Reviews in Fish Biology and Fisheries

, Volume 27, Issue 4, pp 811–841 | Cite as

Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares)

  • C. Pecoraro
  • I. Zudaire
  • N. Bodin
  • H. Murua
  • P. Taconet
  • P. Díaz-Jaimes
  • A. Cariani
  • F. Tinti
  • E. Chassot
Research Paper

Abstract

Yellowfin tuna (Thunnus albacares; YFT) is an apex marine predator inhabiting tropical and sub-tropical pelagic waters. It supports the second largest tuna fishery in the world. Here, we review the available literature on YFT to provide a detailed overview of the current knowledge of its biology, ecology, fisheries status, stock structure and management, at global scale. YFT are characterized by several peculiar anatomical and physiological traits that allow them to survive in the oligotrophic waters of the pelagic realm. They are opportunistic feeders, which allows fast growth and high reproductive outputs. Globally, YFT fisheries have expanded over the last century, progressively moving from coastal areas into the majority of sub-tropical and tropical waters. This expansion has led to a rapid increase in global commercial landings, which are predominantly harvested by industrial longline and purse seine fleets. For management purposes, YFT is divided into four stocks, each of which is currently managed by a separate tuna Regional Fisheries Management Organization. Our current understanding of YFT stock structure is, however, still uncertain, with conflicting evidence arising from genetic and tagging studies. There is, moreover, little information about their complex life-history traits or the interactions of YFT populations with spatio-temporally variable oceanographic conditions currently considered in stock assessments. What information is available, is often conflicting at the global scale. Finally, we suggest future research directions to manage this valuable resource with more biological realism and more sustainable procedures.

Keywords

Life-history traits Population structure tRFMOs Tuna fishery 

References

  1. Adam SM (2004) Country review–Maldives. Review of the State World Marine Capture Fisheries Management: Indian Ocean. FAO fisheries technical paperGoogle Scholar
  2. Aguila RD, Perez SKL, Catacutan BJN, Lopez GV, Barut NC, Santos MD (2015) Distinct yellowfin tuna (Thunnus albacares) stocks detected in Western and Central Pacific Ocean (WCPO) using DN microsatellites. PLoS ONE 10(9):e0138292. doi:10.1371/journal.pone.0138292 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albaret JJ (1976) La reproduction de l’albacore, Thunnus albacares, dans le Golfe de Guinée. Cah. ORSTOM (Sér. Océanogr.) 15:389–419Google Scholar
  4. Aleyev YG (1977) Nekton. Dr W. Junk, The Hague, 435 ppGoogle Scholar
  5. Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population structure. Can J Fish Aquat Sci 38:1507–1514CrossRefGoogle Scholar
  6. Altringham JD, Block BA (1997) Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish. J Exp Biol 200:2617–2627PubMedGoogle Scholar
  7. Alvarado Bremer JRA, Mejuto J, Greig TW, Ely B (1996) Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J Exp Mar Biol Ecol 197:295–310CrossRefGoogle Scholar
  8. Alvarado Bremer JA, Stéquert B, Robertson NW, Ely B (1998) Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar Biol 132:547–557CrossRefGoogle Scholar
  9. Antoni L, Luque PL, Naghshpour K, Saillant EA (2014) Polymorphic microsatellite markers for the Yellowfin tuna (Thunnus albacares). Conserv Genet Resour 6:609–611. doi:10.1007/s12686-014-0152-5 CrossRefGoogle Scholar
  10. Appleyard S, Grewe P, Innes B, Ward R (2001) Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Mar Biol 139:383–393. doi:10.1007/s002270100578 CrossRefGoogle Scholar
  11. Aranda M, Murua H, de Bruyn P (2012) Managing fishing capacity in tuna regional fisheries management organisations (RFMOs): development and state of the art. Mar Policy 36:985–992CrossRefGoogle Scholar
  12. Arocha F, Lee DW, Marcano LA, Marcano JS (2001) Update information on the spawning of yellowfin tuna, Thunnus albacares, in the western central Atlantic. Col Vol Sci Pap ICCAT 52:167–176Google Scholar
  13. Bard FX (1984) Croissance de l’albacore (Thunnus albacares) atlantique, d’apres les donnees desmarquages. ICCAT Coll Vol Sci Pap 20:104–116Google Scholar
  14. Bard FX, Hervé A (1994) Structure du stock de l’albacore (Thunnus albacares) atlantique d’après les marquages comparés aux lieux de ponte. Inter Comm Cons Atlan Tunas Collect Vol Sci Pap ICCAT 42:204–208Google Scholar
  15. Bernal D, Dickson KA, Shadwick RE, Graham JB (2001) Review: analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comp Biochem Physiol A Mol Integr Physiol 129:695–726. doi:10.1016/S1095-6433(01)00333-6 PubMedCrossRefGoogle Scholar
  16. Blaxter JHS (1991) The effect of temperature on larval fishes. Neth J Zool 42:336–357CrossRefGoogle Scholar
  17. Block BA and Stevens ED (2001) Tuna: physiology, ecology, and evolution. Academic Press, LondonGoogle Scholar
  18. Block BA, Finnerty JR, Stewart AF, Kidd J (1993) Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260:210. doi:10.1126/science.8469974 PubMedCrossRefGoogle Scholar
  19. Block BA, Keen JE, Castillo B, Dewar H, Freund EV, Marcinek DJ, Brill RW, Farwell C (1997) Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar Biol 130:119–132CrossRefGoogle Scholar
  20. Boehlert GW, Mundy BC (1993) Ichthyoplankton assemblages at seamounts and oceanic islands. Bull Mar Sci 53:336–361Google Scholar
  21. Bonin A (2008) Population genomics: a new generation of genome scans to bridge the gap with functional genomics. Mol Ecol 17:3583–3584. doi:10.1111/j.1365-294X.2008.03854.x PubMedCrossRefGoogle Scholar
  22. Brill RW (1987) On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change. Fish Bull 85:25–35Google Scholar
  23. Brill RW (1994) A review of temperature and oxygen tolerances studies of tunas, pertinent to fisheries oceanography, movement models, and stock assessments. Fish Oceanogr 3:206–216CrossRefGoogle Scholar
