:109–112CrossRefGoogle Scholar
  38. Elliott JM (1990) The need for long-term investigations in ecology and the contribution of the freshwater biological association. Freshw Biol 23:1–5CrossRefGoogle Scholar
  39. FAO (2007) Fishery country profile. National fishery sector overview. The United Republic of Tanzania, RomeGoogle Scholar
  40. FAO (2010) Report of the FAO workshop on climate change and fisheries in the African Great Lakes. BujumburaGoogle Scholar
  41. FAO (2012) Recreational fisheries. FAO technical guidelines for responsible fisheries, No. 13. RomeGoogle Scholar
  42. FAO (2014a) CWP handbook of fishery statistical standards. Section G: fishing areas - general. Food and Agriculture Organiztaion, Rome, ItalyGoogle Scholar
  43. FAO (2014b) The state of world fisheries and aquaculture - 2014 (SOFIA). Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  44. FAO (2016) The state of world fisheries and aquaculture - 2016 (SOFIA). Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  45. Foden WB, Butchart SHM, Stuart SN et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE. doi: 10.1371/journal.pone.0065427 PubMedPubMedCentralGoogle Scholar
  46. Freire KMF, Machado ML, Crepaldi D (2012) Overview of inland recreational fisheries in Brazil. Fisheries 37:484–494. doi: 10.1080/03632415.2012.731867 CrossRefGoogle Scholar
  47. Freitas V, Cardoso JFMF, Lika K et al (2010) Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species. Philos Trans R Soc B Biol Sci 365:3553–3565. doi: 10.1098/rstb.2010.0049 CrossRefGoogle Scholar
  48. Godfray HCJ, Beddinigton JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science (80-) 327:812–818CrossRefGoogle Scholar
  49. Grimm NB, Chapin FS, Bierwagen B et al (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11:474–482. doi: 10.1890/120282 CrossRefGoogle Scholar
  50. Guo C, Lek S, Ye S et al (2015) Predicting fish species richness and assemblages with climatic, geographic and morphometric factors: a broad-scale study in Chinese lakes. Limnologica 54:66–74. doi: 10.1016/j.limno.2015.08.002 CrossRefGoogle Scholar
  51. Gupta N, Bower SD, Raghavan R et al (2015) Status of recreational fisheries in India: development, issues, and opportunities. Rev Fish Sci Aquac 23:291–301. doi: 10.1080/23308249.2015.1052366 CrossRefGoogle Scholar
  52. Halls AS, Johns M (2013) Assessment of the vulnerability of the Mekong Delta Pangasius catfish industry to development and climate change in the Lower Mekong Basin. Report prepared by the sustainable fisheries partnership, Bath, United KingdomGoogle Scholar
  53. Hanson T, Sites D (2015) 2014 U.S. Catfish database. Auburn University, Fisheries and Allied Aquacultures Departmental Series Auburn, Alabama, USAGoogle Scholar
  54. Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54. doi: 10.1111/j.1469-185X.2008.00060.x CrossRefPubMedGoogle Scholar
  55. Huey RB, Kearney MR, Krockenberger A et al (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc B Biol Sci 367:1665–1679. doi: 10.1098/rstb.2012.0005 CrossRefGoogle Scholar
  56. Hunt LM, Fenichel EP, Fulton DC et al (2016) Identifying alternate pathways for climate change to impact inland recreational fishers. Fisheries 41:362–372. doi: 10.1080/03632415.2016.1187015 CrossRefGoogle Scholar
  57. IPCC (2001) Climate change 2001 working group II report to IPCC AR3. Cambridge University Press, CambridgeGoogle Scholar
  58. IPCC (2014) Climate Change 2014: synthesis report. IPCC, GenevaGoogle Scholar
  59. Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249CrossRefGoogle Scholar
  60. Kapetsky JM (2003) Review of the state of world fishery resources: inland fisheries. FAO, RomeGoogle Scholar
  61. Kiem AS, Hiroshi Ishidaira HPH, Zhou MC et al (2008) Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM. Hydrol Process 22:1382–1394. doi: 10.1002/hyp.6947 CrossRefGoogle Scholar
  62. Kitchell JF, Stewart DJ, Weininger D (1977) Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J Fish Res Board Can 34:1922–1935CrossRefGoogle Scholar
