Reviews in Fish Biology and Fisheries

, Volume 27, Issue 3, pp 535–559 | Cite as

Advances of genotyping-by-sequencing in fisheries and aquaculture

  • Yan-He Li
  • Han-Ping WangEmail author


The use of genotyping has enabled the characterization and mapping of genes and the study of stock identification, population genetics, evolution, ecological speciation, and invasion, as well as genomic evaluation, sex control and sex determination, nutrition, biomarkers for disease, and quantitative trait loci mapping for marker-assisted selection in fisheries and aquaculture. High-throughput variant discovery has been made possible in multiple species by the recent advent of next-generation DNA sequencing technologies. New genotyping methods that are high-throughput, accurate, and inexpensive are urgently needed for gaining full access to the abundant genetic variation of organisms. This approach is known as genotyping-by-sequencing (GBS), which holds great promise as a research tool because of its ability to allow simultaneous marker discovery and genotyping at low cost and with a simple molecular biology workflow for fisheries and aquaculture studies. Since it was first developed for rice in 2009, GBS has been applied in over 50 species/studies by the end of 2014. It is also increasingly in use in fisheries and aquaculture and has been applied in nearly 40 species/studies from 2015 to present. This review summarizes the genotyping methodologies, recent advances in next-generation DNA sequencing technologies to achieve GBS, and the promises this approach holds as a genome-wide genotyping application in fisheries and aquaculture. Additionally, we discuss the potential of whole-genome sequencing (WGS) in GBS and present the advances of WGS in fisheries and aquaculture.


Fish Genotyping-by-sequencing Next-generation sequencing Single nucleotide polymorphism markers Whole-genome sequencing 



This study was supported by the National Institute of Food and Agriculture (NIFA), U.S. Department of Agriculture, under Agreement No. 2010-38,879-20946. Salaries and research support were provided by state and federal funds appropriated to The Ohio State University, Ohio Agricultural Research and Development Center, and Huazhong Agricultural University. We thank Joy Bauman for her comments on the manuscript.

Supplementary material

11160_2017_9473_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)


  1. Afman L, Muller M (2006) Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 106:569–576PubMedCrossRefGoogle Scholar
  2. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids-setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  3. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709PubMedCrossRefGoogle Scholar
  4. Alligood KS, Lescak EA, Bassham SL, Catchen JM, Von Hippel FA, Cresko WA (2016) Linking phenotypic and genomic evolution in very young populations of threespine stickleback. Integr Comp Biol 56:E4Google Scholar
  5. Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448CrossRefGoogle Scholar
  6. Amish SJ, Hohenlohe PA, Painter S et al (2012) RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays. Mol Ecol Resour 12:653–660PubMedCrossRefGoogle Scholar
  7. Anderson JL, Rodriguez Mari A, Braasch I, Amores A, Hohenlohe P, Batzel P, Postlethwait JH (2012) Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS ONE 7:e40701. doi: 10.1371/journal.pone.0040701 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ao J, Li J, You X et al (2015) Construction of the high-density genetic linkage map and chromosome map of large yellow croaker (Larimichthys crocea). Int J Mol Sci 16:26237–26248PubMedPubMedCentralCrossRefGoogle Scholar
  9. Araneda C (2015) Contrasting patterns of neutral and adaptive genetic variation of Chilean blue mussel (Mytilus chilensis) due to local adaptation and aquaculture. In: Plant and animal genome XXIII conference. Plant and animal genomeGoogle Scholar
  10. Araneda C, Angelica Larrain M, Hecht B, Narum S (2016) Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol Evol 6:3632–3644PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. doi: 10.1371/journal.pone.0003376 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barnes S (2008) Nutritional genomics, polyphenols, diets, and their impact on dietetics. J Am Diet Assoc 108:1888–1895PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bohling J, Haffray P, Berrebi P (2016) Genetic diversity and population structure of domestic brown trout (Salmo trutta) in France. Aquaculture 462:1–9CrossRefGoogle Scholar