  24. Brill RW (1996) Selective advantages conferred by the high performance physiology of tunas, billfishes, and dolphin fish. Comp Biochem Physiol A Physiol 113:3–15CrossRefGoogle Scholar
  25. Brill RW, Bushnell PG (1991) Metabolic and cardiac scope of high energy demand teleosts—the tunas. Can J Zool 69:2002–2009CrossRefGoogle Scholar
  26. Brill RW, Bushnell PG (2001) The cardiovascular system of tunas. In: Block BA, Stevens ED (eds) Tunas: physiology, ecology and evolution, vol 19. Academic, San Diego, pp 79–120CrossRefGoogle Scholar
  27. Brill RW, Lutcavage ME (2001) Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments. In: American fisheries society symposium. American Fisheries Society, pp 179–198Google Scholar
  28. Brill RW, Lowe TE, Cousins KL (1998) How water temperature really limits the vertical movements of tunas and billfishes-it’s the heart stupid. In: International congress on biology of fish. American Fisheries Society, Towson University 4, pp 57–62Google Scholar
  29. Brill RW, Block B, Boggs C, Bigelow K, Freund E, Marcinek D (1999) Horizontal movements and depth distribution of large, adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar Biol 133:395–408CrossRefGoogle Scholar
  30. Broadhead GC (1962) Recent changes in the efficiency of vessels fishing for yellowfin tuna in the eastern Pacific Ocean. Int Am Trop Tuna Commis Bull 6:281–332Google Scholar
  31. Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK (2011) A standardized terminology for describing reproductive development in fishes. Mar Coast Fish 3:52–70. doi:10.1080/19425120.2011.555724 CrossRefGoogle Scholar
  32. Brown-Peterson NJ, Franks JS, Gibson DM, Marshall C (2013) Aspects of the reproductive biology of yellowfin tuna, Thunnus albacares, in the Northern Gulf of Mexico. In: Proceedings of the Sixty six Annual Gulf and Caribbean Fisheries Institute, vol 66. Corpus Christy, pp 509–510Google Scholar
  33. Bushnell PG, Brill RW (1992) Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J Comp Physiol B 162:131–143. doi:10.1007/BF00398338 PubMedCrossRefGoogle Scholar
  34. Bushnell PG, Brill RW, Bourke RE (1990) Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen. Can J Zool 68:1857–1865. doi:10.1139/z90-265 CrossRefGoogle Scholar
  35. Capietto A, Escalle L, Chavance P, Dubroca L, de Molina AD, Murua H, Floch L, Damiano A, Rowat D, Merigot B (2014) Mortality of marine megafauna induced by fisheries: insights from the whale shark, the world’s largest fish. Biol Conserv 174:147–151. doi:10.1016/j.biocon.2014.03.024 CrossRefGoogle Scholar
  36. Capisano C (1991) Analysis of length frequencies, sex ratio and reproduction zones of the yellowfin Thunnus albacares in the Atlantic. ICCAT Coll Vol Sci Pap 36:214–279Google Scholar
  37. Cardinale M, Arrhenius F (2000) The relationship between stock and recruitment: are the assumptions valid? Mar Ecol Prog Ser 196:305–309CrossRefGoogle Scholar
  38. Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci 56:1464–1469PubMedPubMedCentralCrossRefGoogle Scholar
  39. Carlsson J, McDowell JR, Carlsson JEL, Graves JE (2007) Genetic identity of YOY Bluefin Tuna from the Eastern and Western Atlantic qpawning areas. J Hered 98:23–28. doi:10.1093/jhered/esl046 PubMedCrossRefGoogle Scholar
  40. Carruthers T, Fonteneau A, Hallier JP (2014) Estimating tag reporting rates for tropical tuna fleets of the Indian Ocean. Fish Res 155:20–32CrossRefGoogle Scholar
  41. Carvalho GR, Hauser L (1995) Molecular genetics and the stock concept in fisheries. In: Carvalho GR, Pitcher TJ (eds) Molecular genetics in fisheries. Springer, Netherlands, pp 55–79CrossRefGoogle Scholar
  42. Cayré P, Amon Kothias JB, Diouf T, Stretta JM (1988) Biologie des thons. In: Fonteneau A, Marcille J (eds) Ressources, pêche et biologie des thonidés tropicaux de l’Atlantique centre-est, Document Technique sur les Pêches—FAO. FAO, Rome, pp 157–268Google Scholar
  43. Chassot E., Dewals P, Floch L, Lucas V, Morales-Vargas M, Kaplan D (2010) Analysis of the effects of Somali piracy on the European tuna purse seine fisheries of the Indian Ocean. IOTC Sci. Comm. Rep. IOTC-2010-SC-09 Indian Ocean Tuna Comm. Vic. Seychelles. 26Google Scholar
  44. Chassot E, Floch L, Dewals P, Amandè MJ, Damiano A, Cauquil P, Rahombanjanahary DM, Chavance P (2014) Fishing activities of the French and associated flags purse seiners targeting tropical tunas in the Indian Ocean (1981–2013). In: 16ème groupe de travail sur les thons tropicaux. CTOI, Victoria, 47Google Scholar
  45. Chavance P, Dewals P, Amandè M-J, Delgado de Molina A, Damiano A, Tamegnon A (2015) Tuna fisheries catch landed in Abidjan (Côte d’Ivoire) and sold on local fish market for the period 1982–2013 (preliminary data). SCRS/2014/063Google Scholar
  46. Chiang H-C, Hsu C-C, Wu GC-C, Chang S-K, Yang H- (2008) Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean inferred from mitochondrial DNA. Fish Res 90:305–312. doi:10.1016/j.fishres.2007.11.006 CrossRefGoogle Scholar
  47. Chow S, Inoue S (1993) Intra-and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus tuna species. Bull Natl Res Inst Far Seas Fish 30:207–225Google Scholar
  48. Chow S, Takeyama H (2000) Nuclear and mitochondrial DNA analyses reveal four genetically separated breeding units of the swordfish. J Fish Biol 56:1087–1098. doi:10.1111/j.1095-8649.2000.tb02125.x CrossRefGoogle Scholar
  49. Chow S, Okamoto H, Uozumi Y, Takeuchi Y, Takeyama H (1997) Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar Biol 127:359–367CrossRefGoogle Scholar
  50. Chow S, Hazama K, Nishida T, Ikame S, Kurihara S (2000) A preliminary genetic analysis on yellowfin tuna stock structure in the Indian Ocean using mitochondrial DNA variation. WPTT00–11 IOTC Proc., 3:312–316Google Scholar