  63. Kovach RP, Muhlfeld CC, Al-Chokhachy R et al (2016) Impacts of climatic variation on trout: a global synthesis and path forward. Rev Fish Biol Fish 26:135–151. doi: 10.1007/s11160-015-9414-x CrossRefGoogle Scholar
  64. Krabbenhoft TJ, Platania SP, Turner TF (2014) Interannual variation in reproductive phenology in a riverine fish assemblage: implications for predicting the effects of climate change and altered flow regimes. Freshw Biol 59:1744–1754. doi: 10.1111/fwb.12379 CrossRefGoogle Scholar
  65. Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(80):607–610CrossRefPubMedGoogle Scholar
  66. Logez M, Bady P, Melcher A et al (2013) A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography 36:80–91. doi: 10.1111/j.1600-0587.2012.07447.x CrossRefGoogle Scholar
  67. Lynch AJ, Cooke SJ, Deines AM et al (2016a) The social, economic, and environmental importance of inland fishes and fisheries. Environ Rev 24:1–7. doi: 10.1139/er-2015-0064 CrossRefGoogle Scholar
  68. Lynch AJ, Myers BJE, Chu C et al (2016b) Climate change effects on North American inland fish populations and assemblages. Fisheries 41:346–361. doi: 10.1080/03632415.2016.1186016 CrossRefGoogle Scholar
  69. Maass M, Equihua M (2015) Earth stewardship, socioecosystems, the need for a transdisciplinary approach and the role of the international long term ecological research network (ILTER). In: Rozzi R, Chapin FSI, Callicott JB et al (eds) Earth stewardship: linking ecology and ethics in theory and practice. Springer, Heidelberg, pp 217–233Google Scholar
  70. Maberly SC, Elliott JA (2012) Insights from long-term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshw Biol 57:233–243. doi: 10.1111/j.1365-2427.2011.02718.x CrossRefGoogle Scholar
  71. MacIntyre S (2012) Climatic variability, mixing dynamics, and ecological consequences in the African Great Lakes. Clim Chang Glob Warm Inl Waters Impacts Mitig Ecosyst Soc. doi: 10.1002/9781118470596.ch18 Google Scholar
  72. Martin BT, Zimmer EI, Grimm V, Jager T (2012) Dynamic energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods Ecol Evol 3:445–449. doi: 10.1111/j.2041-210X.2011.00168.x CrossRefGoogle Scholar
  73. Marx A (2015) The state of food insecurity in the world: meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organiztaion of the United Nations, RomeGoogle Scholar
  74. Mehner T, Brucet S, Argillier C et al (2017) Metadata of European Lake fishes dataset. Freshw Metadata J. doi: 10.15504/fmj.2017.23 Google Scholar
  75. Midway SR, Wagner T, Zydlewski JD et al (2016) Transboundary fisheries science: meeting the challenges of inland fisheries 41:536–546. doi: 10.1080/03632415.2016.1208090 Google Scholar
  76. MOA (Ministry of Agriculture) (2015) China fishery statistical yearbook. MOA, BeijingGoogle Scholar
  77. Moore CM, Minns CK, Moore JE (1995) Factors limiting the distributions of Ontario’s freshwater fishes: the role of climate and other variables, and the potential impacts of climate change. In: Beamish RJ (ed) Climate change and northern fish populations. National Research Council of Canada, Ottawa, pp 137–160Google Scholar
  78. Muhlfeld CC, Kovach RP, Jones LA et al (2014) Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change 4:620–624. doi: 10.1038/NCLIMATE2252 CrossRefGoogle Scholar
  79. Nam S, Phommakone S, Vuthy L et al (2015) Lower Mekong fisheries estimated to be worth around $17 billion a year. Catch Cult Fish Res Dev Mekong Reg 21(3):4–7Google Scholar
  80. Newton JR, Smith-Keune C, Jerry DR (2010) Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308:S128–S132. doi: 10.1016/j.aquaculture.2010.05.040 CrossRefGoogle Scholar
  81. Ney JJ (1993) Bioenergetics modeling today: growing pains on the cutting edge. Trans Am Fish Soc 122:736–748. doi: 10.1577/1548-8659(1993)122<0736 CrossRefGoogle Scholar
  82. Norin T, Malte H, Clark TD (2016) Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct Ecol 30:369–378. doi: 10.1111/1365-2435.12503 CrossRefGoogle Scholar