  15. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  16. Boussaha M, Guyomard R, Cabau C, Esquerr D, Quillet E (2012) Development and characterisation of an expressed sequence tags (EST)-derived single nucleotide polymorphisms (SNPs) resource in rainbow trout. BMC Genom 13(1):238CrossRefGoogle Scholar
  17. Bradbury IR, Hamilton LC, Dempson B, Robertson MJ, Bourret V, Bernatchez L, Verspoor E (2015) Transatlantic secondary contact in Atlantic salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol Ecol 24:5130–5144PubMedCrossRefGoogle Scholar
  18. Brawand D, Wagner CE, Li YI et al (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brieuc MS, Waters CD, Seeb JE, Naish KA (2014) A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event. G3 (Bethesda) 4:447–460CrossRefGoogle Scholar
  20. Brown JK, Taggart JB, Bekaert M, Wehner S, Palaiokostas C, Setiawan AN, Symonds JE, Penman DJ (2016) Mapping the sex determination locus in the hapuku (Polyprion oxygeneios) using ddRAD sequencing. BMC Genom 17:448CrossRefGoogle Scholar
  21. Bruneaux M, Johnston SE, Herczeg G, Merila J, Primmer CR, Vasemagi A (2013) Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-site-associated DNA tag approach. Mol Ecol 22:565–582PubMedCrossRefGoogle Scholar
  22. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941PubMedCrossRefGoogle Scholar
  23. Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance. Plant Breed 128:1–26CrossRefGoogle Scholar
  24. Candy JR, Campbell NR, Grinnell MH, Beacham TD, Larson WA, Narum SR (2015) Population differentiation determined from putative neutral and divergent adaptive genetic markers in Eulachon (Thaleichthys pacificus, Osmeridae), an anadromous Pacific smelt. Mol Ecol Resour. doi: 10.1111/1755-0998.12400 PubMedGoogle Scholar
  25. Carlson BM, Onusko SW, Gross JB (2015) A high-density linkage map for astyanax mexicanus using genotyping-by-sequencing technology. G3-Genes Genom Genet 5:241–251Google Scholar
  26. Chen L, Zhao E (2013) Advances of nutrigenomics: concept, content, technology and development. J Exp Biol Agric Sci 1(3):152–158Google Scholar
  27. Chen S, Zhang G, Shao C et al (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260PubMedCrossRefGoogle Scholar
  28. Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627PubMedCrossRefGoogle Scholar
  29. Clark SA, Hickey JM, van der Werf JH (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18PubMedPubMedCentralCrossRefGoogle Scholar
  30. Corander J, Majander KK, Cheng L, Merila J (2013) High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 22:2931–2940PubMedCrossRefGoogle Scholar
  31. Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845PubMedCrossRefGoogle Scholar
  32. Craig DW, Pearson JV, Szelinger S et al (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cutter AD (2013) Integrating phylogenetics, phylogeography and population genetics through genomes and evolutionary theory. Mol Phylogenet Evol 69:1172–1185PubMedCrossRefGoogle Scholar
  35. Daniel H (2007) Genomics and proteomics: importance for the future of nutrition research. Br J Nutr 87:S305CrossRefGoogle Scholar
  36. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  37. Dayan DI, Crawford DL, Oleksiak MF (2015) Population genomics of rapid adaptation in Fundulus heteroclitus exposed to power station thermal effluents. Integr Comp Biol 55:E42Google Scholar
  38. De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG (2013) Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE 8:e62137. doi: 10.1371/journal.pone.0062137 PubMedPubMedCentralCrossRefGoogle Scholar
  39. DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285:375–379PubMedCrossRefGoogle Scholar
  40. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology (Basel) 1:460–483Google Scholar
  41. Dodds KG, McEwan JC, Brauning R, Anderson RM, van Stijn TC, Kristjansson T, Clarke SM (2015) Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genom 16(1):1047CrossRefGoogle Scholar
  42. Dominik S, Henshall JM, Kube PD et al (2010) Evaluation of an Atlantic salmon SNP chip as a genomic tool for the application in a Tasmanian Atlantic salmon (Salmo salar) breeding population. Aquaculture 308:S56–S61CrossRefGoogle Scholar
  43. Dong L, Xiao S, Wang Q, Wang Z (2016) Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). BMC Genom 17:460CrossRefGoogle Scholar
  44. Doubleday ZA, Semmens JM, Smolenski AJ, Shaw PW (2009) Microsatellite DNA markers and morphometrics reveal a complex population structure in a merobenthic octopus species (Octopus maorum) in south-east Australia and New Zealand. Mar Biol 156:1183–1192CrossRefGoogle Scholar
  45. Du X, Oleksiak MF, Crawford DL (2015) A genotyping by sequencing study of natural populations of Fundulus heteroclitus inhabiting a strong pollution cline. Integr Comp Biol 55:E49Google Scholar