  51. Collette BB, Carpenter KE, Polidoro BA, Juan-Jordá MJ, Boustany A, Die DJ, Elfes C, Fox W, Graves J, Harrison LR et al (2011) High value and long life—double Jeopardy for Tunas and Billfishes. Science 333:291–292. doi:10.1126/science.1208730 PubMedCrossRefGoogle Scholar
  52. Dagorn L, Holland KN, Hallier J-P, Taquet M, Moreno G, Sancho G, Itano DG, Aumeeruddy R, Girard C, Million J et al (2006) Deep diving behavior observed in yellowfin tuna (Thunnus albacares). Aquat Living Resour 19:85–88. doi:10.1051/alr:2006008 CrossRefGoogle Scholar
  53. Dammannagoda ST, Hurwood DA, Mather PB (2008) Evidence for fine geographical scale heterogeneity in gene frequencies in yellowfin tuna (Thunnus albacares) from the north Indian Ocean around Sri Lanka. Fish Res 90:147–157. doi:10.1016/j.fishres.2007.10.006 CrossRefGoogle Scholar
  54. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi:10.1038/nrg3012 PubMedCrossRefGoogle Scholar
  55. Davies TK, Mees CC, Milner-Gulland EJ (2014) Modelling the spatial behaviour of a tropical tuna purse seine fleet. PLoS ONE 9:e114037. doi:10.1371/journal.pone.0114037 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Davis JC (1975) Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J Fish Board Can 32:2295–2332CrossRefGoogle Scholar
  57. Dewar H, Graham J (1994) Studies of tropical tuna swimming performance in a large water tunnel-Energetics. J Exp Biol 192:13–31PubMedGoogle Scholar
  58. Diaha NC, Zudaire I, Chassot E, Pecoraro C, Bodin N, Amandè MJ, Dewals P, Roméo MU, Irié YD, Barryga BD et al (2015) Present and future of reproductive biology studies of yellowfin tuna (Thunnus albacares) in the eastern Atlantic Ocean. Collect Vol Sci Pap ICCAT 71:489–509Google Scholar
  59. Díaz-Jaimes P, Uribe-Alcocer M (2006) Spatial differentiation in the eastern Pacific yellowfin tuna revealed by microsatellite variation. Fish Sci 72:590–596. doi:10.1111/j.1444-2906.2006.01188.x CrossRefGoogle Scholar
  60. Dickson KA (1996) Locomotor muscle of high-performance fishes: what do comparisons of tunas with ectothermic sister taxa reveal? Comp Biochem Physiol A Physiol 113:39–49. doi:10.1016/0300-9629(95)02056-X CrossRefGoogle Scholar
  61. Die DJ, Restrepo VR, Fox WW Jr (1990) Equilibrium production models that incorporate fished area. Trans Am Fish Soc 119:445–454CrossRefGoogle Scholar
  62. Dortel E, Sardenne F, Bousquet N, Rivot E, Million J, Le Croizier G, Chassot E (2015) An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna. Fish Res 163:69–84. doi:10.1016/j.fishres.2014.07.006 CrossRefGoogle Scholar
  63. Driggers WB III, Grego JM, Dean JM (1999) Age and growth of yellowfin tuna (Thunnus albacares) in the western North Atlantic Ocean. Collect Vol Sci Pap ICCAT 49:374–383Google Scholar
  64. Ely B, Viñas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19. doi:10.1186/1471-2148-5-19 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Eveson JP, Million J, Sardenne F, Le Croizier G (2015) Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates. Fish Res 163:58–68. doi:10.1016/j.fishres.2014.05.016 CrossRefGoogle Scholar
  66. Farrell AP, Davie PS, Franklin CE, Johansen JA, Brill RW (1992) Cardiac physiology in tunas. I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Can J Zool 70:1200–1210CrossRefGoogle Scholar
  67. Felando A (1987) US tuna fleet ventures in the Pacific islands. Tuna Issues Perspect. Pac Isl Reg, pp 93–104Google Scholar
  68. Finnerty JR, Block BA (1992) Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Mol Mar Biol Biotechnol 1:206–214PubMedGoogle Scholar
  69. Fonteneau A (1997) Atlas of tropical tuna fisheries. World catches and environment. ORSTOM editions, Paris Cedex, pp 192Google Scholar
  70. Fonteneau A (2002) Estimated sex ratio of large yellowfin taken by purse seiners in the indian ocean; comparison with other oceans. IOTC Proc 5:279–281Google Scholar
  71. Fonteneau A (2010) Atlas of Indian Ocean tuna fisheries. IRD, MarseilleGoogle Scholar
  72. Fonteneau A, Chassot E (2013) An overview of yellowfin tuna growth in the Atlantic ocean: von Bertalanffy or multistanza growth? Collect Vol Sci Pap ICCAT 69:2059–2075Google Scholar
  73. Fonteneau A, Diouf T (1994) An efficient way of bait-fishing for tunas recently developed in Senegal. Aquat Living Resour 7:139–151. doi:10.1051/alr:1994017 CrossRefGoogle Scholar
  74. Fonteneau A, Hallier J-P (2015) Fifty years of dart tag recoveries for tropical tuna: a global comparison of results for the western Pacific, eastern Pacific, Atlantic, and Indian Oceans. Fish Res 163:7–22. doi:10.1016/j.fishres.2014.03.022 CrossRefGoogle Scholar
  75. Fonteneau A, Pallarés P (2005) Tuna natural mortality as a function of their age: the bigeye tuna (Thunnus obesus) case. Collect Vol Sci Pap ICCAT 57:127–141Google Scholar
  76. Frank SJ, Saillant EA, Brown-Peterson N (2015) Studies of reproductive biology, feeding ecology and conservation genetics of yellowfin tuna (Thunnus albacares) in the northern Gulf of Mexico. Final Report, Louisiana Department of wildlife and fisheriesGoogle Scholar
  77. Fréon P, Dagorn L (2000) Review of fish associative behaviour: toward a generalisation of the meeting point hypothesis. Rev Fish Biol Fish 10:183–207. doi:10.1023/A:1016666108540 CrossRefGoogle Scholar
  78. Fromentin JM, Allen R, Hampton J, Anganuzzi A, Exel A, Sainsbury K, Restrepo V (in press) Managing tuna fisheries in the context of exclusive economic zones (EEZs) and marine areas beyond national jurisdiction. Rev Fish Biol FishGoogle Scholar
  79. Gagnaire P-A, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N (2015) Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 8:769–786. doi:10.1111/eva.12288 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Galli GL, Shiels HA, Brill RW (2009) Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol Biochem Zool 82:280–290. doi:10.1086/597484 PubMedCrossRefGoogle Scholar
  81. Gascuel D, Fonteneau A, Capisano C (1992) Modélisation d’une croissance en deux stances chez l’albacore (Thunnus albacares) de l’Atlantique Est. Aquat Living Resour 5:155–172. doi:10.1051/alr:1992016 CrossRefGoogle Scholar