  83. Noyes PD, McElwee MK, Miller HD et al (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986. doi: 10.1016/j.envint.2009.02.006 CrossRefPubMedGoogle Scholar
  84. Olsson P, Folke C (2001) Local ecological knowledge and institutional dynamics for ecosystem management: a study of Lake Racken Watershed, Sweden. Ecosystems 4:85–104. doi: 10.1007/s100210000061 CrossRefGoogle Scholar
  85. Orians GH (1993) Endangered at what level? Ecol Appl 3:206–208CrossRefPubMedGoogle Scholar
  86. Paukert C, Glazer B, Hansen GJA et al (2016a) Adapting fisheries management to a changing climate. Fisheries 41:374–384. doi: 10.1080/03632415.2016.1185009 CrossRefGoogle Scholar
  87. Paukert CP, Lynch AJ, Whitney JE (2016b) Effects of climate change on North American inland fishes: introduction to the special issue. Fisheries 41:329–330. doi: 10.1080/03632415.2016.1187011 CrossRefGoogle Scholar
  88. Peck LS, Clark MS, Morley SA et al (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256. doi: 10.1111/j.1365-2435.2008.01537.x CrossRefGoogle Scholar
  89. Petersen JH, Paukert CP (2005) Development of a bioenergetics model for humpback chub and evaluation of water temperature changes in the Grand Canyon, Colorado River. Trans Am Fish Soc 134:960–974. doi: 10.1577/T04-090.1 CrossRefGoogle Scholar
  90. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science (80-) 322:690–693CrossRefGoogle Scholar
  91. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779. doi: 10.1111/j.1095-8649.2010.02783.x CrossRefPubMedGoogle Scholar
  92. Rice JA, Cochran PA (1984) Independent evaluation of a bioenergetics model for largemouth bass. Ecology 65:732–739. doi: 10.2307/1938045 CrossRefGoogle Scholar
  93. Rijnsdorp AD, Peck MA, Engelhard GH et al (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:000CrossRefGoogle Scholar
  94. Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275. doi: 10.1007/s11160-004-6749-0 CrossRefGoogle Scholar
  95. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 104:19703–19708. doi: 10.1073/pnas.0701976104 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sievert NA, Paukert CP, Tsang YP, Infante D (2016) Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration. Ecol Indic 67:403–416. doi: 10.1016/j.ecolind.2016.03.013 CrossRefGoogle Scholar
  97. Smith LED, Khoa SN, Lorenzen K (2005) Livelihood functions of inland fisheries: policy implications in developing countries. Water Policy 7:359–383Google Scholar
  98. Staudt A, Leidner AK, Howard J et al (2013) The added complications of climate change: understanding and managing biodiversity and ecosystems. Front Ecol Environ 11:494–501CrossRefGoogle Scholar
  99. Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science (80-) 301:65. doi: 10.1126/science.1083073 CrossRefGoogle Scholar
  100. Terblanche JS, Deere JA, Clusella-Trullas S et al (2007) Critical thermal limits depend on methodological context. Philos Trans R Soc B Biol Sci 274:2935–2942. doi: 10.1098/rspb.2007.0985 CrossRefGoogle Scholar
  101. Terblanche JS, Hoffmann AA, Mitchell KA et al (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725. doi: 10.1242/jeb.061283 CrossRefPubMedGoogle Scholar
  102. Tytler P, Calow P (1985) Fish energetics. Croom Helm, LondonCrossRefGoogle Scholar
  103. UN (United Nations) (2016) The sustainable development goals report. UN, New YorkGoogle Scholar
  104. Urban MC, Tewksbury JJ, Sheldon KS (2012) On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc R Soc B Biol Sci 279:2072–2080. doi: 10.1098/rspb.2011.2367 CrossRefGoogle Scholar
  105. USFWS - USCB (U.S. Fish & Wildlife Service and U.S. Census Bureau) (2011) 2011 National survey of fishing, hunting, and wildlife-associated recreation. WashingtonGoogle Scholar
  106. Wang L, Infante D, Riseng C, Wehrly K (2016) Geostatistics: an overview advancement of geospatial capability by NRiSD and GLAHF in enhancing aquatic ecosystem research and management. Geoinformatics Geostat: Overview 4:2. doi: 10.4172/2327-4581.1000142.
