Skip to main content

Advertisement

Log in

Diversity of juvenile Chinook salmon life history pathways

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achord S, Zabel RW, Sandford BP (2007) Migration timing, growth, and estimated parr-to-smolt survival rates of wild Snake River spring–summer Chinook salmon from the Salmon River basin, Idaho, to the lower Snake River. Trans Am Fish Soc 136:142–154. doi:10.1577/T05-308.1

    Article  Google Scholar 

  • Achord S, Sandford BP, Smith SG, Wassard WR, Prentice EF (2011) In-stream monitoring of PIT-tagged wild spring/summer Chinook salmon juveniles in Valley Creek, Idaho. Am Fish Soc Symp 76:1–14

    Google Scholar 

  • Adams MJ (2008) Graph decompositions for demographic loop analysis. J Math Biol 57:209–211

    Article  PubMed  Google Scholar 

  • Arismendi I, Penaluna BE, Dunham JB et al (2014) Differential invasion success of salmonids in southern Chile: patterns and hypotheses. Rev Fish Biol Fish 24:919–941. doi:10.1007/s11160-014-9351-0

    Article  Google Scholar 

  • Augerot X (2005) Atlas of Pacific Salmon. University of California Press, Berkeley

    Google Scholar 

  • Baerwald MR, Meek H, Stephend MR, Nagarajan AM, Goodbla AM, Tomalty KM, Thorgaard GH, May B, Michols M (2016) Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 25:1785–1800. doi:10.1111/mec.13231

    Article  CAS  PubMed  Google Scholar 

  • Beacham TD, Murray CB (1990) Temperature, egg size, and development of embryos and alevins of five species of pacific salmon: a comparative analysis. Trans Am Fish Soc 119:927–945

    Article  Google Scholar 

  • Beacham TD, Murray CB, Withler RE (1989) Age, morphology, and biochemical genetic variation of Yukon River Chinook salmon. Trans Am Fish Soc 118:46–63

    Article  Google Scholar 

  • Beakes MP, Satterthwaite WH, Collins EM et al (2010) Smolt transformation in two California steelhead populations: effects of temporal variability in growth. Trans Am Fish Soc 139:1263–1275. doi:10.1577/T09-146.1

    Article  Google Scholar 

  • Beamer EM, Sartori JC (2000) Skagit Chinook life history study, progress report number 3. Skagit System Cooperative, La Conner

    Google Scholar 

  • Beckman BR, Larsen DA, Lee-Pawlak B, Dickhoff WW (1998) Relation of fish size and growth rate to migration of spring Chinook salmon smolts. N Am J Fish Manag 18:37–41. doi:10.1577/1548-8675(1998)018

    Article  Google Scholar 

  • Beckman BR, Gadberry B, Parkins P, Cooper KA, Arkush KD (2007) State-dependent life history plasticity in Sacramento River winter-run Chinook salmon (Oncorhynchus tshawytscha): interactions among photoperiod and growth modulate smolting and early male maturation. Can J Fish Aquat Sci 271:256–271. doi:10.1139/F07-001

    Article  Google Scholar 

  • Beechie T, Buhle E, Ruckelshaus M, Fullerton A, Holsinger L (2006) Hydrologic regime and the conservation of salmon life history diversity. Biol Conserv 130:560–572. doi:10.1016/j.biocon.2006.01.019

    Article  Google Scholar 

  • Bennett TR, Roni P, Denton K, McHenry M, Moses R (2014) Nomads no more: early juvenile coho salmon migrants contribute to the adult return. Ecol Freshw Fish. doi:10.1111/eff.12144

    Google Scholar 

  • Berejikian B, Ford M (2003) A review of relative fitness of hatchery and natural salmon. National Marine Fisheries Service, Seattle, pp 1–29

    Google Scholar 

  • Berejikian BA, Bradford M, Van Doornik DM, Endicott RC et al (2010) Mating success of alternative male phenotypes and evidence for frequency-dependent selection in Chinook salmon, Oncorhynchus tshawytscha. Can J Fish Aquat Sci 67:1933–1941. doi:10.1139/F10-112

    Article  Google Scholar 

  • Berg OK, Hendry P, Svendsen B, Bech C, Arnekleiv JV, Lohrmann A (2001) Maternal provisioning of offspring and the use of those resources during ontogeny: variation within and between Atlantic salmon families. Funct Ecol 15:13–23. doi:10.1046/j.1365-2435.2001.00473.x

    Article  Google Scholar 

  • Bigler BS, Welch DW, Helle JH (1996) A review of size trends among North Pacific salmon (Oncorhynchus spp.). Can J Fish Aquat Sci 53:455–465

    Article  Google Scholar 

  • Billman EJ, Whitman LD, Schroeder RK, Sharpe CS, Noakes DLG, Schreck CB (2014) Body morphology differs in wild Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A. J Fish Biol 85:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Bjornn TC (1971) Trout and salmon movements in two Idaho streams as related to temperature, food, stream flow, cover, and population density. Trans Am Fish Soc 100:423–438. doi:10.1577/1548-8659(1971)100<423

    Article  Google Scholar 

  • Bottom DL, Jones KK, Cornwell TJ, Gray A, Simenstad CA (2005) Patterns of Chinook salmon migration and residency in the Salmon River estuary (Oregon). Estuar Coast Shelf Sci 64:79–93

    Article  Google Scholar 

  • Bourret SL, Kennedy BP, Caudill CC, Chittaro PM (2014) Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha. J Fish Biol 85:1507–1525. doi:10.1111/jfb.12505