  82. Geehan J, Pierre L (2015) Review of the statistical data and fishery trends for tropical tunas. In: IOTC Proceedings. Montpellier, France, 23–28 October 2015, IOTC-2015-WPTT17-07, 35 pGoogle Scholar
  83. Gillett R (2007) A short history of industrial fishing in the Pacific Islands. FAO RAP Publication 2007/22, 23 pGoogle Scholar
  84. Gislason H, Daan N, Rice JC, Pope JG (2010) Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11:149–158. doi:10.1111/j.1467-2979.2009.00350.x CrossRefGoogle Scholar
  85. Graham JB, Dickson KA (2000) The evolution of thunniform locomotion and heat conservation in scombrid fishes: new insights based on the morphology of Allothunnus fallai. Zool J Linn Soc 129:419–466. doi:10.1111/j.1096-3642.2000.tb00612.x CrossRefGoogle Scholar
  86. Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024. doi:10.1242/jeb.01267 PubMedCrossRefGoogle Scholar
  87. Graham BS, Grubbs D, Holland K, Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150:647–658. doi:10.1007/s00227-006-0360-y CrossRefGoogle Scholar
  88. Graves JE, McDowell JR (1995) Inter-ocean genetic divergence of istiophorid billfishes. Mar Biol 122:193–203. doi:10.1007/BF00348932 Google Scholar
  89. Greenblatt PR (1979) Associations of tuna with flotsam in the eastern tropical Pacific. Fish Bull 77:147–155Google Scholar
  90. Grewe PM, Feutry P, Hill PL, Gunasekera RM, Schaefer KM, Itano DG, Fuller DW, Foster SD, Davies CR (2015) Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci Rep 5:16916. doi:10.1038/srep16916 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hampton J (2000) Natural mortality rates in tropical tunas: size really does matter. Can J Fish Aquat Sci 57:1002–1010. doi:10.1139/f99-287 CrossRefGoogle Scholar
  92. Hampton J, Fournier DA (2001) A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Mar Freshw Res 52:937–963. doi:10.1071/MF01049 CrossRefGoogle Scholar
  93. Hampton J, Kleiber P, Langley A, Hiramatsu M (2004) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WP SA‐1, SCTB 17, Majuro, Republic of MarshallGoogle Scholar
  94. Hampton J, Kleiber P, Langley A, Takeuchi Y, Ichinokawa M (2005) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC SC1 SA WP‐1, Noumea, New CaledoniaGoogle Scholar
  95. Hampton J, Langley A, Kleiber P (2006) Stock assessment of yellowfin tuna in the western and central Pacific Ocean, including an analysis of management options. WCPFC SC2 SA WP‐1, Manila, PhilippinesGoogle Scholar
  96. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362. doi:10.1111/j.1467-2979.2008.00299.x CrossRefGoogle Scholar
  97. Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci 99:11742–11747. doi:10.1073/pnas.172242899 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hoolihan JP, Wells RJD, Luo J, Falterman B, Prince ED, Rooker JR (2014) Vertical and horizontal movements of yellowfin tuna in the Gulf of Mexico. Mar Coast Fish 6:211–222. doi:10.1080/19425120.2014.935900 CrossRefGoogle Scholar
  99. Horodysky AJ, Cooke SJ, Graves JE, Brill RW (2016) Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of pelagic fishes. Conserv Physiol 4.1, cov059. doi:10.1093/conphys/cov059
  100. Hyde JR, Lynn E, JrR Humphreys, Musyl M, West AP, Vetter R (2005) Shipboard identification of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. Mar Ecol Prog Ser 286:269–277. doi:10.3354/meps286269 CrossRefGoogle Scholar
  101. IOTC (2015) Status of the Indian Ocean yellowfin tuna (YFT: Thunnus albacares) resource. IOTC–2015–SC18–ES04[E]Google Scholar
  102. Itano D (2000) The reproductive biology of yellowfin tuna (Thunnus albacares) in Hawaiian waters and the western tropical Pacific Ocean: project summary. University of Hawaii, Joint Institute for Marine and Atmospheric Research HawaiiGoogle Scholar
  103. Itano D (2005) A handbook for the identification of yellowfin and bigeye tunas in fresh condition. Pelagic Fish Res Program Honol Hawaii USA Ver 2:1–27Google Scholar
  104. Itano D, Holland N (2000) Movement and vulnerability of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) in relation to FADs and natural aggregation points. Aquat Living Resour 13:213–223. doi:10.1016/S0990-7440(00)01062-7 CrossRefGoogle Scholar
  105. Juan-Jordá MJ, Mosqueira I, Cooper AB, Freire J, Dulvy NK (2011) Global population trajectories of tunas and their relatives. Proc Natl Acad Sci 108:20650–20655. doi:10.1073/pnas.1107743108 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013a) The conservation and management of tunas and their relatives: setting life history research priorities. PLoS ONE 8:e70405. doi:10.1371/journal.pone.0070405 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013b) Life in 3-D: life history strategies in tunas, mackerels and bonitos. Rev Fish Biol Fish 23:135–155. doi:10.1007/s11160-012-9284-4 CrossRefGoogle Scholar
  108. Júnior TV, Vooren CM, Lessa RP (2003) Feeding strategy of yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri) in the Saint Peter and Saint Paul Archipelago, Brazil. Bol Inst Pesca São Paulo 29:173–181Google Scholar
  109. Kai TE, Marsac F (2010) Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Prog Oceanogr 86:214–223. doi:10.1016/j.pocean.2010.04.010 CrossRefGoogle Scholar
  110. Kell LT, Nash RD, Dickey-Collas M, Mosqueira I, Szuwalski C (2015) Is spawning stock biomass a robust proxy for reproductive potential? Fish Fish 1:596–616. doi:10.1111/faf.12131 Google Scholar
  111. Kolody DS, Eveson JP, Hillary RM (2016) Modelling growth in tuna RFMO stock assessments: current approaches and challenges. Growth Theory Estim Appl Fish Stock Assess Models 180:177–193. doi:10.1016/j.fishres.2015.06.016 Google Scholar
  112. Korsmeyer KE, Dewar H(2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tunaphysiology, ecology, and evolution. Academic Press, San Diego, pp 36–78. doi:10.1016/S1546-5098(01)19003-5