  107. Ward EJ, Anderson JH, Beechie TJ et al (2015) Increasing hydrologic variability threatens depleted anadromous fish populations. Glob Change Biol 21:2500–2509. doi: 10.1111/gcb.12847 CrossRefGoogle Scholar
  108. Welcomme RL, Cowx IG, Coates D et al (2010) Inland capture fisheries. Philos Trans R Soc B Biol Sci 365:2881–2896. doi: 10.1098/rstb.2010.0168 CrossRefGoogle Scholar
  109. Westhoff JT, Paukert CP (2014) Climate change simulations predict altered biotic response in a thermally heterogeneous stream system. PLoS ONE 9:1–15. doi: 10.1371/journal.pone.0111438 CrossRefGoogle Scholar
  110. Whitney JE, Al-Chokhachy R, Bunnell DB et al (2016) Physiological basis of climate change impacts on North American inland fishes. Fisheries 41:332–345. doi: 10.1080/03632415.2016.1186656 CrossRefGoogle Scholar
  111. Whittier J, Sievert N, Loftus A et al (2016) Leveraging BIG data from BIG databases to answer big question. Fisheries 41:417–419. doi: 10.1080/03632415.2016.1191911 CrossRefGoogle Scholar
  112. Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change: special section. Conserv Biol 24:51–62. doi: 10.1111/j.1523-1739.2009.01409.x CrossRefPubMedGoogle Scholar
  113. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46. doi: 10.1016/j.tree.2005.10.018 CrossRefPubMedGoogle Scholar
  114. Wilder M, Nguyen TP (2002) The status of aquaculture in the Mekong delta region of Vietnam: sustainable production and combined farming systems. Fish Sci 68:847–850Google Scholar
  115. Williams M (1996) The transition in the contribution of living aquatic resources to food security. International Food Policy Research Institute, Washington, D.C.Google Scholar
  116. Yang Z, Chen Y, Yu R et al (2016) Responsible recreational fisheries: a Chinese perspective. Fisheries XX:XX–XXGoogle Scholar
  117. Youn S-J, Taylor WW, Lynch AJ et al (2014) Inland capture fishery contributions to global food security and threats to their future. Glob Food Secur 3:142–148. doi: 10.1016/j.gfs.2014.09.005 CrossRefGoogle Scholar
  118. Yu H (ed) (2009) Recreational fisheries. Northeast Forestry University Press, HarbinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2017

Authors and Affiliations

  • Craig P. Paukert
    • 1
    Email author
  • Abigail J. Lynch
    • 2
  • T. Douglas BeardJr.
    • 2
  • Yushun Chen
    • 3
  • Steven J. Cooke
    • 4
  • Michael S. Cooperman
    • 5
  • Ian G. Cowx
    • 6
  • Lilian Ibengwe
    • 7
  • Dana M. Infante
    • 8
  • Bonnie J. E. Myers
    • 2
  • Hòa Phú Nguyễn
    • 9
  • Ian J. Winfield
    • 10
  1. 1.U.S. Geological Survey Missouri Cooperative Fish and Wildlife Research Unit, The School of Natural ResourcesUniversity of MissouriColumbiaUSA
  2. 2.U.S. Geological Survey National Climate Change and Wildlife Science CenterRestonUSA
  3. 3.Institute of Hydrobiology and State Key Laboratory of Freshwater Ecology and BiotechnologyChinese Academy of SciencesWuhanChina
  4. 4.Fish Ecology and Conservation Physiology Laboratory, Department of BiologyCarleton UniversityOttawaCanada
  5. 5.Moore Center for SciencesConservation InternationalArlingtonUSA
  6. 6.Hull International Fisheries InstituteUniversity of HullHullUK
  7. 7.Fisheries Development DivisionMinistry of Agriculture, Livestock and FisheriesDar es SalaamTanzania
  8. 8.Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  9. 9.Nong Lam University - Ho Chi Minh CityHo Chi Minh CityVietnam
  10. 10.Lake Ecosystems GroupCentre for Ecology & Hydrology, Lancaster Environment CentreLancaster, LancashireUK

Personalised recommendations