    Article  CAS  PubMed  Google Scholar 

  • Bradford MJ, Taylor GC (1997) Individual variation in dispersal behavior of newly emerged Chinook salmon (Oncorhynchus tshawytscha) from the Upper Fraser River, British Columbia. Can J Fish Aquat Sci 54:1585–1592

    Article  Google Scholar 

  • Bradford MJ, Grout JA, Moodie S (2001) Ecology of juvenile Chinook salmon in a small non-natal stream of the Yukon River drainage and the role of ice conditions on their distribution and survival. Can J Zool 79:2043–2054. doi:10.1139/cjz-79-11-2043

    Article  Google Scholar 

  • Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. In: Margolis L, Wood CC (eds) Smith HD. Sockeye salmon (Oncorhynchus nerka) population biology and future management, Can J Fish Aquat Sci Spec Pub, pp 120–124

    Google Scholar 

  • Brannon EL, Powell MS, Quinn TP, Talbot A (2004) Population structure of Columbia River basin Chinook salmon and steelhead trout. Rev Fish Sci 12:99–232

    Article  Google Scholar 

  • Brennan SR, Zimmerman CE, Fernandez DP, Cerling TE, McPhee MV, Wooller MJ (2015) Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon. Sci Adv 1(e1400124):1–6

    Google Scholar 

  • Brett JR (1979) Environmental factors and growth. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic Press, New York, pp 599–677

    Google Scholar 

  • Byron CJ, Burke BJ (2014) Salmon ocean migration models suggest a variety of population-specific strategies. Rev Fish Biol Fisheries 24:737–756

    Article  Google Scholar 

  • Campbell LA, Bottom DL, Volk EC, Fleming IA (2014) Correspondence between scale morphometrics and scale and otolith chemistry for interpreting juvenile salmon life histories. Trans Am Fish Soc 144:55–67. doi:10.1080/00028487.2014.963253

    Article  Google Scholar 

  • Carl LM, Healey MC (1984) Differences in enzyme frequency and body morphologies of Chinook salmon (Oncorhynchus tshawytscha) in the Nanaimo River, British Columbia. Can J Fish Aquat Sci 41:1070–1077

    Article  CAS  Google Scholar 

  • Carlson SM, Satterthwaite WH (2011) Weakened portfolio effect in a collapsed salmon population complex. Can J Fish Aquat Sci 68:1579–1589. doi:10.1139/F2011-084

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction analysis and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Caswell H, Naiman RJ, Morin R (1984) Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43:123–134

    Article  Google Scholar 

  • Chamberlin JW, Kagley AN, Freh KL, Quinn TP (2011) Movements of yearling Chinook Salmon during the first summer in marine waters of Hood Canal, Washington. Trans Am Fish Soc 140:429–439. doi:10.1080/00028487.2011.572006

    Article  Google Scholar 

  • Christie MR, Ford MJ, Blouin MS (2014) On the reproductive success of early-generation hatchery fish in the wild. Evol Appl 7:1–14. doi:10.1111/eva.12183

    Article  Google Scholar 

  • Claiborne AM, Fisher JP, Hayes SA, Emmett RL (2011) Size at release, size-selective mortality, and age of maturity of Willamette River hatchery yearling Chinook salmon. Trans Am Fish Soc 140:1135–1144. doi:10.1080/00028487.2011.607050

    Article  Google Scholar 

  • Clarke WC, Withier RE, Shelbourn E (1992) Genetic control of juvenile life history pattern in Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 49:2300–2306

    Article  Google Scholar 

  • Clarke WC, Craig Withler RE, Shelbourn E (1994) Inheritance of smolting phenotypes in backcrosses of hybrid stream-type × ocean-type Chinook salmon (Oncorhynchus tshawytscha). Estuaries 17:13–25

    Article  Google Scholar 

  • Connor WP, Burge HL, Waitt R, Bjornn TC (2002) Juvenile life history of wild fall Chinook salmon in the Snake and Clearwater rivers. N Am J Fish Manag 22:703–712

    Article  Google Scholar 

  • Connor WP, Sneva JG, Tiffan KF, Steinhorst RK, Ross D (2005) Two alternative juvenile life history types for fall Chinook Salmon in the Snake River basin. Trans Am Fish Soc 134:41–54. doi:10.1577/T03.-131.3

    Article  Google Scholar 

  • Copeland T, Venditti DA (2009) Contribution of three life history types to smolt production in a Chinook salmon (Oncorhynchus tshawytscha) population. Can J Fish Aquat Sci 66:1658–1665. doi:10.1139/F09-110

    Article  Google Scholar 

  • Copeland T, Venditti D, Barnett BR (2014) The importance of juvenile migration tactics to adult recruitment in stream-type Chinook Salmon populations. Trans Am Fish Soc 143:1460–1475

    Article  Google Scholar 

  • Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Crozier LG, Hendry AP, Lawson PW et al (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in pacific salmon. Evol Appl 1:252–270. doi:10.1111/j.1752-4571.2008.00033.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauble DD, Johnson RL, Garcia AP (1999) Fall Chinook salmon spawning in the tailraces of lower Snake River hydroelectric projects. Trans Am Fish Soc 128:672–679

    Article  Google Scholar 

  • Daum DW, Flannery BG (2011) Canadian-origin Chinook salmon rearing in nonnatal U.S. tributary streams of the Yukon River, Alaska. Trans Am Fish Soc 140:207–220. doi:10.1080/00028487.2011.545004

    Article  Google Scholar 

  • Dittman AH, Quinn TP (1996) Homing in pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91

    PubMed  Google Scholar 

  • Doctor K, Berejikian B, Hard JJ, VanDoornik D (2014) Growth-mediated life history traits of steelhead reveal phenotypic divergence and plastic response to temperature. Trans Am Fish Soc 143:317–333. doi:10.1080/00028487.2013.849617