  113. Korsmeyer KE, Lai NC, Shadwick RE, Graham JB (1997) Heart rate and stroke volume contribution to cardiac output in swimming yellowfin tuna: response to exercise and temperature. J Exp Biol 200:1975–1986PubMedGoogle Scholar
  114. Kunal SP, Kumar G, Menezes MR, Meena RM (2013) Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters. Conserv Genet 14:205–213. doi:10.1007/s10592-013-0445-3 CrossRefGoogle Scholar
  115. Lang KL, Grimes CB, Shaw RF (1994) Variations in the age and growth of yellowfin tuna larvae, Thunnus albacares, collected about the Mississippi River plume. Environ Biol Fishes 39:259–270. doi:10.1007/BF00005128 CrossRefGoogle Scholar
  116. Langley A, Million J (2012) Determining an appropriate tag mixing period for the Indian Ocean yellowfin tuna stock assessment. IOTC-2012-WPTT-14-31Google Scholar
  117. Langley A, Harley S, Hoyle S, Davies N, Hampton J, Kleiber P (2009) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC SC5 SA WP‐3, Port Vila, VanuatuGoogle Scholar
  118. Langley A, Hoyle S, Hampton J (2011) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC SC7 SA WP‐3, Pohnpei, Federated States of MicronesiaGoogle Scholar
  119. Le Guen JC, Sakagawa GT (1973) Apparent growth of yellowfin tuna from the eastern Atlantic Ocean. Fish Bull 71:175–187Google Scholar
  120. Le Guen JC, Poinsard F, Troadec JP (1965) The yellowfin tuna fishery in the eastern tropical Atlantic. Commer Fish Rev 27:7–18Google Scholar
  121. Lehodey P, Leroy B (1999) Age and growth of yellowfin tuna (Thunnus albacares) from the western and central Pacific Ocean as indicated by daily growth increments and tagging data. WP YFT-2 SCTB 12, 16–23Google Scholar
  122. Lehodey P, Senina I, Murtugudde R (2008) A spatial ecosystem and populations dynamics model (SEAPODYM)—modeling of tuna and tuna-like populations. Prog Oceanogr 78:304–318CrossRefGoogle Scholar
  123. Lehodey P, Hampton J, Brill RW, Nicol S, Senina I, Calmettes B, Pörtner L, Bopp L, Ilyina T, Bell JD, Sibert J (2011) Vulnerability of oceanic fisheries in the tropical Pacific to climate change. In: Bell J, Johnson JE, Hobday AJ (eds) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, NoumeaGoogle Scholar
  124. Lessa R, Duarte-Neto P (2004) Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fish Res 69:157–170. doi:10.1016/j.fishres.2004.05.007 CrossRefGoogle Scholar
  125. Li W, Chen X, Xu Q, Zhu J, Dai X, Xu L (2015) Genetic population structure of Thunnus albacares in the Central Pacific Ocean Based on mtDNA COI gene sequences. Biochem Genet 53:8–22. doi:10.1007/s10528-015-9666-0 PubMedCrossRefGoogle Scholar
  126. Lorenzen K (1996) The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J Fish Biol 49:627–642. doi:10.1111/j.1095-8649.1996.tb00060.x CrossRefGoogle Scholar
  127. Lorrain A, Graham BS, Popp BN, Allain V, Olson RJ, Hunt BP, Potier M, Fry B, Galván-Magaña F, Menkes CE, Kaelher S, Ménard F (2015) Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Res Part II Top Stud Oceanogr 113:188–198. doi:10.1016/j.dsr2.2014.02.003 CrossRefGoogle Scholar
  128. Lowerre-Barbieri SK, Ganias K, Saborido-Rey F, Murua H, Hunter JR (2011) Reproductive timing in marine fishes: variability, temporal scales, and methods. Mar Coast Fish 3:71–91. doi:10.1080/19425120.2011.556932 CrossRefGoogle Scholar
  129. Lumineau O (2002) Study of the growth of Yellowfin tuna (Thunnus albacares) in the Western Indian Ocean based on length frequency data. In: IOTC Proceedings, pp 316–327Google Scholar
  130. Magnuson JJ (1979) 4 Locomotion by Scombrid fishes: hydromechanics, morphology, and behavior. Fish Physiol 7:239–313CrossRefGoogle Scholar
  131. Maldeniya R (1996) Food consumption of yellowfin tuna, Thunnus albacares, in Sri Lankan waters. Environ Biol Fishes 47:101–107. doi:10.1007/BF00002384 CrossRefGoogle Scholar
  132. Margulies D, Wexler JB, Bentler KT, Suter JM, Masuma S, Tezuka N, Teruya K, Oka M, Kanematsu M, Nikaido H (2001) Food selection of yellowfin tuna, Thunnus albacares, larvae reared in the laboratory. Coll Vol Sci Pap ICCAT 22:9–33Google Scholar
  133. Margulies D, Sutter JM, Hunt SL, Olson RJ, Scholey VP, Wexler JB, Nakazawa A (2007) Spawning and early development of captive yellowfin tuna (Thunnus albacares). Fish Bull 105:249–265Google Scholar
  134. Marshall CT, Needle CL, Thorsen A, Kjesbu OS, Yaragina NA (2006) Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock: implications for stock recruit theory and management. Can J Fish Aquat Sci 63:980–994. doi:10.1139/f05-270 CrossRefGoogle Scholar
  135. Marshall DJ, Heppell SS, Munch SB, Warner RR (2010) The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring? Ecology 91:2862–2873. doi:10.1890/09-0156.1 PubMedCrossRefGoogle Scholar
  136. Martínez P, González EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416. doi:10.1016/j.ympev.2005.07.022 PubMedCrossRefGoogle Scholar
  137. Matsumoto T, Bayliff WH (2008) A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1998–2003. IATTC Bull 24(1):1–187Google Scholar
  138. Maufroy A, Kaplan DM, Bez B, Delgado de Molina A, Murua H, Floch L, Chassot E (2016) Massive increase in the use of artificial fish aggregating devices by purse seine fisheries in the Indian and Atlantic Oceans. ICES J Mar Sci. doi:10.1093/icesjms/fsw175 Google Scholar
  139. McPherson GR (1991) Reproductive biology of yellowfin tuna in the eastern Australian fishing zone, with special reference to the north-western Coral Sea. Mar Freshw Res 42:465–477. doi:10.1071/MF9910465 CrossRefGoogle Scholar
  140. Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X et al (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231. doi:10.3354/meps323223 CrossRefGoogle Scholar
  141. Michelini E, Cevenini L, Mezzanotte L, Simoni P, Baraldini M, De Laude L, Roda A (2007) One-step triplex-polymerase chain reaction assay for the authentication of yellowfin (Thunnus albacares), bigeye (Thunnus obesus), and skipjack (Katsuwonus pelamis) tuna DNA from fresh, frozen, and canned tuna samples. J Agric Food Chem 55:7638–7647. doi:10.1021/jf070902k PubMedCrossRefGoogle Scholar