  46. Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl. doi: 10.1111/eva.12178 PubMedPubMedCentralGoogle Scholar
  47. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi: 10.1371/journal.pone.0019379 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Emahazion T, Feuk L, Jobs M et al (2001) SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet 17:407–413PubMedCrossRefGoogle Scholar
  49. Erickson PA, Glazer AM, Killingbeck EE, Agoglia RM, Baek J, Carsanaro SM, Lee AM, Cleves PA, Schluter D, Miller CT (2016) Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks. Evol Int J Org Evol 70:887–902CrossRefGoogle Scholar
  50. Etter P, Bassham S, Hohenlohe P, Johnson E, Cresko W (2011a) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol 772:157–178PubMedPubMedCentralCrossRefGoogle Scholar
  51. Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA (2011b) Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6:e18561. doi: 10.1371/journal.pone.0018561 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407PubMedCrossRefGoogle Scholar
  53. Evans DM, Cardon LR, Morris AP (2004) Genotype prediction using a dense map of SNPs. Genet Epidemiol 27:375–384PubMedCrossRefGoogle Scholar
  54. Everett MV, Seeb JE (2014) Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing. Evol Appl 7:480–492PubMedPubMedCentralCrossRefGoogle Scholar
  55. Faria R, Renaut S, Galindo J et al (2014) Advances in ecological speciation: an integrative approach. Mol Ecol Notes 23:513–521CrossRefGoogle Scholar
  56. Ferchaud AL, Pedersen SH, Bekkevold D, Jian J, Niu Y, Hansen MM (2014) A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus). BMC Genom 15:867. doi: 10.1186/1471-2164-15-867 CrossRefGoogle Scholar
  57. Franchini P, Fruciano C, Spreitzer ML et al (2014) Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol Ecol 23:1828–1845PubMedCrossRefGoogle Scholar
  58. Fraser BA, Kunstner A, Reznick DN, Dreyer C, Weigel D (2015) Population genomics of natural and experimental populations of guppies (Poecilia reticulata). Mol Ecol 24:389–408PubMedCrossRefGoogle Scholar
  59. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Evol Syst 19:207–233CrossRefGoogle Scholar
  60. Gagnaire PA, Normandeau E, Pavey SA, Bernatchez L (2013) Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis). Mol Ecol 22:3036–3048PubMedCrossRefGoogle Scholar
  61. Gamble T (2016) Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol Ecol 25:2114–2116PubMedCrossRefGoogle Scholar
  62. Glazer AM, Killingbeck EE, Mitros T, Rokhsar DS, Miller CT (2015) Genome assembly improvement and mapping convergently evolved skeletal traits in sticklebacks with genotyping-by-sequencing. G3-Genes Genomes Genet 5:1463–1472Google Scholar
  63. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391PubMedCrossRefGoogle Scholar
  64. Goddard ME, Hayes BJ, Meuwissen TH (2010) Genomic selection in livestock populations. Genet Res (Camb) 92:413–421CrossRefGoogle Scholar
  65. Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD (2014) Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genom 15:166. doi: 10.1186/1471-2164-15-166 CrossRefGoogle Scholar
  66. Gonen S, Bishop SC, Houston RD (2015) Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis. BMC Res Notes 8:299PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, Shen R (2006) Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7:641–648PubMedCrossRefGoogle Scholar
  68. Guo B, DeFaveri J, Sotelo G, Nair A, Merila J (2015) Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol 13(1):1–18CrossRefGoogle Scholar
  69. Guo B, Li Z, Merila J (2016) Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Mol Ecol 25:2833–2852PubMedCrossRefGoogle Scholar
  70. Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genom 4:139–162CrossRefGoogle Scholar
  71. Gut IG (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17:475–492PubMedCrossRefGoogle Scholar
  72. Hand BK, Tyler DH, Kovach RP et al (2015) Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool 61(1):146–154CrossRefGoogle Scholar
  73. Handley LJL, Estoup A, Evans DM et al (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428CrossRefGoogle Scholar
  74. Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish Fish 9:473–486CrossRefGoogle Scholar
  75. Haussmann BI, Mahalakshmi V, Reddy BV, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142PubMedCrossRefGoogle Scholar
  76. Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907PubMedCrossRefGoogle Scholar
  77. He S, Liang XF, Sun J et al (2013) Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genom 14:601. doi: 10.1186/1471-2164-14-601 CrossRefGoogle Scholar
  78. Hecht BC, Thrower FP, Hale MC, Miller, Nichols KM (2012) Genetic architecture of migration-related traits in rainbow and steelhead trout, Oncorhynchus mykiss. G3 (Bethesda) 2:1113–1127CrossRefGoogle Scholar
  79. Hecht BC, Campbell NR, Holecek DE, Narum SR (2013) Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol Ecol 22:3061–3076PubMedCrossRefGoogle Scholar
  80. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153PubMedCrossRefGoogle Scholar
  81. Henning F, Meyer A (2014) The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu Rev Genom Hum Genet 15:417–441CrossRefGoogle Scholar
  82. Henning F, Lee HJ, Franchini P, Meyer A (2014) Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Mol Ecol. doi: 10.1111/mec.12860 Google Scholar
  83. Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916PubMedCrossRefGoogle Scholar
  84. Hess JE, Campbell NR, Docker MF et al (2015) Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey. Mol Ecol Resour 15:187–202PubMedCrossRefGoogle Scholar
  85. Hickey JM, Kinghorn BP, Tier B, van der Werf JH, Cleveland MA (2012) A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation. Genet Sel Evol 44:9. doi: 10.1186/1297-9686-44-9 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862. doi: 10.1371/journal.pgen.1000862 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11(Suppl 1):117–122PubMedCrossRefGoogle Scholar
  88. Hohenlohe PA, Day MD, Amish SJ et al (2013) Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Mol Ecol 22:3002–3013PubMedPubMedCentralCrossRefGoogle Scholar
  89. Houston RD (2015) Application of genomics to selective breeding of Atlantic salmon. In: Plant and animal genome XXIII conference. Plant and animal genomeGoogle Scholar
  90. Houston RD, Davey JW, Bishop SC et al (2012) Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon. BMC Genom 13:244. doi: 10.1186/1471-2164-13-244 CrossRefGoogle Scholar
  91. Houston RD, Taggart JB, Cézard T et al (2014) Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genom 15:90. doi: 10.1186/1471-2164-15-90 CrossRefGoogle Scholar
  92. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503PubMedPubMedCentralCrossRefGoogle Scholar
  93. Hu J, Vick BA (2003) Target region amplified polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21:289–294CrossRefGoogle Scholar
  94. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hunter DJ (2005) Gene-environment interactions in human diseases. Nat Rev Genet 6:287–298PubMedCrossRefGoogle Scholar
  96. Jaillon O, Aury JM, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  97. Jenkins S, Gibson N (2002) High-throughput SNP genotyping. Comp Funct Genomics 3:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  98. Jiao W, Fu X, Dou J et al (2014) High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc. DNA Res 21:85–101PubMedCrossRefGoogle Scholar
  99. Jones FC, Grabherr MG, Chan YF et al (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jones JC, Fan S, Franchini P, Schartl M, Meyer A (2013) The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing. Mol Ecol 22:2986–3001PubMedCrossRefGoogle Scholar
  101. Jones DB, Jerry DR, Khatkar MS et al (2014) Determining genetic contributions to host oyster shell growth: quantitative trait loci and genetic association analysis for the silver-lipped pearl oyster, Pinctada maxima. Aquaculture 434:367–375CrossRefGoogle Scholar
  102. Judson R, Salisbury B, Schneider J, Windemuth A, Stephens JC (2002) How many SNPs does a genome-wide haplotype map require? Pharmacogenomics 3:279–391CrossRefGoogle Scholar
  103. Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N (2015) Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes. Mol Ecol 24:4159–4174PubMedCrossRefGoogle Scholar
  104. Kanamori A, Sugita Y, Yuasa Y, Suzuki T, Kawamura K, Uno Y, Kamimura K, Matsuda Y, Wilson CA, Amores A, Postlethwait JH, Suga K, Sakakura Y (2016) A genetic map for the only self-fertilizing vertebrate. G3-Genes Genomes Genet 6:1095–1106Google Scholar
  105. Kasahara M, Naruse K, Sasaki S et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719PubMedCrossRefGoogle Scholar
  106. Keller I, Wagner CE, Greuter L et al (2013) Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol 22:2848–2863PubMedCrossRefGoogle Scholar
  107. Khamnamtong B, Klinbunga S, Menasveta P (2009) Genetic diversity and geographic differentiation of the giant tiger shrimp (Penaeus monodon) in Thailand analyzed by mitochondrial COI sequences. Biochem Genet 47:42–55PubMedCrossRefGoogle Scholar
  108. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320PubMedCrossRefGoogle Scholar
  109. Kothiyal P, Cox S, Ebert J, Aronow BJ, Greinwald JH, Rehm HL (2009) An overview of custom array sequencing. Current protocols in human genetics, Chapter 7: Unit 7.17. doi:  10.1002/0471142905.hg0717s61
  110. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:831460PubMedPubMedCentralGoogle Scholar
  111. Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258PubMedCrossRefGoogle Scholar
  112. Kwok PY, Gu Z (1999) Single nucleotide polymorphism libraries: Why and how are we building them? Mol Med Today 5:538–543PubMedCrossRefGoogle Scholar
  113. Kwok PY, Xiao M (2004) Single-molecule analysis for molecular haplotyping. Hum Mutat 23:442–446PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lah L, Benke H, Berggren P et al (2014) Investigating harbor porpoise (Phocoena phocoena) population differentiation using RAD-tag genotyping by sequencing. IWC Meeting Portal, Scientific Committee Annual Meeting 2014 (SC65B),
  115. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  116. Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, Labadie P, Geneste E, Couture P, Baudrimont M, Bernatchez L (2016) RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Mol Ecol 25:219–237PubMedCrossRefGoogle Scholar
  117. Larson WA, Seeb JE, Pascal CE, Templin WD, Seeb LW, Taylor E (2014a) Single-nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing improve genetic stock identification of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Can J Fish Aquat Sci 71:698–708CrossRefGoogle Scholar
  118. Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014b) Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 7:355–369PubMedPubMedCentralCrossRefGoogle Scholar
  119. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  120. Lemay MA, Russello MA (2015) Genetic evidence for ecological divergence in kokanee salmon. Mol Ecol 24:798–811PubMedCrossRefGoogle Scholar
  121. Lescak EA, Bassham SL, Catchen J, Gelmond O, Sherbick ML, von Hippel FA, Cresko WA (2015) Evolution of stickleback in 50 years on earthquake-uplifted islands. Proc Natl Acad Sci USA 112:E7204–E7212PubMedPubMedCentralCrossRefGoogle Scholar
  122. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5(10):e254. doi: 10.1371/journal.pbio.0050254 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lew RM, Finger AJ, Baerwald MR, Goodbla A, May B, Meek MH (2015) Using next-generation sequencing to assist a conservation hatchery: a single-nucleotide polymorphism panel for the genetic management of endangered delta smelt. Trans Am Fish Soc 144:767–779CrossRefGoogle Scholar
  124. Li Y, Guo X, Cao X, Deng W, Luo W, Wang W (2012) Population genetic structure and post-establishment dispersal patterns of the red swamp crayfish Procambarus clarkii in China. PLoS ONE 7:e40652. doi: 10.1371/journal.pone.0040652 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Li C, Waldbieser G, Bosworth B, Beck BH, Thongda W, Peatman E (2014) SNP discovery in wild and domesticated populations of blue catfish, Ictalurus furcatus, using genotyping-by-sequencing and subsequent SNP validation. Mol Ecol Resour. doi: 10.1111/1755-0998.12272 Google Scholar
  126. Limborg MT, Waples RK, Seeb JE, Seeb LW (2014) Temporally isolated lineages of pink salmon reveal unique signatures of selection on distinct pools of standing genetic variation. J Hered. doi: 10.1093/jhered/esu063 PubMedGoogle Scholar
  127. Liu S, Vallejo RL, Gao G, Palti Y, Weber GM, Hernandez A, Rexroad CE III (2015a) Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout. Mar Biotechnol 17:328–337PubMedCrossRefGoogle Scholar
  128. Liu S, Vallejo RL, Palti Y, Gao G, Marancik DP, Hernandez AG, Wiens GD (2015b) Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front Genet 6:298PubMedPubMedCentralCrossRefGoogle Scholar
  129. Liu-Stratton Y, Roy S, Sen CK (2004) DNA microarray technology in nutraceutical and food safety. Toxicol Lett 150:29–42PubMedCrossRefGoogle Scholar
  130. Longo G, Bernardi G (2015) The evolutionary history of the embiotocid surfperch radiation based on genome-wide RAD sequence data. Mol Phylogenet Evol 88:55–63PubMedCrossRefGoogle Scholar
  131. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994PubMedCrossRefGoogle Scholar
  132. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedCrossRefGoogle Scholar
  133. Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48:580–589PubMedCrossRefGoogle Scholar
  134. Mandeville EG, Parchman TL, McDonald DB, Buerkle CA (2015) Highly variable reproductive isolation among pairs of Catostomus species. Mol Ecol. doi: 10.1111/mec.13118 PubMedPubMedCentralGoogle Scholar
  135. Manousaki T, Tsakogiannis A, Taggart JB, Palaiokostas C, Tsaparis D, Lagnel J, Chatziplis D, Magoulas A, Papandroulakis N, Mylonas CC, Tsigenopoulos CS (2016) Exploring a nonmodel teleost genome through RAD sequencing-linkage mapping in common pandora, Pagellus erythrinus and comparative genomic analysis. G3-Genes Genomes Genet 6:509–519Google Scholar
  136. Martin CH, Feinstein LC (2014) Novel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes. Mol Ecol 23:1846–1862PubMedCrossRefGoogle Scholar
  137. Mascher M, Wu S, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. doi: 10.1371/journal.pone.0076925 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Pinero D, Emerson BC (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour 15:28–41PubMedCrossRefGoogle Scholar
  139. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538PubMedCrossRefGoogle Scholar
  140. McPherson JD (2009) Next-generation gap. Nat Methods 6:S2–S5PubMedCrossRefGoogle Scholar
  141. Messer PW, Ellner SP, Hairston NG Jr (2016) Can population genetics adapt to rapid evolution? Trends Genet 32(7):408–418PubMedCrossRefGoogle Scholar
  142. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248PubMedPubMedCentralCrossRefGoogle Scholar
  143. Milner JA (2004) Molecular targets for bioactive food components. J Nutr 134:2492S–2498SPubMedGoogle Scholar
  144. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Tree 14:389–394PubMedGoogle Scholar
  145. Nakamura Y, Mori K, Saitoh K et al (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci 110:11061–11066PubMedPubMedCentralCrossRefGoogle Scholar
  146. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013a) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847PubMedPubMedCentralCrossRefGoogle Scholar
  147. Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW (2013b) Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Mol Ecol 22:3090–3097PubMedCrossRefGoogle Scholar
  148. Norrell AE, Crawley D, Jones KL, Saillant EA (2014) Development and characterization of eighty-four microsatellite markers for the red snapper (Lutjanus campechanus) using illumina paired-end sequencing. Aquaculture 430:128–132CrossRefGoogle Scholar
  149. Nunez JCB, Seale TP, Fraser MA, Burton TL, Fortson TN, Hoover D, Travis J, Oleksiak MF, Crawford DL (2015) Population Genomics of the Euryhaline Teleost Poecilia latipinna. PLoS ONE. doi: 10.1371/journal.pone.0137077 Google Scholar
  150. Ogden R, Gharbi K, Mugue N et al (2013) Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Mol Ecol 22:3112–3123PubMedCrossRefGoogle Scholar
  151. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology-enabling an accurate. Biotechniques 32:S56–S61Google Scholar
  152. O’Quin KE, Schulte JE, Patel Z et al (2012) Evolution of cichlid vision via trans-regulatory divergence. BMC Evol Biol 12:251. doi: 10.1186/1471-2148-12-251 PubMedPubMedCentralCrossRefGoogle Scholar
  153. O’Quin KE, Yoshizawa M, Doshi P, Jeffery WR (2013) Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS ONE 8:e57281. doi: 10.1371/journal.pone.0057281 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Palaiokostas C, Bekaert M, Davie A et al (2013a) Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC Genom 14:566. doi: 10.1186/1471-2164-14-566 CrossRefGoogle Scholar
  155. Palaiokostas C, Bekaert M, Khan MG et al (2013b) Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. PLoS ONE 8:e68389. doi: 10.1371/journal.pone.0068389 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Palti Y, Gao G, Miller MR et al (2014) A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids. Mol Ecol Resour 14:588–596PubMedCrossRefGoogle Scholar
  157. Piferrer F, Ribas L, Diaz N (2012) Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol (NY) 14:591–604CrossRefGoogle Scholar
  158. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J 5:92CrossRefGoogle Scholar
  159. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. doi: 10.1371/journal.pone.0032253 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Powell W, Machray GC, Provan J (1996a) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222CrossRefGoogle Scholar
  161. Powell W, Morgante M, Andre C et al (1996b) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  162. Puebla O, Bermingham E, McMillan WO (2014) Genomic atolls of differentiation in coral reef fishes (Hypoplectrus spp., Serranidae). Mol Ecol doi:  10.1111/mec.12926
  163. Pujolar JM, Jacobsen MW, Frydenberg J et al (2013) A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Mol Ecol Resour 13:706–714PubMedCrossRefGoogle Scholar
  164. Pukk L, Ahmad F, Hasan S, Kisand V, Gross R, Vasemagi A (2015) Less is more: extreme genome complexity reduction with ddRAD using ion torrent semiconductor technology. Mol Ecol Resour. doi: 10.1111/1755-0998.12392 PubMedGoogle Scholar
  165. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55CrossRefGoogle Scholar
  166. Reinhardt F, Liu Z, Seefried F, Thaller G (2009) Implementation of genomic evaluation in German Holsteins. Interbull Bull 40:219–226Google Scholar
  167. Reitzel AM, Herrera S, Layden MJ, Martindale MQ, Shank TM (2013) Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol 22:2953–2970PubMedPubMedCentralCrossRefGoogle Scholar
  168. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198PubMedCrossRefGoogle Scholar
  169. Roberts MA, Mutch DM, German JB (2001) Genomics: food and nutrition. Curr Opin Biotechnol 12:516–522PubMedCrossRefGoogle Scholar
  170. Roda F, Ambrose L, Walter GM et al (2013) Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Mol Ecol 22:2941–2952PubMedCrossRefGoogle Scholar
  171. Roesti M, Moser D, Berner D (2013) Recombination in the threespine stickleback genome—patterns and consequences. Mol Ecol 22:3014–3027PubMedCrossRefGoogle Scholar
  172. Rondeau EB, Messmer AM, Sanderson DS et al (2013) Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genom 14:452. doi: 10.1186/1471-2164-14-452 CrossRefGoogle Scholar
  173. Sansaloni C, Petroli C, Jaccoud D et al (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5:P54PubMedCentralCrossRefGoogle Scholar
  174. Sax DF, Stachowicz JJ, Brown JH et al (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471PubMedCrossRefGoogle Scholar
  175. Schartl M, Walter RB, Shen Y et al (2013) The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45:567–572PubMedPubMedCentralCrossRefGoogle Scholar
  176. Schlötterer C (2004) The evolution of molecular markers—Just a matter of fashion? Nat Rev Genet 5(1):63–69PubMedCrossRefGoogle Scholar
  177. Schorka N, Fallina D, Lanchburyd J (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58:250–264CrossRefGoogle Scholar
  178. Schunter C, Garza JC, Macpherson E, Pascual M (2014) SNP development from RNA-seq data in a nonmodel fish: How many individuals are needed for accurate allele frequency prediction? Mol Ecol Resour 14:157–165PubMedCrossRefGoogle Scholar
  179. Seeb LW, Waples RK, Limborg MT, Warheit KI, Pascal CE, Seeb JE (2014) Parallel signatures of selection in temporally isolated lineages of pink salmon. Mol Ecol 23:2473–2485PubMedCrossRefGoogle Scholar
  180. Shao C, Niu Y, Rastas P, Liu Y, Xie Z, Li H, Wang L, Jiang Y, Tai S, Tian Y, Sakamoto T, Chen S (2015) Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res 22:161–170PubMedPubMedCentralCrossRefGoogle Scholar
  181. Shi Y, Wang S, Gu Z et al (2014) High-density single nucleotide polymorphisms linkage and quantitative trait locus mapping of the pearl oyster, Pinctada fucata martensii Dunker. Aquaculture 434:376–384CrossRefGoogle Scholar
  182. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805PubMedCrossRefGoogle Scholar
  183. Skovrind M, Olsen MT, Vieira FG, Pacheco G, Carl H, Gilbert MTP, Moller PR (2016) Genomic population structure of freshwater-resident and anadromous ide (Leuciscus idus) in north-western Europe. Ecol Evol 6:1064–1074PubMedPubMedCentralCrossRefGoogle Scholar
  184. Sreeparvathy M (2013) Nutritional genomics. Int J Biol Biol Sci 2:150–153Google Scholar
  185. Stapley J, Reger J, Feulner PG et al (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712PubMedCrossRefGoogle Scholar
  186. Star B, Nederbragt AJ, Jentoft S et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  187. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnology 2(1):41–49Google Scholar
  188. Storer CG, Pascal CE, Roberts SB, Templin WD, Seeb LW, Seeb JE (2012) Rank and order: evaluating the performance of SNPs for individual assignment in a non-model organism. PLoS ONE 7:e49018. doi: 10.1371/journal.pone.0049018 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Stranden I, Christensen OF (2011) Allele coding in genomic evaluation. Genet Sel Evol 43:25PubMedPubMedCentralCrossRefGoogle Scholar
  190. Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942PubMedCrossRefGoogle Scholar
  191. Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37(Suppl):S5–S10PubMedCrossRefGoogle Scholar
  192. Takahashi T, Sota T, Hori M (2013) Genetic basis of male colour dimorphism in a Lake Tanganyika cichlid fish. Mol Ecol 22:3049–3060PubMedCrossRefGoogle Scholar
  193. Tang K, Fu DJ, Julien D, Braun A, Cantor CR, Köster H (1999) Chip-based genotyping by mass spectrometry. Proc Natl Acad Sci 96:10016–10020PubMedPubMedCentralCrossRefGoogle Scholar
  194. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471PubMedPubMedCentralCrossRefGoogle Scholar
  195. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138PubMedPubMedCentralCrossRefGoogle Scholar
  196. Templin WD, Seeb JE, Jasper JR, Barclay AW, Seeb LW (2011) Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies. Mol Ecol Resour 11(Suppl 1):226–246PubMedCrossRefGoogle Scholar
  197. Tost J, Gut IG (2005) Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 38:335–350PubMedCrossRefGoogle Scholar
  198. Trujillo E, Davis C, Milner J (2006) Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 106:403–413PubMedCrossRefGoogle Scholar
  199. Underwood ZE, Mandeville EG, Walters AW (2016) Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming. Hydrobiologia 765:329–342CrossRefGoogle Scholar
  200. Vamosi JC, Armbruster WS, Renner SS (2014) Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc R Soc B Biol Sci. doi: 10.1098/rspb.2014.2004 Google Scholar
  201. Van Bers NE, Crooijmans RP, Groenen MA, Dibbits BW, Komen J (2012) SNP marker detection and genotyping in tilapia. Mol Ecol Resour 12:932–941PubMedCrossRefGoogle Scholar
  202. van Der WMJ, Schuren FHJ, Bijlsma S, Tas AC, van Omen B (2001) Nutrigenomics: application of genomics technologies in nutritional sciences and food technology. J Food Sci 66:772–780CrossRefGoogle Scholar
  203. van Orsouw NJ, Hogers RC, Janssen A et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172. doi: 10.1371/journal.pone.0001172 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Vera M, Alvarez-Dios JA, Fernandez C, Bouza C, Vilas R, Martinez P (2013) Development and validation of single nucleotide polymorphisms (SNPs) markers from two transcriptome 454-runs of turbot (Scophthalmus maximus) using high-throughput genotyping. Int J Mol Sci 14:5694–5711PubMedPubMedCentralCrossRefGoogle Scholar
  205. Viricel A, Pante E, Dabin W, Simon-Bouhet B (2014) Applicability of RAD-tag genotyping for interfamilial comparisons: empirical data from two cetaceans. Mol Ecol Resour 14:597–605PubMedCrossRefGoogle Scholar
  206. Vos P, Hogers R, Bleeker M et al (1995) AFLP-a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wagner CE, Keller I, Wittwer S et al (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol 22:787–798PubMedCrossRefGoogle Scholar
  208. Walker WA, Blackburn G (2004) Symposium introduction: nutrition and gene regulation. J Nutr 134:2434S–2436SPubMedGoogle Scholar
  209. Wang S (2015) Genotyping-by-sequencing (GBS) using a semiconductor sequencing platform. In: Plant and animal genome XXIII conference. Plant and animal genomeGoogle Scholar
  210. Wang Z, Pascual-Anaya J, Zadissa A et al (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45:701–706PubMedPubMedCentralCrossRefGoogle Scholar
  211. Wang W, Hu Y, Ma Y, Xu L, Guan J, Kong J (2015) High-density genetic linkage mapping in turbot (Scophthalmus maximus L.) based on SNP markers and major sex- and growth-related regions detection. PLoS ONE. doi: 10.1371/journal.pone.0120410 Google Scholar
  212. Wiggans GR, Sonstegard TS, VanRaden PM et al (2009) Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. J Dairy Sci 92:3431–3436PubMedCrossRefGoogle Scholar
  213. Wiggans GR, VanRaden PM, Bacheller LR et al (2010) Selection and management of DNA markers for use in genomic evaluation. J Dairy Sci 93:2287–2292PubMedCrossRefGoogle Scholar
  214. Willing EM, Hoffmann M, Klein JD, Weigel D, Dreyer C (2011) Paired-end RAD-seq for de novo assembly and marker design without available reference. Bioinformatics 27:2187–2193PubMedCrossRefGoogle Scholar
  215. Xu J, Zhao Z, Zhang X et al (2014a) Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genom 15:307
  216. Xu P, Zhang X, Wang X et al (2014b) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. doi: 10.1038/ng.3098 Google Scholar
  217. Yim HS, Cho YS, Guang X et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92PubMedCrossRefGoogle Scholar
  218. Yoshizawa M, Robinson BG, Duboué ER et al (2015) Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol 13:15. doi: 10.1186/s12915-015-0119-3 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Zhang B-D, Xue D-X, Wang J, Li Y-L, Liu B-J, Liu J-X (2016) Development and preliminary evaluation of a genomewide single nucleotide polymorphisms resource generated by RAD-seq for the small yellow croaker (Larimichthys polyactis). Mol Ecol Resour 16:755–768PubMedCrossRefGoogle Scholar
  220. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequenc repeat (SSR)-achored polymerase chain reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Fish Genetics and Breeding LaboratoryThe Ohio State University South CentersPiketonUSA
  2. 2.College of FisheriesHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations