Advertisement

Reviews in Fish Biology and Fisheries

, Volume 27, Issue 2, pp 339–361 | Cite as

Global synthesis of the documented and projected effects of climate change on inland fishes

  • Bonnie J. E. MyersEmail author
  • Abigail J. Lynch
  • David B. Bunnell
  • Cindy Chu
  • Jeffrey A. Falke
  • Ryan P. Kovach
  • Trevor J. Krabbenhoft
  • Thomas J. Kwak
  • Craig P. Paukert
Research Paper

Abstract

Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.

Keywords

Climate change Documented and projected effects Fish guilds Freshwater fishes Global change Inland fishes Synthesis 

Notes

Acknowledgements

We thank Doug Beard, James Whitney, and the other participants in an expert workshop that formed the foundations for this follow-up project, as well as Jeff Kershner (USGS internal reviewer), anonymous journal reviewers, and journal editors for their constructive manuscript review. Readers can access all data and metadata supporting the analyses and conclusions at https://www.sciencebase.gov/catalog/item/5759ae83e4b04f417c263f01. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

This study was funded by USGS National Climate Change and Wildlife Science Center.

Compliance with ethical standards

Conflict of interest

The guest editors were blinded to this manuscript and did not handle any part of the review process.

Supplementary material

11160_2017_9476_MOESM1_ESM.pdf (178 kb)
Supplementary material 1 (PDF 178 kb)
11160_2017_9476_MOESM2_ESM.pdf (282 kb)
Supplementary material 2 (PDF 282 kb)