  142. Minte-Vera CV, Aires-da-Silva A, Maunder MN (2016) Status of yellowfin tuna in the eastern Pacific Ocean in 2015 and outlook for the future. Inter-Amer. Trop. Tuna Comm, 7th Scient. Adv. Com. Meeting. SAC-07-05bGoogle Scholar
  143. Miyake M, Guillotreau P, Sun C-H, Ishimura G (2010) Recent developments in the tuna industry: stocks, fisheries, management, processing, trade and markets. FAO fisheries and aquaculture technical paper no. 543. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  144. Morato T, Hoyle SD, Allain V, Nicol SJ (2010) Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc Natl Acad Sci 107:9707–9711. doi:10.1073/pnas.0910290107 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Morgan MJ, Murua H, Kraus G, Lambert Y, Marteinsdottir G, Marshall CT, O’Brien L, Tomkiewicz J (2009) The evaluation of reference points and stock productivity in the context of alternative indices of stock reproductive potential. Can J Fish Aquat Sci 66:404–414. doi:10.1139/F09-009 CrossRefGoogle Scholar
  146. Murawski SA, Rago PJ, Trippel EA (2001) Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES J Mar Sci J Cons 58:1002–1014CrossRefGoogle Scholar
  147. Murua H, Kraus G, Saborido-Rey F, Witthames PR, Thorsen A, Junquera S et al (2003) Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. J Northwest Atl Fish Sci 33:33–54. doi:10.2960/J.v33.a3 CrossRefGoogle Scholar
  148. Murua H, Rodríguez-Marin E, Neilson J, Farley J, Juan-Jorda MJ (in press) Fast versus slow growing tuna species – age, growth, and implications for population dynamics and fisheries management. Rev Fish Biol FishGoogle Scholar
  149. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  150. Nishida T, Chow S, Ikame S, Kurihara S (2001) RFLP analysis on single copy nuclear gene loci in yellowfin tuna (Thunnus albacares) to examine the genetic differentiation between the western and eastern samples from the Indian Ocean. Proc Fish Oceanogr 1:143–152. doi:10.1111/j.1365-2419.1992.tb00033.x CrossRefGoogle Scholar
  151. Nootmorn P, Yakoh A, Kawises K (2005) Reproductive biology of yellowfin tuna in the Eastern Indian Ocean. IOTC-WPTT 14:379–385Google Scholar
  152. Olson RJ, Boggs CH (1986) Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can J Fish Aquat Sci 43:1760–1775CrossRefGoogle Scholar
  153. Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365. doi:10.1002/ece3.329 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447. doi:10.1111/j.1365-294X.2008.03842.x PubMedCrossRefGoogle Scholar
  155. Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat Commun 7:10244. doi:10.1038/ncomms10244 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Pecoraro C (2016) Global population genomic structure and life history trait analysis of yellowfin tuna (Thunnus albacares). Ph.D. thesis dissertation, University of BolognaGoogle Scholar
  157. Pecoraro C, Babbucci M, Villamor A, Franch R, Papetti C, Leroy B, Ortega-Garcia S, Muir J, Rooker J, Arocha F et al (2016) Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares). Mar Genomics 25:43–48. doi:10.1016/j.margen.2015.12.002 PubMedCrossRefGoogle Scholar
  158. Pedrosa-Gerasmio IR, Babaran RP, Santos MD (2012) Discrimination of juvenile yellowfin (Thunnus albacares) and bigeye (T. obesus) tunas using mitochondrial DNA control region and liver morphology. PLoS ONE 7:e35604. doi:10.1371/journal.pone.0035604 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Potier M, Marsac F, Lucas V, Sabatié R, Hallier J-P, Ménard F (2005) Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (Thunnus albacares) and bigeye (T. obesus) in the western tropical Indian Ocean. West Indian Ocean J Mar Sci 3:51–62Google Scholar
  160. Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, Ménard F (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72. doi:10.1016/j.fishres.2006.08.020 CrossRefGoogle Scholar
  161. Priede IG (1985) Metabolic scope in fishes. In: Tytler P, Calow P (eds) Fish energetics: new perspectives. Croom Helm, London, pp 33–64CrossRefGoogle Scholar
  162. Prince ED, Goodyear CP (2006) Hypoxia based habitat compression of tropical pelagic fishes. Fish Oceanogr 15(6):451–464. doi:10.1111/j.1365-2419.2005.00393.x CrossRefGoogle Scholar
  163. Puncher GN, Arrizabalaga H, Alemany F, Cariani A, Oray IK, Karakulak FS, Basilone G, Cuttitta A, Mazzola S, Tinti F (2015) Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae) Larvae and development of a DNA character-based identification key for Mediterranean Scombrids. PLoS ONE 10:e0130407. doi:10.1371/journal.pone.0130407 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Ratty FJ, Song YC, Laurs RM (1986) Chromosomal analysis of albacore, Thunnus alalunga, and yellowfin, Thunnus albacares, and Skipjack, Katsuwonus pelamis, Tuna. Fish Bull 84:469–476Google Scholar
  165. Ravier C, Fromentin JM (2001) Long-term fluctuations in the eastern Atlantic and Mediterranean bluefin tuna population. ICES J Mar Sci 58:1299–1317. doi:10.1006/jmsc.2001.1119 CrossRefGoogle Scholar
  166. Reglero P, Tittensor DP, Álvarez-Berastegui D, Aparicio-González A, Worm B (2014) Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar Ecol Prog Ser 501:207–224. doi:10.3354/meps10666 CrossRefGoogle Scholar
  167. Reintjes JW, King JE (1953) Food of yellowfin tuna in the central Pacific. Fish Bull 54:90–110Google Scholar
  168. Reygondeau G, Maury O, Beaugrand G, Fromentin JM, Fonteneau A, Cury P (2012) Biogeography of tuna and billfish communities. J Biogeogr 39:114–129. doi:10.1111/j.1365-2699.2011.02582.x CrossRefGoogle Scholar
  169. Rijnsdorp AD (1990) The mechanism of energy allocation over reproduction and somatic growth in female North Sea plaice, Pleuronectes platessa L. Neth J Sea Res 25:279–289. doi:10.1016/0077-7579(90)90027-E CrossRefGoogle Scholar