    Article  Google Scholar 

  • Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ (2013) The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev Camb Philos Soc 88:602–625. doi:10.1111/brv.12019

    Article  PubMed  Google Scholar 

  • Duffy EJ, Beauchamp DA, Buckley RM (2005) Early marine life history of juvenile Pacific salmon in two regions of Puget Sound. Estuar Coast Shelf Sci 64:94–107. doi:10.1016/j.ecss.2005.02.009

    Article  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29(1):51–63

    Article  PubMed  Google Scholar 

  • Ellner SP (1997) You bet your life: life-history strategies in fluctuating environments. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology. Prentice Hall, Upper Saddle River, pp 3–24

    Google Scholar 

  • Evans ML, Neff BD, Heath DD (2010) Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha). J Evol Biol 23:687–698. doi:10.1111/j.1420-9101.2010.01934.x

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick BM (2012) Underappreciated consequences of phenotypic plasticity for ecological speciation. Int J Ecol 2012:1–12

    Article  Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc Biol Sci 267:1517–1523. doi:10.1098/rspb.2000.1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford M, Pearson TD, Murdoch A (2015) The spawning success of early maturing resident hatchery Chinook salmon in a natural river system. Trans Am Fish Soc 144:539–548. doi:10.1080/00028487.2015.1009561

    Article  Google Scholar 

  • Forseth T, Næsje TF, Jonsson B, Hårsaker K (1999) Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68:783–793

    Article  Google Scholar 

  • Friesen TA, Vile JS, Pribyl AL (2007) Outmigration of juvenile Chinook salmon in the lower Willamette River, Oregon. Northwest Sci 81:173–190

    Article  Google Scholar 

  • Gilbert CH (1912) Age at maturity of the pacific coast salmon of the genus Oncorhynchus. U.S. Bur Fish Bull 32:1–22

    Google Scholar 

  • Goniea TM, Keefer ML, Bjornn TC, Peery CA, Bennett DH, Stuehrenberg LC (2006) Behavioral thermoregulation and slowed migration by adult fall Chinook salmon in response to high Columbia River water temperatures. Trans Am Fish Soc 135:408–419. doi:10.1577/T04-113.1

    Article  Google Scholar 

  • Goto A (1987) Life history variation in males of the river sculpin, Cottus hangiongensis, along the course of a river. Environ Biol Fishes 19:81–91

    Article  Google Scholar 

  • Greene CM, Beechie TJ (2004) Consequences of potential density-dependent mechanisms on recovery of ocean-type Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 61:590–602

    Article  Google Scholar 

  • Greene CM, Hall JE, Guilbault KR, Quinn TP, Guilbault R (2010) Improved viability of populations with diverse life-history portfolios. Biol Lett 6:382–386

    Article  PubMed  Google Scholar 

  • Groenendael JV, Kroon H, Kalisz S, Tuljapurkar S (1994) Loop analysis: evaluating life history pathways in population projection matrices. Ecology 75:2410–2415

    Article  Google Scholar 

  • Groot C, Margolis L (1991) Pacific salmon life histories. University of British Columbia Press, Vancouver

    Google Scholar 

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    Article  CAS  PubMed  Google Scholar 

  • Gustafson RG, Waples RS, Myers JM, Weitkamp LA, Bryant JJ, Orlay W, Hard JJ (2007) Pacific salmon extinctions: quantifying lost and remaining diversity. Conserv Biol 21:1009–1020

    Article  PubMed  Google Scholar 

  • Hallock RJ, Fry DH, LaFaunce DA (1957) The use of wire fyke traps to estimate the runs of adult salmon and steelhead in the Sacramento River. Calif Fish Game 43:271–298

    Google Scholar 

  • Hamann EJ, Kennedy BP (2012) Juvenile dispersal affects straying behaviors of adults in a migratory population. Ecology 93:733–740

    Article  PubMed  Google Scholar 

  • Hankin DG, Nicholas W, Downey TW (1993) Evidence for inheritance of age of maturity in Chinook salmon Oncorhynchus tshawytscha. Can J Fish Aquat Sci 50:347–358

    Article  Google Scholar 

  • Harstad DL, Larsen DA, Beckman BR (2014) Variation in minijack rate among hatchery populations of Columbia River basin Chinook salmon. Trans Am Fish Soc 143:768–778. doi:10.1080/00028487.2014.886621

    Article  Google Scholar 

  • Hayes SA, Kocik JF (2014) Comparative estuarine and marine migration ecology of Atlantic salmon and steelhead: blue highways and open plains. Rev Fish Biol Fish 24:757–780

    Article  Google Scholar 

  • Hayes DB, Bellgraph BJ, Roth BM, Dauble DD, Mueller RP (2013) Timing of redd construction by fall Chinook salmon in the Hanford Reach of the Columbia river. River Res Appl 30:1110–1119. doi:10.1002/rra

    Article  Google Scholar 

  • Hazel WN, Smock R, Johnson MD (1990) A polygenic model for the evolution and maintenance of conditional strategies. Proc R Soc London B 242:181–187

    Article  CAS  Google Scholar 

  • Healey MC (1982) Catch, escapement and stock-recruitment for British Columbia Chinook salmon since 1951. Can Tech Rep Fish Aquat Sci 1107:1–77

    Google Scholar 

  • Healey MC (1983) Coastwide distribution and ocean migration patterns of stream-type and ocean-type Chinook salmon, Oncorhynchus tshawytscha. Canadian field-naturalist 97:427–433

    Google Scholar 

  • Healey MC (1991) Life history of Chinook salmon (Oncorhynchus tshawytscha). In: Groot C, Margolis L (eds) Pacific salmon life histories. University of British Columbia Press, Vancouver, pp 313–393

    Google Scholar 

  • Healey MC (1994) Variation in the life history characteristics of Chinook salmon and its relevance to conservation of the Sacramento winter run of Chinook salmon. Conserv Biol 8:876–877

    Article  Google Scholar 

  • Heath DD, Rankin L, Bryden CA, Heath JW, Shrimpton JM (2002) Heritability and Y-chromosome influence in the jack male life history of Chinook salmon (Oncorhynchus tshawytscha). Heredity 89:311–317. doi:10.1038/sj.hdy.6800141

    Article  CAS  PubMed  Google Scholar 

  • Hecht BC, Campbell NR, Holecek DE, Narum SR (2013) Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol Ecol 22:3061–3076. doi:10.1111/mec.12082

    Article  CAS  PubMed  Google Scholar 

  • Hecht BC, Matala AP, Hess JE, Narum SR (2015) Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Mol Ecol 22:5573–5595. doi:10.1111/mec.13049

    Article  Google Scholar 

  • Hegg JC, Kennedy BP, Chittaro PM, Zabel RW (2013) Spatial structuring of an evolving life-history strategy under altered environmental conditions. Oecologia 172:1017–1029. doi:10.1007/s00442-012-2564-2569

    Article  PubMed  Google Scholar 

  • Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE 9(11):e113139. doi:10.1371/journal.pone.0113139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal: homing versus straying in salmonids. In: Hendry AP, Stearns SC (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, New York, pp 52–91

    Google Scholar 

  • Hess JE, Narum SR (2011) Single-nucleotide polymorphism (SNP) loci correlated with run timing in adult Chinook salmon from the Columbia River basin. Trans Am Fish Soc 140:855–864. doi:10.1080/00028487.2011.588138

    Article  CAS  Google Scholar 

  • Hess MA, Rabe CD, Vogel JL, Stephenson JJ, Nelson DD, Narum SR (2012) Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon. Mol Ecol 21:5236–5250

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickford MJH, Schiel DR (2011) Population sinks resulting from degraded habitats of an obligate life-history pathway. Oecologia 166:131–140. doi:10.1007/s00442-010-1834-7

    Article  PubMed  Google Scholar 

  • Hilborn R (2013) Ocean and dam influences on salmon survival. Proc Natl Acad Sci USA 110:6618–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilborn R, Quinn TP, Schindler DE, Rogers DE (2003) Biocomplexity and fisheries sustainability. Proc Nat Acad Sci USA 100(11):6564–6568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Hopkins CL, Unwin MJ (1997) The effect of restricted springtime feeding on growth and maturation of freshwater-reared Chinook salmon Oncorhynchus tshawytscha (Walbaum). Aquacult Res 28:545–549

    Article  Google Scholar 

  • Hutchings JA (2011) Old wine in new bottles: reaction norms in salmonid fishes. Heredity 106:421–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchings J, Myers R (1994) The evolution of alternative mating strategies in variable environments. Evol Ecol 8:256–268

    Article  Google Scholar 

  • Johnson SW, Thedinga F, Koski KV (1992) Life history of juvenile ocean-type Chinook salmon (Oncorhynchus tshawytscha) in the Situk River, Alaska. Can J Fish Aquat Sci 49:2621–2629

    Article  Google Scholar 

  • Johnson J, Johnson T, Copeland T (2012) Defining life histories of precocious male parr, minijack, and jack Chinook salmon using scale patterns. Trans Am Fish Soc 141:1545–1556

    Article  Google Scholar 

  • Johnson GE, Ploskey GR, Sather NK, Teel DJ (2015) Residence times of juvenile salmon and steelhead in off-channel tidal freshwater habitats, Columbia River, USA. Can J Fish Aquat Sci 72:1–13

    Article  Google Scholar 

  • Jones KK, Cornwell TJ, Bottom DL, Campbell LA, Stein S (2014) The contribution of estuary-resident life histories to the return of adult Oncorhynchus kisutch. J Fish Biol 85:52–80. doi:10.1111/jfb.12380

    Article  CAS  PubMed  Google Scholar 

  • Kareiva P, Marvier M, McClure M (2000) Recovery and management options for spring/summer Chinook in the Columbia River Basin. Science 290:977–979

    Article  CAS  PubMed  Google Scholar 

  • Keefer ML, Caudill CC (2014) Homing and straying by anadromous salmonids: a review of mechanisms and rates. Rev Fish Biol Fish 24:333–368. doi:10.1007/s11160-013-9334-6

    Article  Google Scholar 

  • Keefer ML, Taylor GA, Garletts DF et al (2012) Reservoir entrapment and dam passage mortality of juvenile Chinook salmon in the Middle Fork Willamette River. Ecol Freshw Fish 21:222–234. doi:10.1111/j.1600-0633.2011.00540.x

    Article  Google Scholar 

  • Keefer ML, Taylor GA, Garletts DF et al (2013) High-head dams affect downstream fish passage timing and survival in the Middle Fork Willamette River. River Res App 29:483–492

    Article  Google Scholar 

  • Keefer ML, Clabough TS, Jepson MA et al (2015) Thermal exposure of adult Chinook salmon in the Willamette River. J Thermal Biol 48:11–20

    Article  Google Scholar 

  • Kendall NW, Mcmillan JR, Sloat MR et al (2015) Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns. Can J Fish Aquat Sci 72:319–342

    Article  CAS  Google Scholar 

  • Kjelson MA, Raquel PF, Fisher FW (1982) Life history of fall-run juvenile Chinook salmon, Oncorhynchus tshawytscha, in the Sacramento-San Joaquin estuary, California. In: Kennedy VS (ed) Estuarine comparisons. Academic Press, New York, pp 393–411

    Chapter  Google Scholar 

  • Knudsen CM, Schroder SL, Busack CA et al (2006) Comparison of life history traits between first-generation hatchery and wild upper Yakima River spring Chinook salmon. Trans Am Fish Soc 135:1130–1144. doi:10.1577/T05-121.1

    Article  Google Scholar 

  • Koehler ME, Fresh KL, Beauchamp DA, Cordell JR, Simenstad CA, Seiler DE (2006) Diet and bioenergetics of lake-rearing juvenile Chinook salmon in Lake Washington. Trans Am Fish Soc 135:1580–1591. doi:10.1577/T05-178.1

    Article  Google Scholar 

  • Kwain W, Thomas E (1984) The first evidence of spring spawning by Chinook salmon in Lake Superior. N Am J Fish Manage 4:227–228

    Article  Google Scholar 

  • Larsen DA, Harstad DL, Strom CR et al (2013) Early life history variation in hatchery- and natural-origin spring Chinook salmon in the Yakima River, Washington. Trans Am Fish Soc 142:540–555. doi:10.1080/00028487.2012.750626

    Article  Google Scholar 

  • Levings CD, McAllister CD, Chang BD (1986) Differential use of the Campbell River estuary, British Columbia by hatchery-reared juvenile Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 4:1386–1397

    Article  Google Scholar 

  • Levy DA, Northcote TG (1982) Juvenile salmon residency in a marsh area of the Fraser River estuary. Can J Fish Aquat Sci 39:270–276

    Article  Google Scholar 

  • Limm MP, Marchetti MP (2009) Juvenile Chinook salmon (Oncorhynchus tshawytscha) growth in off-channel and main-channel habitats on the Sacramento River, CA using otolith increment widths. Env Biol Fishes 85:141–151. doi:10.1007/s10641-009-9473-8

    Article  Google Scholar 

  • Lindsay RB, Kenaston KR, Schroeder RK, et al (1997) Spring Chinook salmon in the Willamette and Sandy rivers. Annual progress report, Oregon Department of Fish and Wildlife, Corvallis

  • Lister DB, Walker CE, Giles MA (1971) Cowichan River Chinook salmon escapements and juvenile production, 1965–1967. Pacific Region Technical Report 1971-3, Canada Department of Fisheries and Forestry, Pacific Region

  • Lorenzen K, Beveridge MCM, Mangel M (2012) Cultured fish: integrative biology and management of domestication and interactions with wild fish. Biol Rev 87:639–660. doi:10.1111/j.1469-185X.2011.00215.x

    Article  PubMed  Google Scholar 

  • Matala AP, Hess JE, Narum SR (2011) Resolving adaptive and demographic divergence among Chinook salmon populations in the Columbia River Basin. Trans Am Fish Soc 140:783–807

    Article  Google Scholar 

  • Mattson CR (1962) Early life history of Willamette river spring Chinook salmon. Fish Commission of Oregon, Portland

    Google Scholar 

  • McCauley DW, Docker MF, Whyard S, Li W (2015) Lampreys as diverse model organisms in the genomics era. Bioscience. doi:10.1093/biosci/biv139

    PubMed  PubMed Central  Google Scholar 

  • McClure MM, Holmes EE, Sanderson BL, Jordan CE (2003) A large-scale, multispecies status, assessment: anadromous salmonids in the Columbia River Basin. Ecol Appl 13:964–989

    Article  Google Scholar 

  • McClure MM, Carlson SM, Beechie TJ et al (2008) Evolutionary consequences of habitat loss for Pacific anadromous salmonids. Evol Appl 1:300–318. doi:10.1111/j.1752-4571.00030.x

    Article  PubMed  PubMed Central  Google Scholar 

  • McCullough DA (1999) A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook salmon. Columbia River Inter-tribal Fish Commission, Portland

    Google Scholar 

  • McLean JE, Bentzen P, Quinn TP (2005) Nonrandom, size- and timing-biased breeding in a hatchery population of steelhead trout. Conserv Biol 19:446–454

    Article  Google Scholar 

  • McPhee MV, Whited DC, Kuzishchin KV, Stanford JA (2014) The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim. J Fish Biol 85:132–150. doi:10.1111/jfb.12286

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe NB, Thorpe JE (1990) Determinants of geographical variation in the age of seaward-migrating salmon, Salmo salar. J Anim Ecol 59:135–145

    Article  Google Scholar 

  • Miller RJ, Brannon EL (1982) The origin and development of life history patterns in pacific salmonids. In: Brannon EL, Salo EO (eds) Proceedings of the salmon and trout migratory behavior symposium. University of Washington Press, Seattle, pp 296–309

    Google Scholar 

  • Miller JA, Simenstad CA (1997) A comparative assessment of a natural and created estuarine slough as rearing habitat for juvenile chinook and coho salmon. Estuaries 20:792–806

    Article  Google Scholar 

  • Miller JA, Gray A, Merz J (2010) Quantifying the contribution of juvenile migratory phenotypes in a population of Chinook salmon Oncorhynchus tshawytscha. Mar Ecol Prog Ser 408:227–240. doi:10.3354/meps08613

    Article  Google Scholar 

  • Miller JA, Butler VL, Simenstad CA, Backus DH, Kent AJR (2011) Life history variation in upper Columbia River Chinook salmon (Oncorhynchus tshawytscha): a comparison using modern and 500-year-old archaeological otoliths. Can J Fish Aquat Sci 617:603–617

    Article  Google Scholar 

  • Mobrand LE, Lichatowich JA, Lestelle LC, Vogel TS (1997) An approach to describing ecosystem performance “through the eyes of salmon”. Can J Fish Aquat Sci 54:2964–2973

    Article  Google Scholar 

  • Moore JW, Yeakel JD, Peard D, Lough J, Beere M (2014) Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J Anim Ecol 83:1035–1046. doi:10.1111/1365-2656.12212

    Article  PubMed  Google Scholar 

  • Moran P, Teel DJ, Banks MA et al (2013) Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Can J Fish Aquat Sci 70:415–435

    Article  Google Scholar 

  • Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161

    Article  Google Scholar 

  • Muir WD, Zaugg WS, Giorgi AE, McCutdheon S (1994) Accelerating smolt development and downstream movement in yearling Chinook salmon with advanced photoperiod and increased temperature. Aquaculture 123:387–399

    Article  Google Scholar 

  • Murray CB, Rosenau ML (1989) Rearing of juvenile Chinook salmon in nonnatal tributaries of the lower Fraser River, British Columbia. Trans Am Fish Soc 118:284–289. doi:10.1577/1548-8659(1989)118<0284:ROJCSI>2.3.CO;2

    Article  Google Scholar 

  • Myers JM, Kope RG, Bryant GJ et al (1998) Status review of Chinook salmon from Washington, Idaho, Oregon, and California. US Department of Commerce, NOAA Tech. Memo. NMFS-NWFSC-35

  • Naiman RJ, Dudgeon D (2011) Global alteration of freshwaters: influences on human and environmental well-being. Ecol Res 26:865–873. doi:10.1007/s11284-010-0693-3

    Article  Google Scholar 

  • Narum SR, Campbell NR (2015) Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genom 16:103. doi:10.1186/s12864-015-1246-5

    Article  CAS  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehlsen W, Williams JE, Lichatowich JA (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16(2):4–21

    Article  Google Scholar 

  • Nichols KM, Edo AF, Wheeler PA, Thorgaard GH (2008) The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genetics 179:1559–1575. doi:10.1534/genetics.107.084251

    Article  PubMed  PubMed Central  Google Scholar 

  • NRC (National Research Council) (1996) Upstream. Salmon and society in the Pacific Northwest. National Academy Press, Washington, DC

    Google Scholar 

  • O’Malley KG, Jacobson DP, Kurth R, Dill AJ, Banks MA (2013) Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow. Evol Appl 6:1184–1194. doi:10.1111/eva.12095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohms H, Sloat M, Reeves G, Jordan CE, Dunham JB (2013) Influence of sex, migration distance, and latitude on life history expression in steelhead and rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 71:70–80. doi:10.1139/cjfas-2013-0274

    Article  Google Scholar 

  • Oomen RA, Hutchings JA (2015) Genetic variability in reaction norms in fishes. Env Rev 23:353–366

    Article  Google Scholar 

  • Páez DJ, Brisson-Bonenfant C, Rossignol O, Guderley HE, Bernatchez L, Dodson JJ (2011) Alternative developmental pathways and the propensity to migrate: a case study in the Atlantic salmon. J Evol Biol 24:245–255. doi:10.1111/j.1420-9101.2010.02159.x

    Article  PubMed  Google Scholar 

  • Pearsons TN, Johnson CL, James BB, Temple GM (2009) Abundance and distribution of precociously mature male spring Chinook salmon of hatchery and natural origin in the Yakima river. North Am J Fish Manag 29:778–790. doi:10.1577/M08-069.1

    Article  Google Scholar 

  • Perkins TA, Jager HI (2011) Falling behind: delayed growth explains life-history variation in Snake River fall Chinook salmon. Trans Am Fish Soc 140:959–972. doi:10.1080/00028487.2011.599257

    Article  Google Scholar 

  • Piché J, Hutchings JA, Blanchard W (2008) Genetic variation in threshold reaction norms for alternative reproductive tactics in male Atlantic salmon, Salmo salar. Proc R Soc B 275:1571–1575. doi:10.1098/rspb.2008.0251

    Article  PubMed  PubMed Central  Google Scholar 

  • Principe ND, Kraft CE, Mills EL (2007) Gastric evacuation and daily ration of naturally produced age-0 Chinook salmon in Lake Ontario. Trans Am Fish Soc 136:1206–1215. doi:10.1577/T06-125.1

    Article  Google Scholar 

  • Quinn TP (2005) The behavior and ecology of Pacific salmon and trout. UBC Press, Seattle

    Google Scholar 

  • Quinn TP, Adams DG (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77:1151–1162

    Article  Google Scholar 

  • Quinn TP, Hodgson S, Peven C (1997) Temperature, flow, and the migration of adult sockeye salmon (Oncorhynchus nerka) in the Columbia River. Can J Fish Aquat Sci 54:1349–1360

    Article  Google Scholar 

  • Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced Chinook salmon populations. Evolution 54:1372–1385

    Article  CAS  PubMed  Google Scholar 

  • Quinn TP, Peterson JA, Gallucci VF, Hershberger WK, Brannon EL (2002) Artificial selection and environmental change: countervailing factors affecting the timing of spawning by coho and chinook salmon. Trans Am Fish Soc 131:591–598. doi:10.1577/1548-8659(2002)131<0591:ASAECC>2.0.CO;2

    Article  Google Scholar 

  • Quinn TP, Shaffer JA, Brown J, Harris N, Byrnes C, Crain P (2014) Juvenile Chinook salmon, Oncorhynchus tshawytscha, use of the Elwha river estuary prior to dam removal. Environ Biol Fishes 97:731–740. doi:10.1007/s10641-013-0173-z

    Article  Google Scholar 

  • Quinn TP, McGinnity P, Reed TE (in press) The paradox of ‘premature migration’ by adult anadromous salmonid fishes: patterns and hypotheses. Can J Fish Aquat Sci

  • Rebenack JJ, Ricker S, Anderson C, Wallace M, Ward DM (2015) Early emigration of juvenile coho salmon: implications for population monitoring. Trans Am Fish Soc 144:163–172. doi:10.1080/00028487.2014.982258

    Article  Google Scholar 

  • Reimers PE (1971) The length of residence of juvenile fall Chinook salmon in the Sixes River. Thesis, Oregon State University, Oregon

    Google Scholar 

  • Reisenbichler RR, Rubin SP (1999) Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES J Mar Sci 56:459–466. doi:10.1006/jmsc.1999.0455

    Article  Google Scholar 

  • Rieman BE, Beamesderfer RC, Vigg S, Poe TP (1991) Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River. Trans Am Fish Soc 120:448–458

    Article  Google Scholar 

  • Rikardsen AH, Elliott JM (2000) Variations in juvenile growth, energy allocation and life-history strategies of two populations of Arctic char in north Norway. J Fish Biol 56:328–346

    Article  Google Scholar 

  • Roff DA (1996) The evolution of threshold traits in animals. Q Rev Biol 71:3–35

    Article  Google Scholar 

  • Ruckelshaus MH, Levin P, Johnson JB, Kareiva PM (2002) The Pacific salmon wars: What science brings to the challenge of recovering species. Ann Rev Ecol Syst 33:665–706

    Article  Google Scholar 

  • Satterthwaite WH, Beakes MP, Collins EM et al (2009) Steelhead life history on California’s central coast: insights from a state-dependent model. Trans Am Fish Soc 138:532–548. doi:10.1577/T08-164.1

    Article  Google Scholar 

  • Scheuerell MD (2005) Influence of juvenile size on the age at maturity of individually marked wild Chinook salmon. Trans Am Fish Soc 134:999–1004. doi:10.1577/T04-206.1

    Article  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B et al (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–612

    Article  CAS  PubMed  Google Scholar 

  • Schroeder RK, Whitman LD, Cannon B, Olmsted P (2016) Juvenile life-history diversity and population stability of spring Chinook salmon in the Willamette River Basin, Oregon. Can J Fish Aquat Sci. doi:10.1139/cjfas-2015-0314

    Google Scholar 

  • Scrivener C, Brown TC, Andersen BC (1994) Juvenile Chinook salmon (Oncorhynchus tshawytscha) utilization of Hawks Creek, a small and nonnatal tributary of the upper Fraser River. Can Field Nat 51:1139–1146

    Google Scholar 

  • Secor DH (2007) The year-class phenomenon and the storage effect in marine fishes. J Sea Res 57:91–103. doi:10.1016/j.seares.2006.09.004

    Article  Google Scholar 

  • Shreffler DK, Simenstad CA, Thom RM (1990) Temporary residence by juvenile salmon in a restored estuarine wetland. Can J Fish Aquat Sci 47:2079–2084

    Article  Google Scholar 

  • Shrimpton JM, Warren KD, Todd NL et al (2014) Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you’ll go! J Fish Biol 85:987–1004. doi:10.1111/jfb.12468

    Article  CAS  PubMed  Google Scholar 

  • Skulason S, Kristjansson BK (2016) The origin and significance of reproductive isolation for processes of divergence. In: Vladi T, Petersson E (eds) Evolutionary Ecology of the Atlantic Salmon. CRC Press, Boca Raton, pp 3–25

    Google Scholar 

  • Sloat MR, Reeves GH (2014) Demographic and phenotypic responses of juvenile steelhead trout to spatial predictability of food resources. Ecology 95:2423–2433

    Article  Google Scholar 

  • Sloat MR, Fraser DJ, Dunham JB et al (2014a) Ecological and evolutionary patterns of freshwater maturation in Pacific and Atlantic salmonines. Rev Fish Biol Fish 24:689–707

    Article  Google Scholar 

  • Sloat MR, Reeves GH, Jonsson B (2014b) Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Can J Fish Aquat Sci 71:491–501

    Article  CAS  Google Scholar 

  • Sommer TR, Nobriga ML, Harrell WC, Batham W, Kimmerer WJ (2001) Floodplain rearing of juvenile Chinook salmon: evidence of enhanced growth and survival. Can J Fish Aquat Sci 58:325–333. doi:10.1139/cjfas-58-2-325

    Article  Google Scholar 

  • Stearns SC (1976) Life history tactics: a review of the ideas. Q Rev Biol 51:3–47

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, London

    Google Scholar 

  • Tabor RA, Scheurer JA, Gearns HA, McCoy CM (2011a) Use of nonnatal tributaries for lake-rearing juvenile Chinook salmon in the Lake Washington basin, Washington. Northwest Sci 85:476–490

    Article  Google Scholar 

  • Tabor RA, Fresh KL, Piaskowski RM, Gearns HA, Hayes DB (2011b) Habitat use by juvenile Chinook salmon in the nearshore areas of Lake Washington: effects of depth, lakeshore development, substrate, and vegetation. North Am J Fish Manag 31:700–713. doi:10.1080/02755947.2011.611424

    Article  Google Scholar 

  • Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A (2010) Control of puberty in farmed fish. Gen Comp 165:483–515

    Article  CAS  Google Scholar 

  • Taylor EB (1990) Phenotypic correlates of life-history variation in juvenile Chinook salmon, Oncorhynchus tshawytscha. J Anim Ecol 59:455–468

    Article  Google Scholar 

  • Teel DJ, Bottom DL, Hinton SA et al (2014) Genetic identification of Chinook salmon in the Columbia river estuary: stock-specific distributions of juveniles in shallow tidal freshwater habitats. N Am J Fish Manag 34:621–641. doi:10.1080/02755947.2014.901258

    Article  Google Scholar 

  • Templin WD, Seem JE, Jasper JR, Barclay AW, Seeb LW (2011) Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies. Mol Ecol Res 11(Suppl 1):226–246. doi:10.1111/j.1755-0998.2010.02968.x

    Article  Google Scholar 

  • Thériault V, Dunlop ES, Dieckmann U, Bernatchez L, Dodson JJ (2008) The impact of fishing-induced mortality on the evolution of alternative life-history tactics in brook charr. Evol Appl 1:409–423. doi:10.1111/j.1752-4571.2008.00022.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe JE, Mangel M, Metcalfe NB, Huntingford FA (1998) Modeling the proximate basis of salmonid life history variation, with application to Atlantic salmon, Salmo salar. Evol Ecol 12:581–599

    Article  Google Scholar 

  • Thrower FP, Hard JJ, Joyce JE (2004) Genetic architecture of growth and early life-history transitions in anadromous and derived freshwater populations of steelhead. J Fish Biol 65:286–307. doi:10.1111/j.1095-8649.2004.00551.x

    Article  Google Scholar 

  • Tiffan KF, Kock TJ, Connor WP, Steinhorst RK, Rondorf DW (2009) Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir. J Fish Biol 74:1562–1579. doi:10.1111/j.1095-8649.2009.02228.x

    Article  CAS  PubMed  Google Scholar 

  • Tiffan KF, Erhardt JM, John SJ (2014) Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook salmon rearing in riverine and reservoir habitats. Trans Am Fish Soc 143:219–229. doi:10.1080/00028487.2013.839958

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997a) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94(5):1857–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997b) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302

    Article  CAS  Google Scholar 

  • Torgersen CE, Price DM, Li HW, Mcintosh BA (1999) Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecol Appl 9:301–319

    Article  Google Scholar 

  • Unwin MJ, Kinnison MT, Quinn TP (1999) Exceptions to semelparity: postmaturation survival, morphology, and energetics of male Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 56:1172–1181. doi:10.1139/f99-045

    Article  Google Scholar 

  • Volk EC, Bottom DL, Jones KK, Simenstad CA (2010) Reconstructing juvenile Chinook Salmon life history in the Salmon River estuary, Oregon, using otolith microchemistry and microstructure. Trans Am Fish Soc 139:37–41

    Article  Google Scholar 

  • Walsworth TE, Schindler DE, Griffiths JR, Zimmerman CE (2014) Diverse juvenile life-history behaviours contribute to the spawning stock of an anadromous fish population. Ecol Freshw Fish. doi:10.1111/eff.12135

    Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Mar Fish Rev 53(3):11–22

    Google Scholar 

  • Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the endangered species act. Am Fish Soc Symp 17:8–27

    Google Scholar 

  • Waples RS, Teel DJ, Myers JM, Marshall AR (2004) Life-history divergence in Chinook Salmon: historic contingency and parallel evolution. Evolution 58:386–403

    Article  PubMed  Google Scholar 

  • Waples RS, Pess GR, Beechie T (2008) Evolutionary history of Pacific salmon in dynamic environments. Evol Appl 1:189–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch DW, Ishida Y, Nagasawa K (1998) Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): long-term consequences of global warming. Can J Fish Aquat Sci 55:937–948

    Article  Google Scholar 

  • Wells BK, Rieman BE, Clayton JL, Horan DL, Jones CM (2003) Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Trans Am Fish Soc 132:409–424. doi:10.1577/15488659(2003)132<0409:RBWOAS>2.0.CO;2

    Article  CAS  Google Scholar 

  • Wilbur HM, Rudolf VHW (2006) Life history evolution in uncertain environments: bet hedging in time. Am Nat 168:398–411

    Article  PubMed  Google Scholar 

  • Williams SE, Hoffman EA (2009) Minimizing genetic adaption in captive breeding programs: a review. Biol Conserv 142:2388–2400. doi:10.1016/j.biocon.2009.05.034

    Article  Google Scholar 

  • Williams JG, Zabel RW, Waples RS, Hutchings JA, Connor WP (2008) Potential for anthropogenic disturbances to influence evolutionary change in the life history of a threatened salmonid. Evol Appl 1:271–285. doi:10.1111/j.1752-4571.2008.00027.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Winemiller KO (2005) Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat Sci 62:872–885

    Article  Google Scholar 

  • Yoshiyama RM, Fisher FW, Moyle PB (1998) Historical abundance and decline of Chinook salmon in the central valley region of California. N Am J Fish Manag 18:487–521. doi:10.1577/1548-8675(1998)018<0487

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the workers who have puzzled over the life history of Chinook salmon in the past for their contributions to this review. We thank the Fish Life History Analysis Project of the Oregon Department of Fish and Wildlife for collaboration. We thank John Sugden for making the distribution map. This work was funded by the U.S. Army Corps of Engineers, Portland District, with administrative support from David Griffith. Two anonymous reviewers provided constructive comments that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Bourret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourret, S.L., Caudill, C.C. & Keefer, M.L. Diversity of juvenile Chinook salmon life history pathways. Rev Fish Biol Fisheries 26, 375–403 (2016). https://doi.org/10.1007/s11160-016-9432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9432-3

Keywords

Navigation