References

  1. Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26. doi: 10.1007/s00484-006-0041-z CrossRefPubMedGoogle Scholar
  2. Al-Chokhachy R, Muhlfeld CC, Boyer MC et al (2014) Quantifying the effectiveness of conservation measures to control the spread of anthropogenic hybridization in stream salmonids: a climate adaptation case study. North Am J Fish Manag 34:642–652. doi: 10.1080/02755947.2014.901259 CrossRefGoogle Scholar
  3. Al-Chokhachy R, Schmetterling D, Clancy C et al (2016) Are brown trout replacing or displacing bull trout populations in a changing climate? Can J Fish Aquat Sci 1404:1–10. doi: 10.1139/cjfas-2015-0293 Google Scholar
  4. Allan JD, Abell R, Hogan Z et al (2005) Overfishing of inland waters. Bioscience 55:1041–1051. doi: 10.1641/0006-3568(2005)055[1041:ooiw]2.0.co;2
  5. Alofs KM, Jackson DA, Lester NP (2014) Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers Distrib 20:123–136. doi: 10.1111/ddi.12130 CrossRefGoogle Scholar
  6. Arthington AH (2012) Environmental flows: saving rivers in the third millennium (Vol 4). Univ of California Press, BerkeleyCrossRefGoogle Scholar
  7. Ayllón D, Railsback SF, Vincenzi S et al (2016) InSTREAM-Gen: modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change. Ecol Modell 326:36–53. doi: 10.1016/j.ecolmodel.2015.07.026 CrossRefGoogle Scholar
  8. Bassar RD, Letcher BH, Nislow KH, Whiteley AR (2016) Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout. Glob Chang Biol 22:577–593. doi: 10.1111/gcb.13135 CrossRefPubMedGoogle Scholar
  9. Béné C (2006) Small-scale fisheries: assessing their contribution to rural. FAO Fish Circ No 1008 1008:57Google Scholar
  10. Bentley KT, Burgner RL (2011) An assessment of parasite infestation rates of juvenile sockeye salmon after 50 years of climate warming in southwest Alaska. Environ Biol Fishes 92:267–273. doi: 10.1007/s10641-011-9830-2 CrossRefGoogle Scholar
  11. Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312(5779):1477–1478. doi: 10.1126/science.1127000 CrossRefPubMedGoogle Scholar
  12. Buisson L, Grenouillet G, Casajus N, Lek S (2010) Predicting the potential impacts of climate change on stream fish assemblages. Community Ecol North Am Stream Fishes Concepts, Approaches, Tech American F: 327–346Google Scholar
  13. Chu C, Mandrak NE, Minns CK (2005) Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers Distrib. doi: 10.1111/j.1366-9516.2005.00153.x Google Scholar
  14. Clews E, Durance I, Vaughan IP, Ormerod SJ (2010) Juvenile salmonid populations in a temperate river system track synoptic trends in climate. Glob Change Biol 16:3271–3283. doi: 10.1111/j.1365-2486.2010.02211.x CrossRefGoogle Scholar
  15. Comte L, Grenouillet G (2013) Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography (Cop) 36:1236–1246. doi: 10.1111/j.1600-0587.2013.00282.x CrossRefGoogle Scholar
  16. Comte L, Buisson L, Daufresne M, Grenouillet G (2013) Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw Biol 58:625–639. doi: 10.1111/fwb.12081 CrossRefGoogle Scholar
  17. Corrigan LJ, Winfield IJ, Hoelzel AR, Lucas MC (2011) Dietary plasticity in Arctic charr (Salvelinus alpinus) in response to long-term environmental change. Ecol Freshw Fish 20:5–13. doi: 10.1111/j.1600-0633.2010.00446.x CrossRefGoogle Scholar
  18. Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87. doi: 10.1111/eva.12135 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Crozier LG, Scheuerell MD, Zabel RW (2011) Using time series analysis to characterize evolutionary and plastic responses to environmental change: a case study of a shift toward earlier migration date in sockeye salmon. Am Nat 178:755–773. doi: 10.1086/662669 CrossRefPubMedGoogle Scholar
  20. Crozier LG, Zabel RW, Hamlet AF (2008) Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon. Glob Chang Biol 14:236–249. doi: 10.1111/j.1365-2486.2007.01497.x CrossRefGoogle Scholar
  21. Daufresne M, Boët P (2007) Climate change impacts on structure and diversity of fish communities in rivers. Glob Change Biol 13:2467–2478. doi: 10.1111/j.1365-2486.2007.01449.x CrossRefGoogle Scholar
  22. Daufresne M, Roger MC, Capra H, Lamouroux N (2004) Long-term changes within the invertebrate and fish communities of the Upper Rhǒne River: effects of climatic factors. Glob Chang Biol 10:124–140. doi: 10.1046/j.1529-8817.2003.00720.x CrossRefGoogle Scholar
  23. Daufresne M, Veslot J, Capra H et al (2015) Fish community dynamics (1985–2010) in multiple reaches of a large river subjected to flow restoration and other environmental changes. Freshw Biol 60:1176–1191. doi: 10.1111/fwb.12546 CrossRefGoogle Scholar
  24. Davidson IC, Hazlewood MS, Cove RJ (2006) Predicted growth of juvenile trout and salmon in four rivers in England and Wales based on past and possible future temperature regimes linked to climate change. In: Proceedings of the first international sea trout symposium, pp 401–416. doi:  10.1002/9780470996027.ch16
  25. Dempson B, Schwarz CJ, Bradbury IR et al (2016) Influence of climate and abundance on migration timing of adult Atlantic salmon (Salmo salar) among rivers in Newfoundland and Labrador. Ecol Freshw Fish. doi: 10.1111/eff.12271 Google Scholar
  26. Eby LA, Helmy O, Holsinger LM et al (2014) Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, U.S.A. PLoS One 9:1–8. doi: 10.1371/journal.pone.0098812 CrossRefGoogle Scholar
  27. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884. doi: 10.1038/nature02808 CrossRefPubMedGoogle Scholar
  28. Elliott JA, Henrys P, Tanguy M et al (2015) Predicting the habitat expansion of the invasive roach Rutilus rutilus (Actinopterygii, Cyprinidae), in Great Britain. Hydrobiologia 751:127–134. doi: 10.1007/s10750-015-2181-9 CrossRefGoogle Scholar
  29. Falke JA, Flitcroft RL, Dunham JB et al (2015) Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape. Can J Fish Aquat Sci 72:304–318. doi: 10.1139/cjfas-2014-0098 CrossRefGoogle Scholar
  30. FAO (2016) The State of the World Fisheries and Aquaculture. RomeGoogle Scholar
  31. Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613. doi: 10.1007/s11160-007-9059-5 CrossRefGoogle Scholar
  32. Flitcroft RL, Bottom DL, Haberman KL, Bierly KF, Jones KK, Simenstad CA, Gray A, Ellingson KS, Baumgartner E, Cornwell TJ, Campbell LA (2016) Expect the unexpected: place-based protections can lead to unforeseen benefits. Aquat Conserv Marine Freshw Ecosyst 26(Suppl. 1):39–59. doi: 10.1002/aqc.2660 CrossRefGoogle Scholar
  33. Fobert E, Zieba G, Vilizzi L et al (2013) Predicting non-native fish dispersal under conditions of climate change: case study in England of dispersal and establishment of pumpkinseed Lepomis gibbosus in a floodplain pond. Ecol Freshw Fish 22:106–116. doi: 10.1111/eff.12008 CrossRefGoogle Scholar
  34. Frimpong EA, Angermeier PL (2009) Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34:487–495. doi: 10.1577/1548-8446-34.10.487 CrossRefGoogle Scholar
  35. Gehrke PC, Sheaves MJ, Boseto D et al (2011) Vulnerability of freshwater and estuarine fisheries in the tropical Pacific to climate change. In: Vulnerability of tropical Pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, New Caledonia, pp 577–645Google Scholar
  36. Graham CH, Ferrier S, Huettman F et al (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503. doi: 10.1016/j.tree.2004.07.006 CrossRefPubMedGoogle Scholar
  37. Gwinn DC, Allen MS, Johnston FD, Brown P, Todd CR, Arlinghaus R (2013) Rethinking length-based fisheries regulations: the value of protecting old and large fish with harvest slots. Fish Fish 16:259–281. doi: 10.1111/faf.12053 CrossRefGoogle Scholar
  38. Hansen GJ, Gaeta JW, Hansen JF, Carpenter SR (2015) Learning to manage and managing to learn: sustaining freshwater recreational fisheries in a changing environment. Fisheries 40:56–64. doi: 10.1080/03632415.2014.996804 CrossRefGoogle Scholar
  39. Hardiman JM, Mesa MG (2014) The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios. Clim Change. doi: 10.1007/s10584-012-0627-x Google Scholar
  40. Hayes DB, Bellgraph BJ, Roth BM et al (2016) Timing of redd construction by fall chinook salmon in the hanford reach of the Columbia river. River Res Appl 30:1110–1119. doi: 10.1002/rra CrossRefGoogle Scholar
  41. Hedger RD, Sundt-Hansen LE, Forseth T et al (2013) Predicting climate change effects on subarctic–Arctic populations of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 70:159–168. doi: 10.1139/cjfas-2012-0205 CrossRefGoogle Scholar
  42. Hill DK, Magnuson JJ (1990) Transactions of the American Fisheries Society potential effects of global climate warming on the growth and prey consumption of great lakes fish. Trans Am Fish Soc 119:265–275. doi: 10.1577/1548-8659(1990)119<0265 CrossRefGoogle Scholar
  43. ICEM (2013) USAID Mekong ARCC climate change impact and adaptation study for the lower Mekong basin: main report. Prepared for the United States Agency for International Development by ICEM—International Centre for Environmental Management. USAID Mekong ARCC Project, Bangkok. Available online at:www.mekongarcc.net/resource
  44. Jackson DA, Mandrak NE (2002) Changing fish biodiversity: predicting the loss of cyprinid biodiversity due to global climate change. In: American fisheries society symposium, pp 89–98Google Scholar
  45. Jager HI, Van Winkle W, Holcomb BD (1999) Would hydrologic climate changes in sierra nevada streams influence trout persistence? Trans Am Fish Soc 128:222–240. doi: 10.1577/1548-8659(1999)128<0222:WHCCIS>2.0.CO;2 CrossRefGoogle Scholar
  46. Jelks HL, Walsh SJ, Burkhead NM et al (2008) Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33:372–407. doi: 10.1577/1548-8446-33.8.372 CrossRefGoogle Scholar
  47. Jeppesen E, Mehner T, Winfield IJ et al (2012) Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694:1–39. doi: 10.1007/s10750-012-1182-1 CrossRefGoogle Scholar
  48. Jones ML, Shuter BJ, Zhao Y, Stockwell JD (2006) Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help. Can J Fish Aquat Sci 63:457–468. doi: 10.1139/f05-239 CrossRefGoogle Scholar
  49. Junker J, Heimann FUM, Hauer C et al (2015) Assessing the impact of climate change on brown trout (Salmo trutta fario) recruitment. Hydrobiologia 751:1–21. doi: 10.1007/s10750-014-2073-4 CrossRefGoogle Scholar
  50. Kao YC, Madenjian CP, Bunnell DB et al (2015) Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron. J Great Lakes Res 41:423–435. doi: 10.1016/j.jglr.2015.03.012 CrossRefGoogle Scholar
  51. Kennedy RJ, Crozier WW (2010) Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J Fish Biol 76:1786–1805. doi: 10.1111/j.1095-8649.2010.02617.x CrossRefPubMedGoogle Scholar
  52. Kovach RP, Gharrett AJ, Tallmon DA (2012) Genetic change for earlier migration timing in a pink salmon population. Proc R Soc B Biol Sci 279:3870–3878. doi: 10.1098/rspb.2012.1158 CrossRefGoogle Scholar
  53. Kovach RP, Ellison SC, Pyare S, Tallmon DA (2015) Temporal patterns in adult salmon migration timing across southeast Alaska. Glob Change Biol 21:1821–1833. doi: 10.1111/gcb.12829 CrossRefGoogle Scholar
  54. Kovach RP, Muhlfeld CC, Al-Chokhachy R et al (2016) Impacts of climatic variation on trout: a global synthesis and path forward. Rev Fish Biol Fish 26:1–17. doi: 10.1007/s11160-015-9414-x CrossRefGoogle Scholar
  55. Krabbenhoft TJ, Platania SP, Turner TF (2014) Interannual variation in reproductive phenology in a riverine fish assemblage: implications for predicting the effects of climate change and altered flow regimes. Freshw Biol 59:1744–1754. doi: 10.1111/fwb.12379 CrossRefGoogle Scholar
  56. Kumar R, Martell SJ, Pitcher TJ, Varkey DA (2013) Temperature-driven decline of a cisco population in Mille Lacs Lake, Minnesota. North Am J Fish Manag 33:669–681. doi: 10.1080/02755947.2013.785992 CrossRefGoogle Scholar
  57. Kundzewicz ZW, Mata LJ, Arnell NW et al (2008) The implications of projected climate change for freshwater resources and their management resources and their management. Hydrol Sci J 53:3–10. doi: 10.1623/hysj.53.1.3 CrossRefGoogle Scholar
  58. Kurylyk BL, MacQuarrie KTB, Linnansaari T, Cunjak RA, Curry RA (2015) Preserving, augmenting, and creating cold-water thermal refugia in rivers: concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8:1095–1108. doi: 10.1002/eco.1566 CrossRefGoogle Scholar
  59. Leuven RSEW, Hendriks AJ, Huijbregts MAJ et al (2011) Differences in sensitivity of native and exotic fish species to changes in river temperature. Curr Zool 57:852–862. doi: 10.1093/czoolo/57.6.852 CrossRefGoogle Scholar
  60. Lindenmayer DB, Likens GE (2009) Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol Evol 24:482–486. doi: 10.1016/j.tree.2009.03.005 CrossRefPubMedGoogle Scholar
  61. Lynch AJ, Taylor WW, Beard TD, Lofgren BM (2015) Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes. J Great Lakes Res 41:415–422. doi: 10.1016/j.jglr.2015.03.015 CrossRefGoogle Scholar
  62. Lynch AJ, Cooke SJ, Deines AM et al (2016a) The social, economic, and environmental importance of inland fishes and fisheries. Environ Rev 7:1–7. doi: 10.1139/er-2015-0064 Google Scholar
  63. Lynch AJ, Myers BJE, Chu C et al (2016b) Climate change effects on North American inland fish populations and assemblages. Fisheries 41:346–361. doi: 10.1080/03632415.2016.1186016 CrossRefGoogle Scholar
  64. Lyons J, Zorn T, Stewart J et al (2009) Defining and characterizing coolwater streams and their fish assemblages in Michigan and Wisconsin, USA. North Am J Fish Manag 29:1130–1151. doi: 10.1577/M08-118.1 CrossRefGoogle Scholar
  65. Lyons J, Stewart JS, Mitro M (2010) Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A. J Fish Biol 77:1867–1898. doi: 10.1111/j.1095-8649.2010.02763.x CrossRefPubMedGoogle Scholar
  66. Lyons J, Rypel AL, Rasmussen PW et al (2015) Trends in the reproductive phyolgeny of two Great Lakes fishes. Trans Am Fish Soc 144:1263–1274. doi: 10.1080/00028487.2015.1082502 CrossRefGoogle Scholar
  67. MacCrimmon HR, Marshall TL (1968) World distribution of brown trout Salmo trutta. J Fish Res Board Canada 25:2527–2548. doi: 10.1139/f68-225 CrossRefGoogle Scholar
  68. Marie AD, Bernatchez L, Garant D (2010) Loss of genetic integrity correlates with stocking intensity in brook charr (Salvelinus fontinalis). Mol Ecol 19:2025–2037. doi: 10.1111/j.1365-294X.2010.04628.x CrossRefPubMedGoogle Scholar
  69. Markovic D, Carrizo S, Freyhof J et al (2014) Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers Distrib 20:1097–1107. doi: 10.1111/ddi.12232 CrossRefGoogle Scholar
  70. Martins EG, Hinch SG, Patterson DA et al (2011) Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser River sockeye salmon (Oncorhynchus nerka). Glob Change Biol 17:99–114. doi: 10.1111/j.1365-2486.2010.02241.x CrossRefGoogle Scholar
  71. Meisner JD, Goodier JL, Regier HA et al (1987) An assessment of the effects of climate warming on Great Lakes basin fishes. J Great Lakes Res 13:340–352. doi: 10.1016/S0380-1330(87)71656-6 CrossRefGoogle Scholar
  72. Morrongiello JR, Crook DA, King AJ et al (2011) Impacts of drought and predicted effects of climate change on fish growth in temperate Australian lakes. Glob Change Biol 17:745–755. doi: 10.1111/j.1365-2486.2010.02259.x CrossRefGoogle Scholar
  73. Muhlfeld CC, Kovach RP, Jones LA et al (2014) Invasive hybridization in a threatened species is accelerated by climate change. Climate change will decrease worldwide biodiversity through a number of potential pathways. Nat Clim Chang 4:620–624. doi: 10.1038/NCLIMATE2252 CrossRefGoogle Scholar
  74. Novinger DC, Rahel FJ (2003) Isolation management with artificial barriers as a conservation strategy for cutthroat trout in headwater streams. Conserv Biol 17:772–781CrossRefGoogle Scholar
  75. Oberdorff T, Jézéquel C, Campero M et al (2015) Opinion Paper: how vulnerable are Amazonian freshwater fishes to ongoing climate change? J Appl Ichthyol 31:4–9. doi: 10.1111/jai.12971 CrossRefGoogle Scholar
  76. Ohlberger J, Thackeray SJ, Winfield IJ et al (2014) When phenology matters: age-size truncation alters population response to trophic mismatch. Proc Biol Sci 281:20140938. doi: 10.1098/rspb.2014.0938 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ontario Ministry of Natural Resources and Forestry (2013) Changes in bass seasons in Southern Ontario (Zone 17, 18, and 20). http://www.ottylakeassociation.ca/old_website/FishRegsBass2013.pdf. Accessed Feb 2017