  170. Robert M, Dagorn L, Deneubourg J, Itano D, Holland K (2012) Size-dependent behavior of tuna in an array of fish aggregating devices (FADs). Mar Biol 159:907–914. doi:10.1007/s00227-011-1868-3 CrossRefGoogle Scholar
  171. Robertson MD, Ovenden JR, Barker SC (2007) Identification of small juvenile scombrids from northwest tropical Australia using mitochondrial DNA cytochrome b sequences. Ichthyol Res 54:246–252. doi:10.1007/s10228-007-0397-z CrossRefGoogle Scholar
  172. Romanov EV, Potier M, Anderson RC, Quod JP, Ménard F, Sattar SA, Hogarth P (2015) Stranding and mortality of pelagic crustaceans in the western Indian Ocean. J Mar Biol Assoc UK 95:1677–1684. doi:10.1017/S002531541500096X CrossRefGoogle Scholar
  173. Rouyer T, Fromentin J-M, Stenseth NC (2010) Environmental noise affects the fluctuations of Atlantic large pelagics. Prog Oceanogr 86:267–275. doi:10.1016/j.pocean.2010.04.025 CrossRefGoogle Scholar
  174. Sabarros PS, Ménard F, Lévénez J-J, Tew-Kai E, Ternon J-F (2009) Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel. Mar Ecol Prog Ser 395:101–107. doi:10.3354/meps08087 CrossRefGoogle Scholar
  175. Sabatés A, Olivar MP, Salat J, Palomera I, Alemany F (2007) Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Prog Oceanogr 74:355–376. doi:10.1016/j.pocean.2007.04.017 CrossRefGoogle Scholar
  176. Sardenne F, Dortel E, Le Croizier G, Million J, Labonne M, Leroy B, Bodin N, Chassot E (2015) Determining the age of tropical tunas in the Indian Ocean from otolith microstructures. Fish Res 163:44–57. doi:10.1016/j.fishres.2014.03.008 CrossRefGoogle Scholar
  177. Sardenne F, Bodin N, Chassot E, Amiel A, Fouché E, Degroote M, Hollanda S, Pethybridge H, Lebreton B, Guillou G, Ménard F (2016) Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids. Prog Oceanogr 146:75–88. doi:10.1016/j.pocean.2016.06.001 CrossRefGoogle Scholar
  178. Schaefer KM (1996) Spawning time, frequency, and batch fecundity of yellowfin tuna, Thunnus albacares, near Clipperton. Fish Bull 94:98–113Google Scholar
  179. Schaefer KM (1998) Reproductive biology of yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean. Int Am Tropical Tuna Commis 21(205):221Google Scholar
  180. Schaefer KM (2001) Reproductive biology of tunas. Tuna Physiol Ecol Evol 19:225CrossRefGoogle Scholar
  181. Schaefer KM, Fuller DW, Block BA (2007) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar Biol 152:503–525. doi:10.1007/s00227-007-0689-x CrossRefGoogle Scholar
  182. Schaefer KM, Fuller DW, Block BA (2009) Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data. In: Nielsen JL, Arrizabalaga H, Fragoso N, Hobday A, Lutcavage M, Sibert J (eds) Tagging and tracking of marine animals with electronic devices. Reviews: methods and technologies in fish biology and fisheries, vol 9. Springer, pp 121–144Google Scholar
  183. Schaefer KM, Fuller DW, Block BA (2011) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering. Fish Res 112:22–37. doi:10.1016/j.fishres.2011.08.006 CrossRefGoogle Scholar
  184. Scoles DR, Graves JE (1993) Genetic-analysis of the population-structure of yellowfin tuna, Thunnus albacares, from the pacific-ocean. Fish Bull 91:690–698Google Scholar
  185. Sharp GD (1978) Behavioral and physiological properties of tunas and their effects on vulnerability to fishing gear. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic Press, New York, pp 397–449CrossRefGoogle Scholar
  186. Sharp GD, Vlyman, WJ (1978) The relation between heat generation, conservation, and the swimming energetics of tunas. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic Press, NewYork, pp 213–232CrossRefGoogle Scholar
  187. Shingu C, Tomlinson PK, Peterson CL (1974) A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1967–1970. Inter Am Trop Tuna Commis Bull 16:65–230Google Scholar
  188. Shuford RL, Dean JM, Stéquert B, Morize E (2007) Age and growth of yellowfin tuna in the Atlantic Ocean. Collect Vol Sci Pap ICCAT 60:330–341Google Scholar
  189. Sibert J, Hampton J (2003) Mobility of tropical tunas and the implications for fisheries management. Mar Policy 27:87–95. doi:10.1016/S0308-597X(02)00057-X CrossRefGoogle Scholar
  190. Soares RX, Bertollo LAC, da Costa GWWF, Molina WF (2013) Karyotype stasis in four Atlantic Scombridae fishes: mapping of classic and dual-color FISH markers on chromosomes. Fish Sci 79:177–183. doi:10.1007/s12562-013-0602-0 CrossRefGoogle Scholar
  191. Stéquert B, Panfili J, Dean JM (1996) Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Oceanogr Lit Rev 12:1275Google Scholar
  192. Stéquert B, Rodriguez JN, Cuisset B, Le Menn F (2001) Gonadosomatic index and seasonal variations of plasma sex steroids in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) from the western Indian Ocean. Aquat Living Resour 14:313–318. doi:10.1016/S0990-7440(01)01126-3 CrossRefGoogle Scholar
  193. Stevens ED, Carey FG (1981) One why of the warmth of warm-bodied fish. Am J Physiol Regul Integr Comp Physiol 240:R151–R155Google Scholar
  194. Suda A, Schaefer MB (1965) General review of the Japanese tuna long-line fishery in the eastern tropical Pacific Ocean 1956–1962. Inter Am Trop Tuna Commis Bull 9:305–462Google Scholar
  195. Sun CL, Wang WR, Yeh S (2005) Reproductive biology of yellowfin tuna in the central and western Pacific Ocean. Working paper BI-WP-1, 1st Scientific Committee meeting of the Western and Central Pacific Fisheries Commission. Accessed 2012 Sep 27. www.wcpfc.int/meetings/2006/1st-regular-session
  196. Sund PN, Blackburn M, Williams F (1981) Tunas and their environment in the Pacific Ocean: a review. Ocean Mar Biol Ann Rev 19:443–512Google Scholar
  197. Suzuki A (1962) On the blood types of yellowfin and bigeye tuna. Am Nat 96:239–246CrossRefGoogle Scholar
  198. Tidd AN, Reid C, Pilling GM, Harley SJ (2016) Estimating productivity, technical and efficiency changes in the Western Pacific purse-seine fleets. ICES J Mar Sci J Cons fsv262. doi:10.1093/icesjms/fsv262
  199. Timochina OI, Romanov EV (1991) Notes on reproduction biology of yellowfin tuna in the Western Indian Ocean. Document 91/08, IPTP workshop on stock assessment of yellowfin tunaGoogle Scholar
