Skip to main content

Stock assessment in inland fisheries: a foundation for sustainable use and conservation

Abstract

Fisheries stock assessments are essential for science-based fisheries management. Inland fisheries pose challenges, but also provide opportunities for biological assessments that differ from those encountered in large marine fisheries for which many of our assessment methods have been developed. These include the number and diversity of fisheries, high levels of ecological and environmental variation, and relative lack of institutional capacity for assessment. In addition, anthropogenic impacts on habitats, widespread presence of non-native species and the frequent use of enhancement and restoration measures such as stocking affect stock dynamics. This paper outlines various stock assessment and data collection approaches that can be adapted to a wide range of different inland fisheries and management challenges. Although this paper identifies challenges in assessment, it focuses on solutions that are practical, scalable and transferrable. A path forward is suggested in which biological assessment generates some of the critical information needed by fisheries managers to make effective decisions that benefit the resource and stakeholders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abou-Tair D, Bourimi M, Tesoriero R, Heupel M, Kesdogan D, Ueberschär B (2013) An end-user tailorable generic framework for privacy-preserving location-based mobile applications. Appl Math Inf Sci 7:2137–2148

    Article  Google Scholar 

  • Akçakaya HR (1991) A method for simulating demographic stochasticity. Ecol Model 54:133–136

    Article  Google Scholar 

  • Al-Abdulrazzak D, Pauly D (2014) Managing fisheries from space: Google Earth improves estimates of distant fish catches. ICES J Mar Sci 71:450–454

    Article  Google Scholar 

  • Allan JD, Abell R, Hogan Z, Revenga C, Taylor BW, Welcomme RL, Winemiller K (2005) Overfishing of inland waters. Bioscience 55:1041–1051

    Article  Google Scholar 

  • Almeida O, Lorenzen K, McGrath DG (2009) Fishing agreements in the Lower Amazon: for gain and restraint. Fish Manag Ecol 16:61–67

    Article  Google Scholar 

  • Amilhat E, Lorenzen K (2005) Habitat use, migration pattern and population dynamics of chevron snakehead Channa striata in a rainfed rice farming landscape. J Fish Biol 67(SB):23–34

    Article  Google Scholar 

  • Anderson JL, Anderson CM, Chu J, Meredith J, Asche F, Sylvia G et al (2015) The fishery performance indicators: a management tool for triple bottom line outcomes. PLoS One 10(5):e0122809

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Andrew NL, Bene C, Hall SJ, Allison EH, Heck S, Ratner BD (2007) Diagnosis and management of small-scale fisheries in developing countries. Fish Fish 8:227–240

    Article  Google Scholar 

  • Arlinghaus R, Lorenzen K, Johnson BM, Cooke SJ, Cowx IG (2016) Management of freshwater fisheries: addressing habitat, people and fishes. In: Craig JF (ed) Freshwater fisheries ecology. Wiley, Chichester, pp 557–579

    Google Scholar 

  • Arthur RI, Lorenzen K, Homekingkeo P, Sidavong K, Sanvilaikham B, Garaway CJ (2010) Assessing impacts of introduced aquaculture species on native fish communities: Nile tilapia and major carps in SE Asian freshwaters. Aquaculture 299:81–88

    Article  Google Scholar 

  • Bachman RW, Jones BL, Fox DD, Hoyer M, Bull LA, Canfield DE (1996) Relations between trophic state indicators and fish in Florida (USA) lakes. Can J Fish Aquat Sci 53:842–855

    Article  Google Scholar 

  • Bagenal TB (ed) (1978) Methods for assessment of fish production in fresh waters. IBP handbook no. 3. Blackwell, Oxford

    Google Scholar 

  • Baker MS Jr, Oeschger I (2009) Description and initial evaluation of a text message based reporting method for marine recreational anglers. Mar Coast Fish Dyn Manag Ecosyst Sci 1:143–154

    Article  Google Scholar 

  • Bayley PB (1988) Accounting for effort when comparing tropical fisheries in lakes, river-floodplains, and lagoons. Limnol Oceanogr 33:963–972

    Google Scholar 

  • Bazigos G (1974) The design of fisheries statistical surveys—inland waters. FAO fisheries technical paper 133, FAO, Rome

  • Beaman L, Dillon A (2012) Do household definitions matter in survey design? Results from a randomized survey experiment in Mali. J Dev Econ 98:124–135

    Article  Google Scholar 

  • Beard TD Jr, Austen D, Brady SJ, Costello ME, Drewes HG, Young-Dubovsky CH et al (1998) The multi-state aquatic resources information system. Fisheries 23(5):14–18

    Article  Google Scholar 

  • Beard TD Jr, Arlinghaus R, Cooke SJ, McIntyre PB, De Silva S, Bartley D, Cowx IG (2011) Ecosystem approach to inland fisheries; research needs and implementation strategies. Biol Lett 7:481–483

    PubMed  PubMed Central  Article  Google Scholar 

  • Berkes F (2003) Alternatives to conventional management: lessons from small-scale fisheries. Environments 31:5–19

    Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fishery Investigations Series II. Ministry of Agriculture, Fisheries and Food, Lowestoft

    Google Scholar 

  • Bezerra-Neto JF, Brighenti LS, Mello NASTD, Pinto-Coelho RM (2012) Hydroacoustic assessment of fish and Chaoborus (Diptera-Chaoboridae) distribution in three Neotropical lakes. Acta Limnol Bras 24:18–28

    Article  Google Scholar 

  • Bonar SA, Hubert WA (2002) Standard sampling of inland fish: benefits, challenges, and a call for action. Fisheries 27(3):10–16

    Article  Google Scholar 

  • Bonar SA, Hubert WA, Willis DW (2009) Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda

    Google Scholar 

  • Bonar SA, Norman Mercado-Silva N, Rahr M, Torrey YT, Cate A Jr (2015) A simple web-based tool to compare freshwater fish data collected using AFS standard methods. Fisheries 40(2):580–589

    Article  Google Scholar 

  • Booth AJ (2004) Determination of cichlid-specific biological reference points. Fish Res 67:307–316

    Article  Google Scholar 

  • Bratton M (2013) Briefing: citizens and cell phones in Africa. African Affairs 112(447):304–319

    Article  Google Scholar 

  • Bray GS, Schramm HL Jr (2001) Evaluation of a statewide volunteer angler diary program for use as a fishery assessment tool. N Am J Fish Manag 21:606–615

    Article  Google Scholar 

  • Brown P, Walker TI (2004) CARPSIM: stochastic simulation modelling of wild carp (Cyprinus carpio L.) population dynamics, with applications to pest control. Ecol Mod 176:83–97

    Article  Google Scholar 

  • Brown G, Berger B, Ikiara M (2005) A predator-prey model with an application to Lake Victoria fisheries. Mar Resour Econ 20:221–248

    Article  Google Scholar 

  • Burgman MA, Ferson S, Akçakaya HR (1993) Risk assessment in conservation biology. Chapman and Hall, London

    Google Scholar 

  • Caddy JF, Bazigos GP (1985) Practical guidelines for statistical monitoring of fisheries in manpower limited situations. FAO fisheries technical paper 257, FAO, Rome

  • Carpenter SR, Kitchell JF (eds) (1996) The trophic cascade in lakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Carpenter SR, Cunningham P, Gafny S, Munoz-Del-Rio A, Nibbelink N, Olson M et al (1995) Responses of bluegill to habitat manipulations: power to detect effects. N Am J Fish Manag 15:519–527

    Article  Google Scholar 

  • Carruthers TR, Punt AE, Walters CJ, MacCall A, McAllister MK, Dick EJ, Cope J (2014) Evaluating methods for setting catch limits in data-limited fisheries. Fish Res 153:48–68

    Article  Google Scholar 

  • Castello L, Viana JP, Watkins G, Pinedo-Vasquez M, Luzadis VA (2009) Lessons from integrating fishers of arapaima in small-scale fisheries management at the Mamirauá Reserve, Amazon. Environ Manag 43:197–209

    Article  Google Scholar 

  • Castilla JC, Defeo O (2001) Latin American benthic shellfisheries: emphasis on co-management and experimental practices. Rev Fish Biol Fish 11:1–30

    Article  Google Scholar 

  • CEN (European Committee for Standardization) (2003) EN 14011:2003 (E). Water quality—sampling fish with electricity. Management Centre, Brussels

    Google Scholar 

  • CEN (European Committee for Standardization) (2005) EN 14757:2005 (E). Water quality—sampling of fish with multi-mesh gillnets. Management Centre, Brussels

    Google Scholar 

  • Christensen V, Pauly D (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–185

    Article  Google Scholar 

  • Christensen V, Walters CJ, Ahrens R, Alder J, Buszowski J, Christensen LB et al (2009) Database-driven models of the world’s Large Marine Ecosystems. Ecol Model 220:1984–1996

    Article  Google Scholar 

  • Chrysafi A, Kuparinen A (2016) Assessing abundance of populations with limited data: lessons learned from data-poor fisheries stock assessment. Env Rev 24:25–38

    Article  Google Scholar 

  • Coggins LG, Pine WE, Walters CJ, Martell SJ (2006) Age-structured mark–recapture analysis: a virtual-population-analysis-based model for analyzing age-structured capture–recapture data. N Am J Fish Manag 26:201–205

    Article  Google Scholar 

  • Coggins LG, Catalano MJ, Allen MS, Pine WE, Walters CJ (2007) Effects of cryptic mortality and the hidden costs of using length limits in fishery management. Fish Fish 8(3):196–210

    Article  Google Scholar 

  • Collie JS, Botsford LW, Hastings A, Kaplan IC, Largier JL, Livingston PA et al (2014) Ecosystem models for fisheries management: finding the sweet spot. Fish Fish. doi:10.1111/faf.12093

    Google Scholar 

  • Cooke SJ, Dunlop WI, MacLennan D, Power G (2000) Applications and characteristics of angler diary programmes in Ontario, Canada. Fish Manag Ecol 7:473–487

    Article  Google Scholar 

  • Cooke SJ, Arlinghaus R, Beard Bartley DM, Jr TD, Cowx IG, Essington TE et al (2014) Where the waters meet: sharing ideas and experiences between inland and marine realms to promote sustainable fisheries management. Can J Fish Manag Aquat Sci 71:1593–1601

    Article  Google Scholar 

  • Cooke SJ, Arlinghaus R, Johnson BM, Cowx IG (2016a) Recreational fisheries in inland waters. In: Craig JF (ed) Freshwater fisheries ecology. Wiley, Chichester, pp 449–465

    Google Scholar 

  • Cooke SJ, Martins EG, Struthers DP, Gutowsky LFG, Power M, Doka SE et al (2016b) A moving target—incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Env Mon Assess 188:239

  • Cooke SJ, Allison EH, Beard TD, Arlinghaus R, Arthington AH, Bartley DM, Cowx IG, Fuentevilla C et al (in press) On the sustainability of inland fisheries: finding a future for the forgotten. Ambio

  • Cortner HJ, Shannon MA, Wallace MG, Burke S, Moote MA (1994) Institutional barriers and incentives for ecosystem management. Issue paper no 16. University of Arizona, Water Resources Research Centre, Tucson

    Google Scholar 

  • Cowx IG (ed) (1996) Stock assessment in inland fisheries. Fishing News Books, Oxford

    Google Scholar 

  • Cowx IG, Broughton NM (1986) Changes in the species composition of anglers’ catches in the River Trent (England) between 1969 and 1984. J Fish Biol 28:625–636

    Article  Google Scholar 

  • Cowx IG, Portocarrero MA (2011) Paradigm shifts in fish conservation: moving to the ecosystem services concept. J Fish Biol 79:1663–1680

    CAS  PubMed  Article  Google Scholar 

  • Cox SP, Kitchell JF (2004) Lake Superior ecosystem, 1929–1998: simulating alternative hypotheses for recruitment failure of lake herring (Coregonus artedi). Bull Mar Sci 74:671–683

    Google Scholar 

  • Cox SP, Walters C (2002) Modeling exploitation in recreational fisheries and implications for effort management on British Columbia rainbow trout lakes. N Am J Fish Manage 22:21–34

    Article  Google Scholar 

  • Cox SP, Beard TD Jr, Walters C (2002) Harvest control in open-access sport fisheries: hot rod or asleep at the reel? B Mar Sci 70:749–761

    Google Scholar 

  • Creque SM, Rutherford ES, Zorn TG (2005) Use of GIS-derived landscape-scale habitat features to explain spatial patterns of fish density in Michigan rivers. N Am J Fish Manag 25:1411–1425

    Article  Google Scholar 

  • Davies PE, Harris JH, Hillman TJ, Walker KF (2010) The Sustainable Rivers Audit: assessing river ecosystem health in the Murray-Darling Basin, Australia. Mar Freshw Res 61:764–777

    CAS  Article  Google Scholar 

  • Davies PE, Stewardson MJ, Hillman TJ, Roberts JR, Thoms MC (2012) Sustainable rivers audit 2: the ecological health of rivers in the Murray-Darling Basin at the end of the Millennium Drought (2008–2010). Murray-Darling Basin Authority, Canberra

    Google Scholar 

  • de Roos AM, Persson L (2013) Population and community ecology of ontogenetic development. Princeton University Press, Princeton

    Google Scholar 

  • De Silva SS, Amarasinghe US, Nissanka C, Wijesooriya WADD, Fernando MJJ (2001) Use of geographical information systems as a tool for fish yield prediction in tropical reservoirs: case study on Sri Lankan reservoirs. Fish Manag Ecol 8:47–60

    Article  Google Scholar 

  • DIAS (2004) Database on introductions of aquatic species. Fisheries Global Information Systems/FAO, Rome, Italy. http://www.fao.org/figis/servlet/static?dom=root&xml=Introsp/introsp_s.xml

  • Djemali I, Toujani R, Guillard J (2009) Hydroacoustic fish biomass assessment in man-made lakes in Tunisia: horizontal beaming importance and diel effect. Aquat Ecol 43:1121–1131

    Article  Google Scholar 

  • Dotson JR, Allen MS, Kerns JA, Pouder WF (2013) Utility of restrictive harvest regulations for trophy largemouth bass management. N Am J Fish Manag 33:499–507

    Article  Google Scholar 

  • Dowling NA, Wilson JR, Rudd MB, Babcock EA, Caillaux M, Cope J et al (in press) FishPath: A decision support system for assessing and managing data- and capacity-limited fisheries. In: Tools and strategies for assessment and management of data-limited fish stocks. 30th Lowell Wakefield fisheries symposium. Alaska Sea Grant. Anchorage, AK

  • Downing JA, Plante C, Lalonde S (1990) Fish production correlated with primary productivity, not the morphoedaphic index. C J Fish Aquat Sci 47:1929–1936

    Article  Google Scholar 

  • Dudgeon D (ed) (2011) Tropical stream ecology. Academic Press, Waltham

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    PubMed  Article  Google Scholar 

  • Dunbar R (2001) Copper River hydroacoustic salmon enumeration studies, 2000 and 2001. Alaska Department of Fish and Game, Commercial Fisheries Division, Regional information report no. 2A01-3, Anchorage, Alaska

  • Eberhardt LL, Thomas JM (1991) Designing environmental field studies. Ecol Monogr 61:53–73

  • Edwards CTT, Hillary RM, Levontin P, Blanchard JL, Lorenzen K (2012) Fisheries assessment and management: a synthesis of common approaches with special reference to deepwater and data-poor stocks. Rev Fish Sci 20:136–153

    Article  Google Scholar 

  • Evans DW (2001) The consequences of illegal, unreported and unregulated fishing for fishery data and management. FAO fisheries report 666. FAO, Rome, pp 222–233

  • Evans R, Molony B (2011) Pilot evaluation of the efficacy of electronic monitoring on a demersal gillnet vessel as an alternative to human observers. Fisheries Research Division, Western Australian Fisheries and Marine Research Laboratories, Perth, Australia

    Google Scholar 

  • FAO (2012) Recreational fisheries. FAO technical guidelines for responsible fisheries, no. 13, FAO, Rome

  • FAO and Worldfish Centre (2008) Small-scale fisheries- a global overview with emphasis on developing countries. FAO and Worldfish Centre, Rome

    Google Scholar 

  • Fisher W (2013) Current issues, status and applications of GIS to inland fisheries. In: Meaden GJ, Aguilar-Manjarrez J (eds) Advances in geographic information systems and remote sensing for fisheries and aquaculture. FAO fisheries and aquaculture technical paper 552. FAO, Rome, pp 269–296

  • Francis RICC (1988) Maximum likelihood estimation of growth and growth variability from tagging data. NZ J Mar Freshw Res 22:43–51

    Article  Google Scholar 

  • Frank KT, Petrie B, Shackell NL (2007) The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol Evol 22:236–242

    PubMed  Article  Google Scholar 

  • Froese R (2004) Keep it simple: three indicators to deal with overfishing. Fish Fish 5:86–91

    Article  Google Scholar 

  • Froese R, Pauly D (2014) FishBase. World Wide Web electronic publication. http://www.fishbase.org. Accessed 27 July 2015

  • Froese R, Walters C, Pauly D, Winker H, Weyl OL, Demirel N, Tsikliras AC, Holt SJ (2015) A critique of the balanced harvesting approach to fishing. ICES J Mar Sci fsv122

  • Fulton EA, Link JS, Kaplan IC, Savina-Rolland M, Johnson P, Ainsworth C, Horne P, Gorton R, Gamble RJ, Smith ADM, Smith DC (2011) Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish 12:171–188

    Article  Google Scholar 

  • Gedamke T, Hoenig JM, Musick JA, DuPaul WD, Gruber SH (2007) Using demographic models to determine intrinsic rate of increase and sustainable fishing for elasmobranchs: Pitfalls, advances, and applications. N Am J Fish Manag 27:605–618

    Article  Google Scholar 

  • George DG, Winfield IJ (2000) Factors influencing the spatial distribution of zooplankton and fish in Loch Ness, UK. Freshw Biol 43:557–570

    Article  Google Scholar 

  • Gerdeaux D, Janjua MY (2009) Contribution of obligatory and voluntary fisheries statistics to the knowledge of whitefish population in Lake Annecy (France). Fish Res 96:6–10

    Article  Google Scholar 

  • Getabu A, Tumwebaze R, MacLennan DN (2003) Spatial distribution and temporal changes in the fish populations of Lake Victoria. Aquat Living Resour 16:159–165

    Article  Google Scholar 

  • Gons HJ, Rijkeboer M, Ruddick KG (2002) A chlorophyll-retrieval algorithm for satellite imagery (medium resolution imaging spectrometer) of inland and coastal waters. J Plankton Res 24:947–951

    CAS  Article  Google Scholar 

  • Gozlan RE, Britton JR, Cowx I, Copp GH (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786

    Article  Google Scholar 

  • Gutowsky LF, Gobin J, Burnett NJ, Chapman JM, Stoot LJ, Bliss S (2013) Smartphones and digital tablets: emerging tools for fisheries professionals. Fisheries 38:455–461

    Article  Google Scholar 

  • Gulland JA, Rosenberg AA (1992) A review of length-based approaches to assessing fish stocks. FAO fisheries technical paper 323. UN Food and Agricultural Organisation, Rome, Italy

  • Haddon M (ed; 2011) Modelling and Quantitative Methods in Fisheries. Second Ed. CRC Press, Boca Raton, Florida, USA, 449 pp

  • Halls AS, Welcomme RL (2004) Dynamics of river fish populations in response to hydrological conditions: a simulation study. River Res Appl 20:985–1000

    Article  Google Scholar 

  • Hamilton P, Nicol E, De-Bastos E, Williams RJ, Sumpter JP, Jobling S, Stevens JR, Tyler CR (2014) Populations of a cyprinid fish are self-sustaining despite widespread feminization of males. BMC Biol 12:1. doi:10.1186/1741-7007-12-1

    PubMed  PubMed Central  Article  Google Scholar 

  • Hansen MJ, Lester NP, Krueger CC (2010) Natural lakes. In: Hubert WA, Quist MC (eds) Inland Fisheries Management in North America, 3rd edn. American Fisheries Society, Bethesda, pp 449–500

    Google Scholar 

  • Hasan MR, Middendorp HA (1998) Optimising stocking density of carp fingerlings through modeling of the carp yield in relation to average water transparency in enhanced fisheries semi-closed waterbodies in western Bangladesh. FAO Fisheries Technical Paper 347, FAO, Rome, 133-140 pp

  • Havens KE (1999) Correlation is not causation: a case study of fisheries, trophic state and acidity in Florida (USA) lakes. Env Pollution 106:1–4

    CAS  Article  Google Scholar 

  • Havens KE, Aumen NG (2000) Hypothesis-driven experimental research is necessary for natural resource management. Env Manage 25:1–7

    Article  Google Scholar 

  • Hayes DB, Ferreri CP, Taylor WW (1996) Linking fish habitat to their population dynamics. Can J Fish Aquat Sci 53(Suppl. 1):383–390

    Article  Google Scholar 

  • Healey MC (1980) Growth and recruitment in experimentally exploited lake whitefish (Coregonus clupeaformis) populations. Can J Fish Aquat Sci 37:255–267

    Article  Google Scholar 

  • Henderson HF, Welcomme RL (1974) The relationship of yield to morpho–edaphic index and numbers of fishermen in African inland fisheries. CIFA Occassional Paper 1, CIFA, Rome, 19 pp

  • Hilborn R (1976) Optimal exploitation of multiple stocks by a common fishery: a new methodology. J Fish Res Board Can 33:1–5

    Article  Google Scholar 

  • Hilborn R (2007) Defining success in fisheries and conflicts in objectives. Mar Pol 31:153–158

    Article  Google Scholar 

  • Hilborn R (2016) Correlation and causation in fisheries and watershed management. Fisheries 41:18–25

    Article  Google Scholar 

  • Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Springer, New York

    Book  Google Scholar 

  • Hind EJ (2014) A review of the past, the present, and the future of fishers’ knowledge research: a challenge to established fisheries science. ICES J Mar Sci. doi:10.1093/icesjms/fsu169

    Google Scholar 

  • Hoenig JM (1983) Empirical use of longevity data to estimate mortality-rates. Fish Bull 81:898–903

    Google Scholar 

  • Hogg SE, Lester NP, Ball H (2010a) 2005 Survey of Recreational Fishing in Canada: Results for Fisheries Management Zones of Ontario. Applied Research and Development Branch, Ontario Ministry of Natural Resources, Peterborough, Ontario 32 pp

    Google Scholar 

  • Hogg SE, Lester NP, Ball H (2010b) The Effectiveness of the 2005 Recreational Fishing Survey to Deliver Spatially Explicit Estimates of Fishing Effort and Harvest: Analysis for Selected Ontario Lakes. Applied Research and Development Branch, Ontario Ministry of Natural Resources, Peterborough

    Google Scholar 

  • Hoggarth DD, Kirkwood GP (1996) Technical interactions in tropical floodplain fisheries of south and south-east Asia. In: Cowx IG (ed) Stock Assessment in Inland Fisheries. Fishing News Books, Oxford, pp 280–292

    Google Scholar 

  • Hoggarth DD, Cowan VJ, Halls AS, Aeron-Thomas M, McGregor JA, Garaway CJ et al. (1999) Management Guidelines for Asian Floodplain River Fisheries. FAO Fisheries Technical Paper 348, FAO, Rome, 117 pp

  • Hoggarth DD, Abeyasekera S, Arthur R, Beddington JR, Burn RW, Halls AS, Kirkwood GP, McAllister M, Medley P, Mees CC, Parkes GB, Pilling GM, Wakeford RC, Welcomme RL (2006) Stock assessment for fishery management: A framework guide to the use of the FMSP fish stock assessment tools. FAO Fisheries Technical Paper No. 487. Rome, FAO. (Part 1)

  • Holmes JA, Cronkite GM, Enzenhofer HJ, Mulligan TJ (2006) Accuracy and precision of fish-count data from a “dual-frequency identification sonar” (DIDSON) imaging system. ICES J Mar Sci 63:543–555

    Article  Google Scholar 

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29:253–268

    Article  Google Scholar 

  • Hordyk A, Ono K, Sainsbury K, Loneragan N, Prince J (2015a) Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES J Mar Sci 72:204–216

    Article  Google Scholar 

  • Hordyk A, Ono K, Sainsbury K, Loneragan N, Prince J (2015b) A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J Mar Sci 72:217–231

    Article  Google Scholar 

  • Hortle KG, Suntornratana U (2008) Socio-economics of the fisheries of the lower Songkhram River Basin, northeast Thailand (No. 17). Vientiane, Lao PDR: Mekong River Commission, Ventiane, Lao, PDR, 110 pp

  • IFReDI (2013) Food and Nutrition Security Vulnerability to Mainstream Hydropower Dam Development in Cambodia: Impacts of mainstream dams on fish yield and consumption in Cambodia. Inland Fisheries Research and Development Institute, Phnom Penh

    Google Scholar 

  • Inland Fisheries Ireland (2012) http://www.fisheriesireland.ie/Invasive-species-news/ifi-invasive-species-app.html. Last accessed: Jan. 20, 2015

  • Isaac VJ, Ruffino ML (1996) Population dynamics of tambaqui, Colossoma macropomum Cuvier, in the Lower Amazon, Brazil. Fish Manage Ecol 3:315–333

    Article  Google Scholar 

  • Jensen AL (1976) Assessment of the United States lake whitefish (Coregonus clupeaformis) fisheries of Lake Superior, Lake Michigan, and Lake Huron. J Fish Res Board Can 33:747–759

    Article  Google Scholar 

  • Jensen AL (1991) Multiple species fisheries with no ecological interaction: two-species Schaefer model applied to lake trout and lake whitefish. ICES J Mar Sci 48:167–171

    Article  Google Scholar 

  • Jensen R (2007) The digital provide: information (technology), market performance, and welfare in the South Indian fisheries sector. Q J Econ 122:879–924

    Article  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4:150–157

    Article  Google Scholar 

  • Jiddawi NS, Öhman MC (2002) Marine fisheries in Tanzania. Ambio 31:518–527

    PubMed  Article  Google Scholar 

  • Jones ML, Koonce JF, O’Gorman R (1993) Sustainability of hatchery-dependent salmonine fisheries in Lake Ontario: the conflict between predator demand and prey supply. Trans Am Fish Soc 122:1002–1018

    Article  Google Scholar 

  • Kang B, He D, Perrett L, Wang H, Hu W, Deng W, Wu Y (2009) Fish and fisheries in the Upper Mekong: current assessment of the fish community, threats and conservation. Rev Fish Biol Fisher 19:465–480

    Article  Google Scholar 

  • Kareiva P, Marvier M, McClure M (2000) Recovery and management options for spring/summer chinook salmon in the Columbia River Basin. Science 290(5493):977–979

    CAS  PubMed  Article  Google Scholar 

  • Kitchell JF, Cox SP, Harvey CJ, Johnson TB, Mason DM, Schoen KK et al (2000) Sustainability of the Lake Superior fish community: interactions in a food web context. Ecosystems 3:545–560

    Article  Google Scholar 

  • Koehn JD (2015) Managing people, water, food and fish in the Murray-Darling Basin, southeastern Australia. Fish Manage Ecol 22:25–32

    Article  Google Scholar 

  • Koehn JD, Lintermans M (2012) A strategy to rehabilitate fishes of the Murray-Darling Basin, south-eastern Australia. Endangered Species Research 16:165–181

    Article  Google Scholar 

  • Koehn JD, Todd CR (2012) Balancing conservation and recreational fishery objectives for a threatened species, the Murray cod, Maccullochella peelii. Fish Manag Ecol 19:410–425

    Article  Google Scholar 

  • Kolding J, van Zwieten PAM (2014) Sustainable fishing of inland waters. J Limnol 73:132–148

    Article  Google Scholar 

  • Kolding J, Musando B, Songore N (2003) Inshore fisheries and fish population changes in Lake Kariba. In: Jul-Larsen E, Kolding J, Overå R, Raakjær J, Paul N, van Zwieten AM (eds) Management, co-Management or no management? Major dilemmas in southern African freshwater fisheries case studies. FAO Technical Fisheries Report 426/2, FAO, Rome, 67-99

  • Lackey RT (1999) Radically contested assertions in ecosystem management. Journal of Sustainable Forestry 9:21–34

    Article  Google Scholar 

  • Laë R, Lek S, Moreau J (1999) Predicting fish yield of African lakes using neural networks. Ecol Mod 120:325–335

    Article  Google Scholar 

  • Lapointe NWR, Cooke SJ, Imhof JG, Boisclair D, Casselman JM, Curry RA et al (2014) Principles for ensuring healthy and productive freshwater ecosystems that support sustainable fisheries. Environ Rev 22:1–25

    Article  Google Scholar 

  • Larkin PA (1977) An epitaph for the concept of maximum sustained yield. T Am Fish Soc 106:1–11

    Article  Google Scholar 

  • Lavrakas J, Black W, Lawson A (2012) At-sea electronic data logging and data entry for salmon fisheries. Advanced Research Corp. Report No. PSC-2012-002. Advanced Research Corporation, Newport, Oregon, USA, 23 pp. http://www.pacificfishtrax.org/media/SeaTab_Final_Report.pdf Last accessed Feb. 7, 2015

  • Leach JH, Dickie LM, Shuter BJ, Borgmann U, Hyman J, Lysack W (1987) A review of methods for prediction of potential fish production with application to the Great Lakes and Lake Winnipeg. Can J Fish Aquat Sci 44(S2):s471–s485

    Article  Google Scholar 

  • Lesht BM, Barbiero RP, Warren GJ (2013) A band-ratio algorithm for retrieving open-lake chlorophyll values from satellite observations of the Great Lakes. J Great Lakes Res 39:138–152

    CAS  Article  Google Scholar 

  • Lester NP, Dunlop WI (2003) Monitoring the state of the lake trout resource: A landscape approach. In: Gunn J, Steedman R, Ryder R (eds) Boreal watersheds: lake trout ecosystems in a changing environment. CRC Press, Boca Raton, pp 293–328

    Google Scholar 

  • Lester NP, Marshall TR, Armstrong K, Dunlop WI, Ritchie B (2003) A broad scale approach to management of Ontario’s recreational fisheries. N Am J Fish Manage 23:1312–1328

    Article  Google Scholar 

  • Lester NP, Dextrase AJ, Kushneriuk RS, Rawson MR, Ryan PA (2004) Light and temperature: key factors affecting walleye abundance and production. T Am Fish Soc 133:588–605

    Article  Google Scholar 

  • Link JS (2002) Ecological considerations in fisheries management: when does it matter? Fisheries 27(4):10–17

    Article  Google Scholar 

  • Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP et al (2012) Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol 21:2555–2558

    PubMed  PubMed Central  Article  Google Scholar 

  • Lorenzen K (2005) Population dynamics and potential of fisheries stock enhancement: practical theory for assessment and policy analysis. Philos T R Soc B 360:171–189

    Article  Google Scholar 

  • Lorenzen K (2008) Understanding and managing enhancement fisheries systems. Rev Fish Sci 16:10–23

    Article  Google Scholar 

  • Lorenzen K, Garaway CJ, Chamsingh B, Warren TJ (1998a) Effects of access restrictions and stocking on small water body fisheries in Laos. J Fish Biol 53(sA), 345-357

  • Lorenzen K, Juntana J, Bundit J, Tourongruang D (1998b) Assessing culture fisheries practices in small water bodies: a study of village fisheries in Northeast Thailand. Aquac Res 29:211–224

    Article  Google Scholar 

  • Lorenzen K, Almeida O, Arthur R, Garaway C, Nguyen Khoa S (2006) Aggregated yield and fishing effort in multi-species fisheries: an empirical analysis. Can J Fish Aquat Sci 63:1334–1343

    Article  Google Scholar 

  • Lorenzen K, Smith L, Nguyen Khoa S, Burton M, Garaway C (2007) Guidance Manual: Management of Impacts of Irrigation Development on Fisheries. International Water Management Institute, Colombo, Sri Lanka. 161 pp

    Google Scholar 

  • Lucas MC, Baras E (2000) Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish 1:283–316

    Article  Google Scholar 

  • Ludwig D, Walters CJ (1985) Are age-structured models appropriate for catch-effort data? Can J Fish Aquat Sci 42:1066–1072

    Article  Google Scholar 

  • Lynch AJ, Cooke SJ, Deines A, Bower S, Bunnell DB, Cowx IG, Nguyen VM, Nonher J et al (2016) The social, economic, and ecological importance of inland fishes and fisheries. Environ Rev 24:115–121

  • MacGregor BW, Peterman RM, Pyper BJ, Bradford MJ (2002) A decision analysis framework for comparing experimental designs of projects to enhance Pacific salmon. N Am J Fish Manag 22(2):509–527

    Article  Google Scholar 

  • MacLennan DN (1990) Acoustical measurement of fish abundance. J Acoust Soc Am 87:1–15

    Article  Google Scholar 

  • Malvestuto SP (1983) Sampling the recreational fishery. In: Neilsen LA, Johnson DL (eds) Fisheries techniques. American Fisheries Society, Bethesda, pp 397–420

    Google Scholar 

  • Matsuishi T, Muhoozi L, Mkumbo O, Budeba Y, Njiru M, Asila A et al (2006) Are the exploitation pressures on the Nile perch fisheries resources of Lake Victoria a cause for concern? Fish Manag Ecol 13:53–71

    Article  Google Scholar 

  • Maxwell SL (2007) Hydroacoustics: Rivers. In: Johnson DH, Shier BM, O’Neal JS, Knutzen JA, Augerot X, O’Neill TA, Pearsons TN (eds) Salmonid field protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, pp 133–152

    Google Scholar 

  • McAllister MK, Peterman RM (1992) Experimental design in the management of fisheries: a review. N Am J Fish Manag 12:1–18

    Article  Google Scholar 

  • Medina Pizzali AF (1988) Small-scale fish landing and marketing facilities. FAO fisheries technical paper 291, FAO, Rome

  • Medley PAH (2009) Tools to conduct a participatory fishery (ParFish) assessment using Bayesian decision analysis. Proc Gulf Caribb Fish Inst 61:237–245

    Google Scholar 

  • Mertz G, Myers RA (1998) A simplified formulation for fish production. Can J Fish Aquat Sci 55:478–484

    Article  Google Scholar 

  • Methot RD Jr, Wetzel CR (2013) Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fish Res 142:86–99

    Article  Google Scholar 

  • Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata Z (2011) Surveillance of fish species composition using environmental DNA. Limnology 13:193–197

    Article  CAS  Google Scholar 

  • Minns CK (2009) The potential future impact of climate warming and other human activities on the productive capacity of Canada’s lake fisheries: a meta-model. Aquat Ecosyst Health 12:152–167

    Article  Google Scholar 

  • Moreau J, Ligtvoet W, Palomares MLD (1993) Trophic relationship in the fish community of Lake Victoria, Kenya, with emphasis on the impact of Nile perch (Lates niloticus). In: Trophic models of aquatic ecosystems. ICLARM conference proceedings 26, pp 144–152

  • Muller RG, Taylor RG (2013) The 2013 stock assessment update of Common Snook, Centropomus undecimalis. Report 2013-004. Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg

    Google Scholar 

  • Myers RA (2001) Stock and recruitment: generalizations about maximum reproductive rate, density-dependence and variability using meta-analytic approaches. ICES J Mar Sci 58:937–951

    Article  Google Scholar 

  • Newman D, Carruthers T, MacCall A, Porch C, Suatoni L (2014) Improving the science and management of data-limited fisheries: an evaluation of current methods and recommended approaches. Natural Resources Defense Council, NRDC report R, 14-09

  • Nguyen Khoa S, Lorenzen K, Garaway C, Chamsingh B, Siebert DJ, Randone M (2005) Impacts of irrigation on fisheries in rain-fed rice-farming landscapes. J Appl Ecol 42:892–900

    Article  Google Scholar 

  • Olden JD, Poff NL, Bestgen KR (2006) Life-history strategies predict fish invasions and extirpations in the Colorado River basin. Ecol Monogr 76:25–40

    Article  Google Scholar 

  • Olson MH, Carpenter SR, Cunningham P, Gafny S, Herwig BR, Nibbelink NP et al (1998) Managing macrophytes to improve fish growth: a multi-lake experiment. Fisheries 23:6–12

    Article  Google Scholar 

  • Ontario Ministry of Natural Resources (OMNR; (2005) A new ecological framework for recreational fisheries management in Ontario—project overview and timelines. Fisheries Section, Fish and Wildlife Branch, Peterborough

    Google Scholar 

  • Papenfuss JT, Phelps N, Fulton D, Venturelli PA (2015) Smartphones reveal angler behavior: a case-study of a popular mobile fishing application in Alberta, Canada. Fisheries 40:318–327

    Article  Google Scholar 

  • Parent E, Rivot E (2012) Introduction to hierarchical Bayesian modeling for ecological data. CRC Press, Boca Raton

    Google Scholar 

  • Parkkila K, Arlinghaus R, Artell J, Gentner B, Haider W, Aas O et al (2010) Methodologies for assessing socio-economic benefits of European Inland Recreational Fisheries. European Inland Fisheries Advisory Commission Occasional Paper 46. FAO, Ankara

    Google Scholar 

  • Pauly D (1980) On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J Conseil 39:175–192

    Article  Google Scholar 

  • Pauly D (1987) A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrates. In: ICLARM conference proceedings, vol 13, pp 7–34

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F (1998) Fishing down marine food webs. Science 279:860–863

    CAS  PubMed  Article  Google Scholar 

  • Pauly D, Christensen V, Walters C (2000) Ecopath, ecosim, and ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706

    Article  Google Scholar 

  • Peterson JT, Paukert CP (2009) Converting nonstandard fish sampling data to standardized data. In: Bonar SA, Hubert WA, Willis DW (eds) Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, pp 195–215

    Google Scholar 

  • Pfisterer CT (2002) Estimation of Yukon River salmon passage in 2001 using hydroacoustic methodologies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional information report no. 3A02-24. Alaska Department of Fish and Game, Anchorage, Alaska, USA

  • Pido MD, Pomeroy RS, Carlos MB (1996) A handbook for rapid appraisal of fisheries management systems (version 1). ICLARM, Manila

    Google Scholar 

  • Pikitch E, Santora EA, Babcock A, Bakun A, Bonfil R, Conover DO et al (2004) Ecosystem-based fishery management. Science 305:346–347

    CAS  PubMed  Article  Google Scholar 

  • Pine WE, Pollock KH, Hightower JE, Kwak TJ, Rice JA (2003) A review of tagging methods for estimating fish population size and components of mortality. Fisheries 28(10):10–23

    Article  Google Scholar 

  • Pitcher TJ (2016) Assessment and modelling of freshwater fisheries. In: Craig JF (ed) Freshwater fisheries ecology. Wiley, Oxford, pp 483–499

    Google Scholar 

  • Pollock KH, Jones CM, Brown TL (1994) Angler survey methods and their applications in fisheries management. American Fisheries Society, Special Publication 25, American Fisheries Society, Bethesda

    Google Scholar 

  • Pope KL, Willis DW (1996) Seasonal influences on freshwater fisheries sampling data. Rev Fish Sci 4:57–73

    Article  Google Scholar 

  • Power M (2007) Fish population bioassessment. In: Guy CS, Brown ML (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, pp 561–624

    Google Scholar 

  • Pretty JL, Harrison SSC, Shepherd DJ, Smith C, Hildrew AG, Hey RD (2003) River rehabilitation and fish populations: assessing the benefit of instream structures. J Appl Ecol 40:251–265

    Article  Google Scholar 

  • Prévost E, Parent E, Crozier W, Davidson I, Dumas J, Guðbergsson G, Hindar K, McGinnity P, MacLean J, Sættem LM (2003) Setting biological reference points for Atlantic salmon stocks: transfer of information from data-rich to sparse-data situations by Bayesian hierarchical modelling. ICES J Mar Sci 60:1177–1193

    Article  Google Scholar 

  • Punt AE, Smith ADM (2001) The gospel of maximum sustainable yield in fisheries management: birth, crucifixion and reincarnation. In: Reynolds JD, Mace GM, Redford KH, Robinson JG (eds) Conservation of exploited species. Cambridge University Press, Cambridge, pp 41–66

    Google Scholar 

  • Punt AE, Butterworth DS, Moor CL, De Oliveira JA, Haddon M (2016) Management strategy evaluation: best practices. Fish Fish 17:303–334

  • Rakowitz G, Berger B, Kubecka J, Keckeis H (2008) Functional role of environmental stimuli for the spawning migration in Danube nase Chondrostoma nasus (L.). Ecol Freshw Fish 17:502–514

    Article  Google Scholar 

  • Ranta E, Lindström K, Salojärvi K (1992) Water quality, fishing effort and fish yield in lakes. Fish Res 15:105–119

    Article  Google Scholar 

  • Ricard D, Minto C, Jensen OP, Baum JK (2012) Evaluating the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish 13:380–398

    Article  Google Scholar 

  • Rice J (2011) Managing fisheries well: delivering the promises of an ecosystem approach. Fish Fish 12:209–231

    Article  Google Scholar 

  • Richter BD, Braun DP, Mendelson MA, Master LL (1997) Threats to imperiled freshwater fauna. Conserv Biol 11:1081–1093

    Article  Google Scholar 

  • Ricker WE (1963) Big effects from small causes: two examples from fish population dynamics. J Fish Res Board Can 20:257–264

    Article  Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Canada 191:1–382

  • Rochet M, Trenkel VM (2003) Which community indicators can measure the impact of fishing? A review and proposals. Can J Fish Aquat Sci 60:86–99

    Article  Google Scholar 

  • Rose KA, Cowan JH, Winemiller KO, Myers RA, Hilborn R (2001) Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2:293–327

    Article  Google Scholar 

  • Rosenberger AE, Dunham JB (2005) Validation of abundance estimates from mark–recapture and removal techniques for rainbow trout captured by electrofishing in small streams. N Am J Fish Manag 25:1395–1410

    Article  Google Scholar 

  • Ryder RA (1965) A method for estimating potential fish production of north-temperate lakes. Trans Am Fish Soc 94:214–218

    Article  Google Scholar 

  • Ryder RA (1982) The morphoedaphic index—use, abuse, and fundamental concepts. Trans Am Fish Soc 111:54–164

    Article  Google Scholar 

  • Ryder RA, Kerr SR, Loftus KH, Regier HA (1974) Morphoedaphic index, a fish yield estimator—review and evaluation. J Fish Res Board Can 31:663–688

    Article  Google Scholar 

  • Scheuerell MD, Hilborn R, Ruckelshaus MH, Bartz KK, Lagueux KM, Haas AD, Rawson K (2006) The Shiraz model: a tool for incorporating anthropogenic effects and fish-habitat relationships in conservation planning. Can J Fish Aquat Sci 63:1596–1607

    Article  Google Scholar 

  • Schlesinger DA, Regier HA (1982) Climatic and morphoedaphic indexes of fish yield from natural lakes. Trans Am Fish Soc 111:141–150

    Article  Google Scholar 

  • Schobernd ZH, Bacheler NM, Conn PB (2013) Examining the utility of alternative video monitoring metrics for indexing reef fish abundance. Can J Fish Aquat Sci 71:464–471

    Article  Google Scholar 

  • SEAFDEC (2005) Handbook on Collecting Fishery Statistics for Inland and Coastal Fisheries, Southeast Asian Fisheries Development Center, Bangkok, Thailand. http://www.seafdec.org/download/handbook-on-collecting-fishery-statistics/. Last accessed Dec 2014

  • Seber GAF (1982) The estimation of animal abundance. Wiley, Chichester

    Google Scholar 

  • Shankar B, Halls A, Barr J (2005) The effects of surface water abstraction for rice irrigation on floodplain fish production in Bangladesh. Int J Water 3:61–83

    Article  Google Scholar 

  • Shepherd JG, Pope JG (2002) Dynamic pool models I: interpreting the past using virtual population analysis. In: Hart PJB, Reynolds JD (eds) Handbook of fish biology and fisheries, vol 2., FisheriesBlackwell Science, Oxford, pp 127–136

    Google Scholar 

  • Shin YJ, Cury P (2001) Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquat Living Resour 14:65–80

    Article  Google Scholar 

  • Shuter BJ (1990) Population-level indicators of stress. American Fisheries Society Symposium 8, Bethesda, Maryland, USA, pp 145–166

  • Shuter BJ, Jones ML, Korver RM, Lester NP (1998) A general life history based model for regional management of fish stocks: the inland lake trout fisheries of Ontario. Can J Fish Aquat Sci 55:2161–2177

    Article  Google Scholar 

  • Smith LED, Nguyen Khoa S, Lorenzen K (2005) Livelihood functions of inland fisheries: policy implications in developing countries. Water Policy 7:359–383

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358

    Article  Google Scholar 

  • Stunz GW, Johnson MJ, Yoskowitz D, Robillard M, Wetz J (2014) iSnapper: design, testing, and analysis of an iPhone-based application as an electronic logbook in the for-hire Gulf of Mexico red snapper fishery. Grant NA10NMF4540111 Final Report. Southeast Fisheries Science Center, Miami

    Google Scholar 

  • Swingle HS (1950) Relationships and dynamics of balanced and unbalanced fish populations. Alabama Agricultural Experiment Station Bulletin, Alabama Polytechnical Institute, Auburn

    Google Scholar 

  • Swingle HS (1956) Appraisal of methods of fish population study-Part IV: determination of balance in farm ponds. Trans North Am Wildl Nat Res 21:298–322

    Google Scholar 

  • Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata ZI (2012) Estimation of fish biomass using environmental DNA. PLoS One 7(4):e35868

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Thomsen P, Kielgast JOS, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP et al (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    CAS  PubMed  Article  Google Scholar 

  • Trujillo P, Piroddi C, Jacquet J (2012) Fish farms at sea: the ground truth from Google Earth. PLoS One 7(2):e30546

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tsehaye I, Jones ML, Bence JR, Brenden TO, Madenjian CP, Warner DM (2014) A multispecies statistical age-structured model to assess predator–prey balance: application to an intensively managed Lake Michigan pelagic fish community. Can J Fish Aquat Sci 71:627–644

    Article  Google Scholar 

  • Tumwebaze R, Cowx IG, Ridgway S, Getabu A, MacLennan DN (2007) Spatial and temporal changes in the distribution of Rastrineobola argentea in Lake Victoria. Aquat Ecosyst Health 10:398–406

    Article  Google Scholar 

  • Tweddle D, Cowx IG, Weyl OLF, Peel R (2015) Challenges in fisheries management in the Zambezi, one of the great rivers of Africa. Fish Manag Ecol 22:99–111

    Article  Google Scholar 

  • van Poorten BT, Arlinghaus R, Daedlow K, Haertel-Borer SS (2011) Social-ecological interactions, management panaceas, and the future of wild fish populations. Proc Natl Acad Sci 108:12554–12559

    PubMed  PubMed Central  Article  Google Scholar 

  • van Poorten BT, Carruthers TR, Ward HG, Varkey DA (2015) Imputing recreational angling effort from time-lapse cameras using an hierarchical Bayesian model. Fish Res 172:265–273

    Article  Google Scholar 

  • Vanni MJ, Arend KK, Bremigan MT, Bunnell DB, Garvey JE, Gonzalez MJ et al (2005) Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. Bioscience 55:155–167

    Article  Google Scholar 

  • Vaughan H, Brydges T, Fenech A, Lumb A (2001) Monitoring long-term ecological changes through the ecological monitoring and assessment network: science-based and policy relevant. Environ Monit Assess 67:3–28

    CAS  PubMed  Article  Google Scholar 

  • Vincenzi S, Crivelli AJ, Jesensek D, Rubin JF, Poizat G (2008) Potential factors controlling the population viability of newly introduced endangered marble trout populations. Biol Conserv 141:198–210

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    PubMed  Article  CAS  Google Scholar 

  • Walters CJ, Martell SJ (2002) Stock assessment needs for sustainable fisheries management. Bull Mar Sci 70:629–638

    Google Scholar 

  • Walters CJ, Martell SJ (2004) Fisheries ecology and management. Princeton University Press, Princeton

    Google Scholar 

  • Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308:1280–1284

    CAS  PubMed  Article  Google Scholar 

  • Welcomme RL (1976) Some general and theoretical considerations on the fish yield of African rivers. J Fish Biol 8:351–364

    Article  Google Scholar 

  • Welcomme RL (1985) River fisheries. FAO fisheries technical paper 262, FAO, Rome, Italy

  • Welcomme RL (1988) International introductions of inland aquatic species. FAO fisheries technical paper 294, FAO, Rome, Italy

  • Welcomme RL (1999) A review of a model for qualitative evaluation of exploitation levels in multi-species fisheries. Fish Manag Ecol 6:1–19

    Article  Google Scholar 

  • Welcomme RL, Hagborg D (1977) Towards a model of a floodplain fish population and its fishery. Env Biol Fish 2:7–24

    Article  Google Scholar 

  • Welcomme RL, Cowx IG, Coates D, Béné C, Funge-Smith S, Halls AS, Lorenzen K (2010) Inland capture fisheries. Philos Trans R Soc B 365:2881–2896

    Article  Google Scholar 

  • Weyl OLF, Booth AJ, Mwakiyongo KR, Mandere D (2005) Management recommendations for Copadichromis chrysonotus (Pisces: Cichlidae) in Lake Malombe, Malawi, based on per-recruit analysis. Fish Res 71:165–173

    Article  Google Scholar 

  • Wilde GR (1997) Largemouth bass fishery responses to length limits. Fisheries 22:14–23

    Article  Google Scholar 

  • Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81:225–241

    Article  Google Scholar 

  • Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aqua Sci 49:2196–2218

    Article  Google Scholar 

  • Winfield IJ, Onoufriou C, O’Connell MJ, Godlewska M, Ward RM, Brown AF, Yallop ML (2007) Assessment in two shallow lakes of a hydroacoustic system for surveying aquatic macrophytes. In: Gulati RD, Lammens E, De Pauw N, Van Donk E (eds) Shallow Lakes in a changing world. Netherlands Springer, Dordrecht, pp 111–119

    Chapter  Google Scholar 

  • Wyatt RJ (2002) Estimating riverine fish population size from single-and multiple-pass removal sampling using a hierarchical model. Can J Fish Aquat Sci 59:695–706

    Article  Google Scholar 

  • Youn SJ, Taylor WW, Lynch AJ, Cowx IG, Beard TD, Bartley D, Wu F (2014) Inland capture fishery contributions to global food security and threats to their future. Global Food Security 3:142–148

    Article  Google Scholar 

  • Zale AV, Parrish DL, Sutton TM (2012) Fisheries techniques. American Fisheries Society, Bethesda

    Google Scholar 

  • Zhao Y, Kocovsky PM, Madenjian CP (2013) Development of a stock–recruitment model and assessment of biological reference points for the Lake Erie Walleye fishery. N Am J Fish Manag 33:956–964

    Article  Google Scholar 

Download references

Acknowledgments

This paper evolved from the discussions at the Biological Assessment Panel of the UN FAO/Michigan State University World Inland Fisheries Conference. We acknowledge the vision of William Taylor, Devin Bartley and other members of the organizing committee in putting this meeting together. Lorenzen is partially supported by the Florida Fish and Wildlife Conservation Commission. Cooke is supported by the Canada Research Chairs program, the Natural Sciences and Engineering Research Council of Canada and Carleton University. Cooke and Bower are further supported by the Social Sciences and Humanities Research Council via the Too Big to Ignore Network. This article is Contribution 2049 of the U.S. Geological Survey Great Lakes Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Cooke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorenzen, K., Cowx, I.G., Entsua-Mensah, R.E.M. et al. Stock assessment in inland fisheries: a foundation for sustainable use and conservation. Rev Fish Biol Fisheries 26, 405–440 (2016). https://doi.org/10.1007/s11160-016-9435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9435-0

Keywords

  • Assessment tools
  • Fisheries management
  • Inland fisheries
  • Sustainable fisheries