  78. Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N (2008) Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–89. doi: 10.1890/060148 CrossRefGoogle Scholar
  79. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi: 10.1038/nature01286 CrossRefPubMedGoogle Scholar
  80. Pasko S, Goldberg J, MacNeil C, Campbell M (2014) Review of harvest incentives to control invasive species. Manag Biol Invasions 5(3):263–277. doi: 10.3391/mbi.2014.5.3.10 CrossRefGoogle Scholar
  81. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 CrossRefPubMedGoogle Scholar
  82. Piffady J, Parent É, Souchon Y (2013) A hierarchical generalized linear model with variable selection: studying the response of a representative fish assemblage for large European rivers in a multi-pressure context. Stoch Environ Res Risk Assess 27:1719–1734. doi: 10.1007/s00477-013-0709-y CrossRefGoogle Scholar
  83. Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22: 521–533. doi: 10.1111/j.1523-1739.2008.00950.x CrossRefPubMedGoogle Scholar
  84. Rask M, Sairanen S, Vesala S, Arvola L (2014) Population dynamics and growth of perch in a small, humic lake over a 20-year period—importance of abiotic and biotic factors. Boreal Environ Res 19:112–123Google Scholar
  85. Reed TE, Schindler DE, Hague MJ et al (2011) Time to evolve? Potential evolutionary responses of fraser river sockeye salmon to climate change and effects on persistence. PLoS One 6: e20380. doi: 10.1371/journal.pone.0020380 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–1222. doi: 10.1046/j.1523-1739.1999.98380.x CrossRefGoogle Scholar
  87. Roessig J, Woodley C (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275. doi: 10.1007/s11160-004-6749-0 CrossRefGoogle Scholar
  88. Rose KA (2001) Why are quantitative relationships between environmental quality and fish populations so elusive? Ecol Appl 10:367–385. doi: 10.2307/2641099 CrossRefGoogle Scholar
  89. Ruiz-Navarro A, Gillingham PK, Britton JR (2016) Shifts in the climate space of temperate cyprinid fishes due to climate change are coupled with altered body sizes and growth rates. Glob Change Biol. doi: 10.1111/gcb.13230 Google Scholar
  90. Schindler DE, Rogers DE, Scheuerell MD, Abrey CA (2005) Effects of changing climate on zooplankton and juvenile sockeye salmon growth. Ecology 86:198–209. doi: 10.1890/03-0408 CrossRefGoogle Scholar
  91. Sharma S, Vander Zanden MJ, Magnuson JJ, Lyons J (2011) Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PLoS ONE 6:1–9. doi: 10.1371/journal.pone.0022906 Google Scholar
  92. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66. doi: 10.1016/j.tree.2012.07.013 CrossRefPubMedGoogle Scholar
  93. Staudt A, Leidner AK, Howard J et al (2013) The added complications of climate change: understanding and managing biodiversity and ecosystems. Front Ecol Environ 11:494–501. doi: 10.1890/120275 CrossRefGoogle Scholar
  94. Strayer DL, Cole JJ, Findlay SEG et al (2014) Decadal-scale change in a large-river ecosystem. Bioscience 64:496–510. doi: 10.1093/biosci/biu061 CrossRefGoogle Scholar
  95. Suski CD, Cooke SJ (2007) Conservation of aquatic resources through the use of freshwater protected areas: opportunities and challenges. Biodivers Conserv 16:2015–2029. doi: 10.1007/s10531-006-9060-7 CrossRefGoogle Scholar
  96. Taylor SG (2008) Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob Change Biol 14:229–235. doi: 10.1111/j.1365-2486.2007.01494.x CrossRefGoogle Scholar
  97. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals: the scale of prediction. Science (80-) 320:1296–1297. doi: 10.1126/science.1159328 CrossRefGoogle Scholar
  98. Valiente AG, Juanes F, Garcia-Vazquez E (2011) Increasing regional temperatures associated with delays in Atlantic Salmon sea-run timing at the southern edge of the European distribution. Trans Am Fish Soc 140:367–373. doi: 10.1080/00028487.2011.557018 CrossRefGoogle Scholar
  99. Weatherley NS, Campbell-Lendrum EW, Ormerod S (1991) The growth of brown trout (Salmo trutta) in mild winters and summer droughts in upland Wales: model validation and preliminary predictions. Freshw Biol 26:121–131. doi: 10.1111/j.1365-2427.1991.tb00514.x CrossRefGoogle Scholar
  100. Webster MS, Colton MA, Darling ES et al (2017) Who should pick the winners of climate change? Trends Ecol Evol 32:167–173. doi: 10.1016/j.tree.2016.12.007 CrossRefPubMedGoogle Scholar
  101. Welcomme RL, Cowx IG, Coates D et al (2010) Inland capture fisheries. Philos Trans R Soc Lond B Biol Sci 365:2881–2896. doi: 10.1098/rstb.2010.0168 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wenger SJ, Isaak DJ, Luce CH et al (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1103097108 PubMedPubMedCentralGoogle Scholar
  103. Williams JE, Haak AL, Neville HM, Colyer WT (2009) Potential consequences of climate change to persistence of cutthroat trout populations. North Am J Fish Manag 29:533–548. doi: 10.1577/m08-072.1 CrossRefGoogle Scholar
  104. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny ML (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science (80-) 351:128–129. doi: 10.1126/science.aac7082 CrossRefGoogle Scholar
  105. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci 365:2093–2106. doi: 10.1098/rstb.2010.0055 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2017

Authors and Affiliations

  • Bonnie J. E. Myers
    • 1
    Email author
  • Abigail J. Lynch
    • 1
  • David B. Bunnell
    • 2
  • Cindy Chu
    • 3
  • Jeffrey A. Falke
    • 4
  • Ryan P. Kovach
    • 5
  • Trevor J. Krabbenhoft
    • 6
  • Thomas J. Kwak
    • 7
  • Craig P. Paukert
    • 8
  1. 1.National Climate Change and Wildlife Science CenterU.S. Geological Survey (USGS)RestonUSA
  2. 2.Great Lakes Science CenterUSGSAnn ArborUSA
  3. 3.Aquatic Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryPeterboroughCanada
  4. 4.Alaska Cooperative Fish and Wildlife Research Unit, USGSUniversity of Alaska FairbanksFairbanksUSA
  5. 5.Northern Rocky Mountain Science CenterUSGSMissoulaUSA
  6. 6.Department of Biological SciencesWayne State UniversityDetroitUSA
  7. 7.North Carolina Cooperative Fish and Wildlife Research Unit, USGSNorth Carolina State UniversityRaleighUSA
  8. 8.Missouri Cooperative Fish and Wildlife Research Unit, USGSUniversity of MissouriColumbiaUSA

Personalised recommendations