  200. Trippel EA (1999) Estimation of stock reproductive potential: history and challenges for Canadian Atlantic gadoid stock assessments. J Northwest Atl Fish Sci 25:61–82CrossRefGoogle Scholar
  201. Viñas J, Tudela S (2009) A Validated methodology for genetic identification of Tuna Species (Genus Thunnus). PLoS ONE 4:e7606. doi:10.1371/journal.pone.0007606 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Viñas J, Gordoa A, Fernández-Cebrián R, Pla C, Vahdet Ü, Araguas RM (2011) Facts and uncertainties about the genetic population structure of Atlantic bluefin tuna (Thunnus thynnus) in the Mediterranean. Implications for fishery management. Rev Fish Biol Fish 21:527–541. doi:10.1007/s11160-010-9174-6 CrossRefGoogle Scholar
  203. von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–213Google Scholar
  204. Walters C (2003) Folly and fantasy in the analysis of spatial catch rate data. Can J Fish Aquat Sci 60:1433–1436. doi:10.1139/f03-152 CrossRefGoogle Scholar
  205. Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810. doi:10.1038/nmeth.2023 PubMedCrossRefGoogle Scholar
  206. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450. doi:10.1093/jhered/89.5.438 CrossRefGoogle Scholar
  207. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201. doi:10.1023/A:1003928327503 CrossRefGoogle Scholar
  208. Ward RD, Elliott NG, Grewe PM, Smolenski AJ (1994) Allozyme and mitochondrial DNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Mar Biol 118:531–539. doi:10.1007/BF00347499 CrossRefGoogle Scholar
  209. Ward RD, Elliot NG, Innes BH, Smolenski AJ, Grewe PM (1997) Global population structure of yellowfin tuna, Thunnus albacares, inferred from allozyme and mitochondrial DNA variation. Fish Bull 95:566–575Google Scholar
  210. Westneat M, Wainwright SA (2001) Mechanical design for swimming: muscle, tendon, and bone. In: Block B, Stevens ED (eds) Tuna: physiology, ecology, and evolution. Academic Press, San Diego, pp 271–311. doi:10.1016/S1546-5098(01)19008-4
  211. Wexler JB, Chow S, Wakabayashi T, Nohara K, Margulies D (2007) Temporal variation in growth of yellowfin tuna (Thunnus albacares) larvae in the Panama Bight, 1990. Fish Bull 105:1–18Google Scholar
  212. Wexler JB, Margulies D, Scholey VP (2011) Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae. J Exp Mar Biol Ecol 404:63–72. doi:10.1016/j.jembe.2011.05.002 CrossRefGoogle Scholar
  213. Wild A (1994) A review of the biology and fisheries for yellowfin tuna, Thunnus albacares, in the eastern Pacific Ocean. FAO Fish. Tech. Pap. FAOGoogle Scholar
  214. Wu GCC, Chiang H-C, Chou Y-W, Wong Z-R, Hsu C-C, Chen C-Y, Yang H-Y (2010) Phylogeography of yellowfin tuna (Thunnus albacares) in the Western Pacific and the Western Indian Oceans inferred from mitochondrial DNA. Fish Res 105:248–253. doi:10.1016/j.fishres.2010.03.015 CrossRefGoogle Scholar
  215. Yabuta Y, Yukinawa M, Warashina Y (1960) Growth and age of yellowfin tuna-II. Age determination (scale method). Rep Nankai Reg Fish Res Lab 12:63–74Google Scholar
  216. Yang RT, Nose Y, Hiyama Y (1969) A comparative study on the age and growth of yellowfin tunas from the Pacific and Atlantic Oceans. Bull Far Seas Fish Res Lab 2:1–21Google Scholar
  217. Young JW, Bradford R, Lamb TD, Clementson LA, Kloser R, Galea H (2001) Yellowfin tuna (Thunnus albacares) aggregations along the shelf break off south-eastern Australia: links between inshore and offshore processes. Mar Freshw Res 52:463–474. doi:10.1071/MF99168 CrossRefGoogle Scholar
  218. Young JW, Olson RJ, Ménard F, Kuhnert PM, Duffy LM, Allain V, Logan JM, Lorrain A, Somes CJ, Graham B et al (2015) Setting the stage for a global-scale trophic analysis of marine top predators: a multi-workshop review. Rev Fish Biol Fish 25:261–272. doi:10.1007/s11160-014-9368-4 CrossRefGoogle Scholar
  219. Zagaglia CR, Lorenzzetti JA, Stech JL (2004) Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sens Environ 93:267–281. doi:10.1016/j.rse.2004.07.015 CrossRefGoogle Scholar
  220. Zhu G, Xu L, Zhou Y, Song L (2008) Reproductive biology of yellowfin tuna T. albacares in the west-central Indian Ocean. J Ocean Univ China 7:327–332. doi:10.1007/s11802-008-0327-3 CrossRefGoogle Scholar
  221. Zudaire I, Murua H, Grande M, Korta M, Arrizabalaga H, Areso JJ, Delgado-Molina A (2013a) Fecundity regulation strategy of the yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish Res 138:80–88. doi:10.1016/j.fishres.2012.07.022 CrossRefGoogle Scholar
  222. Zudaire I, Murua H, Grande M, Bodin N (2013b) Reproductive potential of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Fish Bull 111:252–264. doi:10.7755/FB.111.3.4 CrossRefGoogle Scholar
  223. Zudaire I, Murua H, Grande M, Pernet F, Bodin N (2014) Accumulation and mobilization of lipids in relation to reproduction of yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish Res 160:50–59. doi:10.1016/j.fishres.2013.12.010 CrossRefGoogle Scholar
  224. Zudaire I, Murua H, Grande M, Goñi N, Potier M, Ménard F, Chassot E, Bodin N (2015) Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Mar Biol 162:2363–2377. doi:10.1007/s00227-015-2763-0 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • C. Pecoraro
    • 1
    • 2
  • I. Zudaire
    • 2
    • 3
  • N. Bodin
    • 2
  • H. Murua
    • 4
  • P. Taconet
    • 2
  • P. Díaz-Jaimes
    • 5
  • A. Cariani
    • 1
  • F. Tinti
    • 1
  • E. Chassot
    • 2
  1. 1.Department of Biological, Geological and Environmental Sciences (BiGeA)Alma Mater Studiorum - University of BolognaRavennaItaly
  2. 2.Institut de Recherche pour le Développement (IRD), UMR MARBEC (IRD/Ifremer/UM/CNRS)Seychelles Fishing AuthorityVictoriaSeychelles
  3. 3.Ikerbasque FundazioaBilbaoSpain
  4. 4.Marine Research DivisionAZTIPasaiaSpain
  5. 5.Laboratorio de Genética de Organismos Acuáticos, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations