Reviews in Fish Biology and Fisheries

, Volume 26, Issue 3, pp 303–325 | Cite as

Key aspects of the biology, fisheries and management of Coral grouper

  • Ashley J. FrischEmail author
  • Darren S. Cameron
  • Morgan S. Pratchett
  • David H. Williamson
  • Ashley J. Williams
  • Adam D. Reynolds
  • Andrew S. Hoey
  • Justin R. Rizzari
  • Louisa Evans
  • Brigid Kerrigan
  • Geoffrey Muldoon
  • David J. Welch
  • Jean-Paul A. Hobbs


Coral grouper (genus Plectropomus), or coral trout, are members of the grouper family (Epinephelidae) and are one of the largest and most conspicuous predatory fishes on Indo-Pacific coral reefs. They are highly-prized food fishes that are targeted by subsistence, artisanal, commercial and recreational fisheries throughout their geographic range. Plectropomus have broadly similar diets and habitat requirements to other tropical groupers, but typically have faster growth and higher natural mortality rates. Although these characteristics are expected to increase population turnover and reduce innate vulnerability to environmental and anthropogenic impacts relative to other groupers, many Plectropomus populations are in decline due to the combined effects of overfishing and habitat degradation. In many locations, stock depletion from uncontrolled fishing, particularly at spawning aggregation sites, has resulted in local fishery collapse. Therefore, improved management of wild populations is urgently required to ensure conservation and sustainable fisheries of Plectropomus. Where possible, a combination of no-take marine reserves, market-based management approaches, and allocation or resurrection of property rights systems are recommended to complement conventional fishery management actions that limit catch and effort. Additional investment in aquaculture propagation is also needed to reduce fishing pressure on wild stocks and support management initiatives. This global synthesis of information pertaining to the biology, fisheries and management of Plectropomus will assist in guiding future management actions that are attempting to address a range of stressors including fishing, reef habitat degradation, and the escalating effects of climate change.


Coral trout Plectropomus Serranidae Coral reef fisheries Grouper conservation Live reef food fish trade 



This manuscript was conceptualized during a workshop on adaptive capacity of Plectropomus and associated fisheries. Funding for the workshop was provided by the National Climate Change Adaptation Research Facility, Australia. K. Rhodes, R. Hamilton and an anonymous reviewer provided helpful comments on an earlier draft of the manuscript.


  1. Adams S (2003) Morphological ontogeny of the gonad of three plectropomid species through sex differentiation and transition. J Fish Biol 63:22–36CrossRefGoogle Scholar
  2. Adams S, Mapstone BD, Russ GR, Davies CR (2000) Geographic variation in the sex ratio, sex specific size, and age structure of Plectropomus leopardus (Serranidae) between reefs open and closed to fishing on the Great Barrier Reef. Can J Fish Aquat Sci 57:1448–1458CrossRefGoogle Scholar
  3. Afflerbach JC, Lester SE, Dougherty DT, Poon SE (2014) A global survey of “TURF-reserves”, Territorial Use Rights for Fisheries coupled with marine reserves. Glob Ecol Conserv 2:97–106CrossRefGoogle Scholar
  4. Allsop DJ, West SA (2003) Constant relative age and size at sex change for sequentially hermaphroditic fish. J Evol Biol 16:921–929PubMedCrossRefGoogle Scholar
  5. Almany GR, Hamilton RJ, Bode M et al (2013) Dispersal of grouper larvae drives local resource sharing in a coral reef fishery. Curr Biol 23:626–630PubMedCrossRefGoogle Scholar
  6. Anonymous (2012) Yearbook of fishery and aquaculture statistics. Food and Agriculture Organisation of the United Nations, Rome.
  7. Anonymous (2013) Annual report on live marine fish trade 1999–2012. Agriculture, Fisheries and Conservation Department, Hong Kong.
  8. Armsworth PR (2001) Effects of fishing on a protogynous hermaphrodite. Can J Fish Aquat Sci 58:568–578CrossRefGoogle Scholar
  9. Arreguin-Sanchez F, Munro JL, Balgos MC, Pauly D (1996) Biology, fisheries and culture of tropical groupers and snappers. International Center for Living and Aquatic Resource Management, ManilaGoogle Scholar
  10. Ault JS, Bohnsack JA, Meester GA (1998) A retrospective (1979–1996) multispecies assessment of coral reef fish stocks in the Florida Keys. Fish Bull 96:395–414Google Scholar
  11. Bennett SM, Bennett MB (2001) Gill pathology caused by infestations of adult and preadult Dissonus manteri Kabata (Copepoda: Dissonidae) on coral trout, Plectropomus leopardus (Lacepede), (Serranidae). J Fish Dis 24:523–533CrossRefGoogle Scholar
  12. Bergenius MAJ, Mapstone BD, Begg GA, Murchie CD (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the Great Barrier Reef, Australia. Fish Res 72:253–270CrossRefGoogle Scholar
  13. Bergenius MAJ, Begg GA, Mapstone BD (2006) The use of otolith morphology to indicate the stock structure of common coral trout (Plectropomus leopardus) on the Great Barrier Reef, Australia. Fish Bull 104:498–511Google Scholar
  14. Blaber SJM, Milton DA, Rawlinson NJF, Tiroba G, Nichols PV (1990) Diets of lagoon fishes of the Solomon Islands: predators of tuna baitfish and trophic effects of baitfishing on the subsistence fishery. Fish Res 8:263–286CrossRefGoogle Scholar
  15. Boaden AE, Kingsford MJ (2015) Predators drive community structure in coral reef fish assemblages. Ecosphere 6:46CrossRefGoogle Scholar
  16. Bott NJ, Miller TL, Cribb TH (2013) Bucephalidae (Platyhelminthes: Digenea) of Plectropomus (Serranidae: Epinephelinae) in the tropical Pacific. Parasitol Res 112:2561–2584PubMedCrossRefGoogle Scholar
  17. Bray RA, Cribb TH, Waeschenbach A, Littlewood DTJ (2007) A new species of Stephanostomum Loos, 1899 (Digenea, Acanthocolpidae) with a bizarre oral sucker: S. adlardi sp. nov. from the common coral trout Plectropomus leopardus (Lacepede, 1802) (Perciformes, Serranidae) from Lizard Island, Great Barrier Reef. Acta Parasitol 52:206–212Google Scholar
  18. Bshary R, Hohner A, Ait-el-Djoudi K, Fricke H (2006) Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol 4:e431PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bunt CM, Kingsford MJ (2014) Movement, habitat utilisation and behaviour of coral trout Plectropomus leopardus during and after the reproductive period on the southern Great Barrier Reef. Mar Ecol Prog Ser 496:33–45CrossRefGoogle Scholar
  20. Cai X, Qu M, Ding S et al (2013) Differentiation of coral trout (Plectropomus leopardus) based on an analysis of morphology and complete mitochondrial DNA: Are cryptic species present? Acta Oceanol Sin 32:40–46CrossRefGoogle Scholar
  21. Campbell SJ, Cinner JE, Ardiwijaya RL et al (2012a) Avoiding conflicts and protecting coral reefs: customary management benefits marine habitats and fish biomass. Oryx 46:486–494CrossRefGoogle Scholar
  22. Campbell SJ, Hoey AS, Maynard J et al (2012b) Weak compliance undermines the success of no-take zones in a large government-controlled marine protected area. PLoS One 7:e50074PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cappo M, De’ath G, Speare P (2007) Inter-reef vertebrate communities on the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar Ecol Prog Ser 350:209–221CrossRefGoogle Scholar
  24. Capra MF, Cameron J, Flowers AE, Coombe IF, Blanton CG, Hahn ST (1988) The effects of ciguatoxin on teleosts. In: Proceedings of the sixth international coral reef symposium, townsville, vol 3, pp 37–41. 8–12 August 1988Google Scholar
  25. Carter AB, Davies CR, Mapstone BD, Russ GR, Tobin AJ, Williams AJ (2014) Effects of region, demography, and protection from fishing on batch fecundity of common coral trout (Plectropomus leopardus). Coral Reefs 33:751–764CrossRefGoogle Scholar
  26. Cheng AC, Cheng SA, Chen YY, Chen JC (2009) Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol 26:768–772PubMedCrossRefGoogle Scholar
  27. Choat JH (1968) Feeding habits and distribution of Plectropomus maculatus (Serranidae) at Heron Island. Proc R Soc Qld 80:13–18Google Scholar
  28. Connell SD, Kingsford MJ (1998) Spatial, temporal and habitat related variation in the abundance of large predatory fish at One Tree Reef, Australia. Coral Reefs 17:49–57CrossRefGoogle Scholar
  29. Craig MT, Hastings PA (2007) A molecuar phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyol Res 54:1–17CrossRefGoogle Scholar
  30. Cribb TH, Bray RA, Wright T, Pichelin S (2002) The trematodes of groupers (Serranidae: Epinephelinae): knowledge, nature and evolution. Parasitol 124:S23–S42CrossRefGoogle Scholar
  31. Currey LM, Simpfendorfer CA, Williams AJ (2010) Resilience of reef fish species on the Great Barrier Reef and in Torres Strait. Reef and Rainforest Research Centre, Cairns.
  32. Davin WT, Kohler CC, Tindall DR (1988) Ciguatera toxins adversely affect piscivorous fishes. Trans Am Fish Soc 117:374–384CrossRefGoogle Scholar
  33. DesRosiers NJD (2011) Growth and maturation of Plectropomus spp. in the Saudi Arabian Red Sea. MSc Thesis, King Abdullah University of Science and Technology, Saudi ArabiaGoogle Scholar
  34. Deveney MR, Whittington ID (2010) Three new species of Benedenia Diesing, 1858 from the Great Barrier Reef, Australia with a key to species of the genus. Zootaxa 2348:1–22Google Scholar
  35. Dixson DL, Jones GP, Munday PL et al (2008) Coral reef fish smell leaves to find island homes. Proc R Soc Lond 275B:2831–2839CrossRefGoogle Scholar
  36. Doherty PJ, Fowler AJ, Samoilys MA, Harris AD (1994) Monitoring the replenishment of coral trout (Pisces: Serranidae) populations. Bull Mar Sci 54:343–355Google Scholar
  37. Ebisawa A (2013) Life history traits of leopard coralgrouper Plectropomus leopardus in the Okinawa Islands, southwest Japan. Fish Sci 79:911–921CrossRefGoogle Scholar
  38. Elnaeim EME (2012) Stock assessment and population dynamics of Plectropomus pessuliferus and Plectropomus areolatus in the Sudanese Red Sea coast. PhD Thesis, Universiti Malaysia Terengganu, MalaysiaGoogle Scholar
  39. Emslie MJ, Logan M, Williamson DH et al (2015) Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr Biol 25:983–992PubMedCrossRefGoogle Scholar
  40. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306PubMedCrossRefGoogle Scholar
  41. Evans RD, van Herwerden L, Russ GR, Frisch AJ (2010) Strong genetic but not spatial subdivision of two reef fish species targeted by fishers on the Great Barrier Reef. Fish Res 102:16–25CrossRefGoogle Scholar
  42. Fabinyi M, Dalabajan D (2011) Policy and practice in the live reef fish for food trade: a case study from Palawan, Philippines. Mar Pol 35:371–378CrossRefGoogle Scholar
  43. Fabinyi M, Liu N (2014) Seafood banquets in Beijing: consumer perspectives and implications for environmental sustainability. Conserv Soc 12:218–228CrossRefGoogle Scholar
  44. Ferreira BP (1993) Reproduction of the inshore coral trout Plectropomus maculatus (Perciformes: Serranidae) from the central Great Barrier Reef, Australia. J Fish Biol 42:831–844Google Scholar
  45. Ferreira BP (1995) Reproduction of the common coral trout Plectropomus leopardus (Serranidae: Epinephelinae) from the central and northern Great Barrier Reef. Bull Mar Sci 56:653–669Google Scholar
  46. Ferreira BP, Russ GR (1992) Age, growth and mortality of the inshore coral trout Plectropomus maculatus (Pisces: Serranidae) from the Central Great Barrier Reef, Australia. Aust J Mar Fresh Res 43:1302–1312Google Scholar
  47. Ferreira BP, Russ GR (1994) Age validation and estimation of growth rate of the coral trout, Plectropomus leopardus, (Lacepede 1802) from Lizard Island, Northern Great Barrier Reef. Fish Bull 92:46–57Google Scholar
  48. Ferreira BP, Russ GR (1995) Population structure of the leopard coralgrouper, Plectropomus leopardus, on fished and unfished reefs off Townsville, Central Great Barrier Reef, Australia. Fish Bull 93:629–642Google Scholar
  49. Foale S, Cohen P, Januchowski-Hartley S, Wenger A, Macintyre M (2011) Tenure and taboos: origins and implications for fisheries in the Pacific. Fish Fish 12:357–369CrossRefGoogle Scholar
  50. Frisch AJ (2006) Are juvenile coral trouts (Plectropomus) mimcs of poisonous pufferfishes (Canthigaster) on coral reefs? Mar Ecol 27:247–252CrossRefGoogle Scholar
  51. Frisch AJ, Anderson TA (2005) A comparison of the physiological stress responses of two species of coral trout (Plectropomus leopardus and Plectropomus maculatus). Comp Biochem Physiol 140A:317–327CrossRefGoogle Scholar
  52. Frisch AJ, van Herwerden L (2006) Field and experimental studies of hybridization between coral trouts, Plectropomus leopardus and Plectropomus maculatus, on the Great Barrier Reef, Australia. J Fish Biol 68:1013–1025CrossRefGoogle Scholar
  53. Frisch AJ, McCormick MI, Pankhurst NW (2007) Reproductive periodicity and steroid hormone profiles in the sex-changing coral-reef fish, Plectropomus leopardus. Coral Reefs 26:189–197CrossRefGoogle Scholar
  54. Frisch AJ, Baker R, Hobbs JA, Nankervis L (2008) A quantitative comparison of recreational spearfishing and linefishing on the Great Barrier Reef: implications for management of multi-sector coral reef fisheries. Coral Reefs 27:85–95CrossRefGoogle Scholar
  55. Frisch AJ, Cole AJ, Hobbs JA, Rizzari JR, Munkres KP (2012) Effects of spearfishing on reef fish populations in a multi-use conservation area. PLoS One 7:e51938PubMedPubMedCentralCrossRefGoogle Scholar
  56. Frisch AJ, Ireland M, Baker R (2014) Trophic ecology of large predatory reef fishes: energy pathways, trophic level, and implications for fisheries in a changing climate. Mar Biol 161:61–73CrossRefGoogle Scholar
  57. Froese R, Pauly D (2015) FishBase.
  58. Goeden GB (1978) A monograph of the coral trout. Queensland Fisheries Service, Brisbane.
  59. Goeden GB (1982) Intensive fishing pressure and a ‘keystone’ predator species: ingredients for community instability. Biol Conserv 22:273–281CrossRefGoogle Scholar
  60. Graham NAJ, Evans RD, Russ GR (2003) The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef. Environ Conserv 30:200–208CrossRefGoogle Scholar
  61. Grandcourt E (2005) Demographic characteristics of selected epinepheline groupers (family Serranidae; subfamily Epinephelinae) from Aldabra Atoll, Seychelles. Atoll Res Bull 539:200–216CrossRefGoogle Scholar
  62. Green AL, Maypa AP, Almany GR et al (2015) Larval dispersal and movement patters of coral reef fishes, and implications for marine reserve network design. Biol Rev 90:1215–1247PubMedCrossRefGoogle Scholar
  63. Gunter NL, Adlard RD (2009) Seven new species of Ceratomyxa thelohan, 1892 (Myxozoa) from the gall-bladders of serranid fishes from the Great Barrier Reef, Australia. Syst Parasitol 73:1–11PubMedCrossRefGoogle Scholar
  64. Hamilton RJ, Potuku T, Montambault JR (2011) Community-based conservation results in the recovery of reef fish spawning aggregations in the Coral Triangle. Biol Conserv 144:1850–1858CrossRefGoogle Scholar
  65. Hamilton RJ, Giningele M, Aswani S, Ecochard JL (2012) Fishing in the dark: local knowledge, night spearfishing and spawning aggregations in the Western Solomon Islands. Biol Conserv 145:246–257CrossRefGoogle Scholar
  66. Harrison HB, Williamson DH, Evans RD et al (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028PubMedCrossRefGoogle Scholar
  67. Harrison HB, Feldheim KA, Jones GP et al (2014) Validation of microsatellite multiplexes for parentage analysis and species discrimination in two hybridizing species of coral reef fish (Plectropomus spp., Serranidae). Ecol Evol 4:2046–2057PubMedPubMedCentralGoogle Scholar
  68. Heemstra PC, Randall JE (1993) Groupers of the world. FAO species catalogue 16. Food and Agriculture Organization, RomeGoogle Scholar
  69. Heupel MR, Williams AJ, Welch DJ et al (2010) Demography of a large exploited grouper, Plectropomus laevis: implications for fisheries management. Mar Freshw Res 61:184–195CrossRefGoogle Scholar
  70. Ho HW, Bray RA, Cutmore SC, Ward S, Cribb TH (2014) Two new species of Phyllodistomum Braun, 1899 (Trematoda: Gorgoderidae Looss, 1899) from Great Barrier Reef fishes. Zootaxa 3779:551–562PubMedCrossRefGoogle Scholar
  71. Hobbs JA, Frisch AJ, Mutz S, Ford BM (2014) Evaluating the effectiveness of teeth and dorsal fin spines for non-lethal age estimation of a tropical reef fish, coral trout Plectropomus leopardus. J Fish Biol 84:328–338PubMedCrossRefGoogle Scholar
  72. Hoenig JM (1983) Empirical use of longevity data to estimate mortality rates. Fish Bull 82:898–903Google Scholar
  73. Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933PubMedCrossRefGoogle Scholar
  74. Huntsman GR, Potts J, Mays RW, Vaughan D (1999) Groupers (Serranidae, Epinephelinae): endangered apex redators of reef communities. In: Musick JA (ed) Life in the slow lane: ecology and conservation of long-lived marine animals. American Fisheries Society, Bethesda, pp 217–231Google Scholar
  75. Hutchinson N, Rhodes KL (2010) Home range estimates for squaretail coralgrouper, Plectropomus areolatus (Ruppell 1830). Coral Reefs 29:511–519CrossRefGoogle Scholar
  76. Jones RJ, Steven AL (1997) Effects of cyanide on corals in relation to cyanide fishing on reefs. Mar Freshw Res 48:517–522CrossRefGoogle Scholar
  77. Justine JL (2011) Huffmanela plectropomi n. sp. (Nematoda: Trichosomoididae: Huffmanelinae) from the coralgrouper Plectropomus leopardus (Lacepede) off New Caledonia. Syst Parasitol 79:139–143PubMedCrossRefGoogle Scholar
  78. Justine JL, Euzet L (2006) Diplectanids (Monogenea) parasitic on the gills of the coralgroupers Plectropomus laevis and P. leopardus (Perciformes, Serranidae) off New Caledonia, with the description of five new species and the erection of Echinoplectanum. Syst Parasitol 64:147–172PubMedCrossRefGoogle Scholar
  79. Karkarey R, Kelkar N, Savio Lobo A, Alcoverro T, Arthur R (2014) Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs 33:289–302CrossRefGoogle Scholar
  80. Keag M, Newman S, Marton N, Saunders T (2014) Coral trout. In: Flood M, Stobutzki I, Andrews J et al. (eds) Status of key Australian fish stocks 2014. Fisheries Research and Development Corporation, Canberra.
  81. Kerry JT, Bellwood DR (2012) The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31:415–424CrossRefGoogle Scholar
  82. Kingsford MJ (1992) Spatial and temporal variation in predation on reef fishes by coral trout (Plectropomus leopardus, Serranidae). Coral Reefs 11:193–198CrossRefGoogle Scholar
  83. Kingsford MJ (2009) Contrasting patterns of reef utilisation and recruitment of coral trout (Plectropomus leopardus) and snapper (Lutjanus carponotatus) at One Tree Island, southern Great Barrier Reef. Coral Reefs 28:251–264CrossRefGoogle Scholar
  84. Kuiter R (1995) The juvenile vermicular cod Plectropomus oligacanthus, a mimic of the slender maori wrasse Chelinus celebicus. Revue Francaise d’Aquariologie 21:77–78Google Scholar
  85. Kulbicki M, Bozec YM, Labrosse P, Letourneur Y, Mou-Tham G, Wantiez L (2005) Diet composition of carnivorous fishes from coral reef lagoons of New Caledonia. Aquat Living Resour 18:231–250CrossRefGoogle Scholar
  86. Leigh GM, Campbell AB, Lunow CP, O’Neill MF (2014) Stock assessment of the Queensland east coast common coral trout (Plectropomus leopardus) fishery. Queensland Government, Brisbane.
  87. Leis JM (1986) Larval development in four species of Indo-Pacific coral trout Plectropomus (Pisces: Serranidae: Epinephelinae) with an analysis of the relationships of the genus. Bull Mar Sci 38:525–552Google Scholar
  88. Leis JM, Carson-Ewart BM (1999) In situ swimming and settlement behaviour of larvae of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces: Serranidae). Mar Biol 134:51–64CrossRefGoogle Scholar
  89. Lester RJG, Sewell KB (1989) Checklist of parasites from Heron Island, Great Barrier Reef. Aust J Zool 37:101–128CrossRefGoogle Scholar
  90. Liao IC, Leano EM (2008) The aquaculture of groupers. Fisheries Society of Taiwan, KeelungGoogle Scholar
  91. Light PR, Jones GP (1997) Habitat preference in newly settled coral trout (Plectropomus leopardus, Serranidae). Coral Reefs 16:117–126CrossRefGoogle Scholar
  92. Little LR, Smith ADM, McDonald AD et al (2005) Effects of size and fragmentation of marine reserves and fisher infringement on the catch and biomass of coral trout, Plectropomus leopardus, on the Great Barrier Reef, Australia. Fish Manag Ecol 12:177–188CrossRefGoogle Scholar
  93. Little LR, Grafton RQ, Kompas T, Smith AD, Punt AE, Mapstone BD (2011) Complementarity of no-take marine reserves and individual transferable catch quotas for managing the line fishery of the Great Barrier Reef. Conserv Biol 25:333–340PubMedGoogle Scholar
  94. Lombardi-Carlson L, Fitzhugh G, Palmer C, Gardner C, Farsky R, Ortiz M (2008) Regional size, age and growth differences of red grouper (Epinephelus morio) along the west coast of Florida. Fish Res 91:239–251CrossRefGoogle Scholar
  95. Ma KY (2014) Patterns and Process of Diversification in Groupers (Family Epinephelidae). PhD Thesis, James Cook University, AustraliaGoogle Scholar
  96. Mangel M, Levin PS (2005) Regime, phase and paradigm shifts: making community ecology the basic science for fisheries. Phil Trans R Soc 360B:95–105CrossRefGoogle Scholar
  97. Manooch CS (1987) Age and growth of snappers and groupers. In: Polovina JJ, Ralston S (eds) Tropical snappers and groupers: biology and fisheries management. Westview Press, Boulder, pp 329–373Google Scholar
  98. Mapstone BD, Davies CR, Little LR et al. (2004) The effects of line fishing on the Great Barrier Reef and evaluations of alternative potential management strategies. Technical Report No 52. CRC Reef Research Centre, Townsville, AustraliaGoogle Scholar
  99. Mapstone BD, Little LR, Punt AE et al (2008) Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish Res 94:315–329CrossRefGoogle Scholar
  100. Masuma S, Tezuka N, Teruya K (1993) Embryonic and morphological development of larval and juvenile coral trout, Plectropomus leopardus. Jpn J Ichthyol 40:333–342Google Scholar
  101. Matley JK, Heupel MR, Simpfendorfer CA (2015) Depth and space use of leopard coralgrouper Plectropomus leopardus using passive acoustic tracking. Mar Ecol Prog Ser 521:201–216CrossRefGoogle Scholar
  102. McLean DL, Harvey ES, Meeuwig JJ (2011) Declines in the abundance of coral trout (Plectropomus leopardus) in areas closed to fishing at the Houtman Abrolhos Islands, Western Australia. J Exp Mar Biol Ecol 406:71–78CrossRefGoogle Scholar
  103. Miller I, Cheal AJ, Emslie MJ, Logan M, Sweatman H (2012) Ongoing effects of no-take marine reserves on commercially exploited coral trout populations on the Great Barrier Reef. Mar Environ Res 79:167–170PubMedCrossRefGoogle Scholar
  104. Monro JL, Pauly D (1983) A simple method for comparing the growth of fishes and invertebrates. Fishbyte 1:5–6Google Scholar
  105. Moravec F, Justine JL (2014) Capillaria plectropomi n. sp. (Nematoda: Capillariidae), a new intestinal parasite of the leopard coral grouper Plectropomus leopardus (Serranidae) off New Caledonia. Parasite 21:76PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nardi K, Jones GP, Moran MJ, Cheng YW (2004) Contrasting effects of marine protected areas on the abundance of two exploited reef fishes at the sub-tropical Houtman Abrolhos Islands, Western Australia. Environ Conserv 31:160–168CrossRefGoogle Scholar
  107. Newman SJ, Williams DM, Russ GR (1997) Patterns of zonation of assemblages of the Lutjanidae, Lethrinidae and Serranidae (Epinephelinae) within and among mid-shelf and outer-shelf reefs in the central Great Barrier Reef. Mar Freshw Res 48:119–128CrossRefGoogle Scholar
  108. Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10:430PubMedCrossRefGoogle Scholar
  109. Pears RJ, Choat JH, Mapstone BD, Begg GA (2006) Demography of a large grouper, Epinephelus fuscoguttatus, from Australia’s Great Barrier Reef: implications for fishery management. Mar Ecol Prog Ser 307:259–272CrossRefGoogle Scholar
  110. Pet JS, Mous JS, Muljadi AH, Sadovy YJ, Squire L (2005) Aggregations of Plectropomus areolatus and Epinephelus fuscoguttatus (groupers, Serranidae) in the Komodo National Park, Indonesia: monitoring and implications for management. Environ Biol Fish 74:209–218CrossRefGoogle Scholar
  111. Polovina JJ, Ralston S (1987) Tropical snappers and groupers: biology and fisheries management. Westview Press, BoulderGoogle Scholar
  112. Pomeroy RS, Pido MD, Pontillas JFA et al (2008) Evaluation of policy options for the live reef food fish trade in the province of Palawan, Western Philippines. Mar Pol 32:55–65CrossRefGoogle Scholar
  113. Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011) Changes in the biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452CrossRefGoogle Scholar
  114. Qu M, Ding S, Xu X, Shen M, You Y, Su Y (2012) Ontogenetic development of the digestive system and growth in coral trout (Plectropomus leopardus). Aquaculture 334:132–141CrossRefGoogle Scholar
  115. Randall JE, Hoese DF (1986) Revision of the groupers of the Indo-Pacific Genus Plectropomus (Perciformes: Serranidae). Indo-Pacific Fishes 13:1–31Google Scholar
  116. Rhodes KL, Sadovy de Mitcheson Y (2012) Squaretail coral grouper—Plectropomus areolatus. In: Sadovy de Mitcheson Y, Colin PL (eds) Reef fish spawning aggregations: biology, research and management. Springer, Dordrecht, pp 445–449Google Scholar
  117. Rhodes KL, Tupper MH (2008) The vulnerability of reproductively active squaretail grouper (Plectropomus areolatus) to fishing. Fish Bull 106:194–203Google Scholar
  118. Rhodes KL, Taylor BM, Wichilmel CB, Joseph E, Hamilton RJ, Almany GR (2013) Reproductive biology of squaretail coralgrouper Plectropomus areolatus using age-based techniques. J Fish Biol 82:1333–1350PubMedCrossRefGoogle Scholar
  119. Rhodes KL, Nemeth RS, Kadison E, Joseph E (2014) Spatial, temporal, and environmental dynamics of a multi-species epinephelid spawning aggregation in Pohnpei, Micronesia. Coral Reefs 33:755–765CrossRefGoogle Scholar
  120. Rimmer MA, Thampisamraj YC, Jayagopal P, Thineshsanthar D, Damodar PN, Toledo JD (2013) Spawning of tiger grouper Epinephelus fuscoguttatus and squaretail coralgrouper Plectropomus areolatus in sea cages and onshore tanks in Andaman and Nicobar Islands, India. Aquaculture 410:197–202CrossRefGoogle Scholar
  121. Rizzari JR, Frisch AJ, Hoey AS, McCormick MI (2014) Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123:829–836CrossRefGoogle Scholar
  122. Robinson J, Samoilys M, Kimani P (2008) Reef fish sawning aggregations in the western Indian Ocean: current knowledge and implications for management. In: Obura DO, Tamelander J, Linden O (eds) CORDIO Status Report 2007. Coastal Oceans Research and Development—Indian Ocean, Mombasa, pp 263–276Google Scholar
  123. Russ GR, Lou DC, Ferreira BP (1996) Temporal tracking of a strong cohort in the population of a coral reef fish, the coral trout, Plectropomus leopardus Serranidae: Epinephelinae), in the central Great Barrier Reef. Can J Fish Aquat Sci 53:2745–2751CrossRefGoogle Scholar
  124. Russ GR, Lou DC, Higgs JB, Ferreira BP (1998) Mortality rate of a cohort of the coral trout, Plectropomus leopardus, in zones of the Great Barrier Reef Marine Park closed to fishing. Aust J Mar Fresh Res 49:507–511CrossRefGoogle Scholar
  125. Russ GR, Cheal AJ, Dolman AM et al (2008) Rapid increase in fish numbers follows creation of world’s largest marine reserve network. Curr Biol 18:514–515CrossRefGoogle Scholar
  126. Sadovy Y (1996) Reproduction of reef fishery species. In: Polunin NVC, Roberts CM (eds) Reef fisheries. Chapman and Hall, London, pp 15–59CrossRefGoogle Scholar
  127. Sadovy Y (2005) Trouble on the reef: the imperative for managing vulnerable and valuable fisheries. Fish Fish 6:167–185CrossRefGoogle Scholar
  128. Sadovy de Mitcheson Y, Craig MT, Bertoncini AA et al (2013) Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish 448:93–104Google Scholar
  129. Sadovy Y, Domeier M (2005) Are aggregation-fisheries sustainable? Reef fish fisheries as a case study. Coral Reefs 24:254–262CrossRefGoogle Scholar
  130. Sadovy Y, Donaldson TJ, Graham TR et al (2003) While stocks last: the live reef food fish trade. Asian Development Bank, ManilaGoogle Scholar
  131. Samoilys MA (1997) Periodicity of spawning aggregations of coral trout Plectropomus Leopardus (Pisces: Serranidae) on the Great Barrier Reef. Mar Ecol Prog Ser 160:149–159CrossRefGoogle Scholar
  132. Samoilys MA, Squire LC (1994) Preliminary observations on the spawning behavior of coral trout, Plectropomus leopardus (Pisces: Serranidae), on the Great Barrier Reef. Bull Mar Sci 54:332–342Google Scholar
  133. Sattar SA, Najeeb A, Islam F, Afzal MS, Wood E (2012) Management of the grouper fishery of the Maldives. In: Proceedings of the twelth international Coral Reef symposium, Cairns, vol 13, pp 1–5. 9–13 July 2012Google Scholar
  134. Scales H, Balmford A, Manica A (2007) Impacts of the live reef fish trade on populations of coral reef fish off northern Borneo. Proc R Soc 274B:989–994CrossRefGoogle Scholar
  135. Setlow RB, Woodhead AD, Grist E (1989) Animal model for ultraviolet radiation induced melanoma—platyfish swordtail hybrid. Proc Natl Acad Sci 86:8922–8926PubMedPubMedCentralCrossRefGoogle Scholar
  136. Shedrawi G, Harvey ES, McLean DL, Prince J, Bellchambers LM, Newman SJ (2014) Evaluation of the effect of closed areas on a unique and shallow water coral reef fish assemblage reveals complex responses. Coral Reefs 33:579–591CrossRefGoogle Scholar
  137. Skinner MP, Brewer TD, Johnstone RA, Fleming LE, Lewis RJ (2011) Ciguatera fish poisoning in the Pacific Islands (1998–2008). PLoS One 5:e1416Google Scholar
  138. St John J (1999) Ontogenetic changes in the diet of the coralreef grouper Plectropomus leopardus (Serranidae): patterns in taxa, size and habitat of prey. Mar Ecol Prog Ser 180:233–246CrossRefGoogle Scholar
  139. St. John J, Russ GR, Brown IW, Squire LC (2001) The diet of the large coral reef serranid Plectropomus leopardus in two fishing zones on the Great Barrier Reef, Australia. Fish Bull 99:180–192Google Scholar
  140. Sumpton W, Mayer D, Brown I et al (2008) Investigation of movement and factors influencing post-release survival of line-caught coral reef fish using recreational tag-recapture data. Fish Res 92:189–195CrossRefGoogle Scholar
  141. Sumpton WD, Brown IW, Mayer DG et al (2010) Assessing the effects of line capture and barotrauma relief procedures on post-release survival of key tropical reef fish species in Australia using recreational tagging clubs. Fish Manag Ecol 17:77–88CrossRefGoogle Scholar
  142. Sweet M, Kirkham N, Bendall M, Currey L, Bythell J, Heupel M (2012) Evidence of melanoma in wild marine fish populations. PLoS One 7:e41989PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tamelander J, Sattar S, Campbell S, Hoon V, Arthur R, Patterson EJK, Satapoomin U, Chandi M, Rajasuriya A, Samoilys M (2008) Reef fish spawning aggregations in the Bay of Bengal: awareness and occurrence. In: Proceedings of the eleventh international Coral Reef symposium, Fort Lauderdale, vol 2, pp 1050–1054. 7–17 July 2008Google Scholar
  144. Thebaud O, Innes J, Norman-Lopez A et al (2014) Micro-economic drivers of profitability in an ITQ-managed fishery: an analysis of the Queensland coral reef fin-fish fishery. Mar Pol 43:200–207CrossRefGoogle Scholar
  145. Thorson JT, Cope JM, Branch TA, Jensen OP (2012) Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information. Can J Fish Aquat Sci 69:1556–1568CrossRefGoogle Scholar
  146. Tobin A, Currey L, Simpfendorfer C (2013) Informing the vulnerability of species to spawning aggregation fishing using commercial catch data. Fish Res 143:47–56CrossRefGoogle Scholar
  147. Tupper MH (2007) Identification of nursery habitats for commercially valuable humphead wrasse Cheilinus undulatus and large groupers (Pisces: Serrandiae) in Palau. Mar Ecol Prog Ser 332:189–199CrossRefGoogle Scholar
  148. Vail AL, Manica A, Bshary R (2013) Referential gestures in fish collaborative hunting. Nat Commun 4:1765–1771PubMedCrossRefGoogle Scholar
  149. van Herwerden L, Davies CR, Choat JH (2002) Phylogenetic and evolutionary perspectives of the Indo-Pacific grouper Plectropomus species on the Great Barrier Reef, Australia. J Fish Biol 60:1591–1596CrossRefGoogle Scholar
  150. van Herwerden L, Choat JH, Dudgeon CL, Carlos G, Newman SJ, Frisch AJ, van Oppen M (2006) Contrasting patterns of genetic structure in two species of the coral trout Plectropomus (Serrandae) from east and west Australia: Introgressive hybridisation or ancestral polymorphisms. Mol Phylogenet Evol 41:420–435PubMedCrossRefGoogle Scholar
  151. van Herwerden L, Choat JH, Newman SJ, Leray M, Hillersoy G (2009) Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management. Mar Biol 156:1595–1607CrossRefGoogle Scholar
  152. Watson DL, Harvey ES, Kendrick GA, Nardi K, Anderson MJ (2007) Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone. Mar Biol 152:1197–1206CrossRefGoogle Scholar
  153. Welch DJ, Mapstone BD, Begg GA (2008) Spatial and temporal variation and effects of changes in management in discard rates from the commercial reef line fishery of the Great Barrier Reef, Australia. Fish Res 90:247–260CrossRefGoogle Scholar
  154. Welch DJ, Newman SJ, Buckworth RC, Ovenden JR, Broderick D, Lester RJ, Gribble NA, Ballagh AC, Charters RA, Stapley J, Street R (2015) Integrating different approaches in the definition of biological stocks: A northern Australian multi-jurisdictional fisheries example using grey mackerel, Scomberomorus semifasciatus. Mar Pol 55:73–80CrossRefGoogle Scholar
  155. Wen CKC, Almany GR, Williamson DH, Pratchett MS, Jones GP (2012) Evaluating the effects of marine reserves on diet, prey availability and prey selection by juvenile predatory fishes. Mar Ecol Prog Ser 469:133–144CrossRefGoogle Scholar
  156. Wen CKC, Almany GR, Williamson DH et al (2013a) Recruitment hotspots boost the effectiveness of no-take marine reserves. Biol Conserv 166:124–131CrossRefGoogle Scholar
  157. Wen CKC, Pratchett MS, Almany GR, Jones GP (2013b) Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barreir Reef, Australia. Coral Reefs 32:389–398CrossRefGoogle Scholar
  158. Williams AJ, Currey LM, Begg GA, Murchie CD, Ballagh AC (2008) Population biology of coral trout species in eastern Torres Strait: implications for management. Cont Shelf Res 28:2129–2142CrossRefGoogle Scholar
  159. Williams AJ, Little LR, Begg GA (2011) Balancing indigenous and non-indigenous commercial objectives in a coral reef finfish fishery. ICES J Mar Sci 68:834–847CrossRefGoogle Scholar
  160. Williamson DH, Russ GR, Ayling AM (2004) No-take marine reserves increase abundance and biomass of reef fish on inshore fringing reefs of the Great Barrier Reef. Environ Conserv 31:149–159CrossRefGoogle Scholar
  161. Williamson DH, Jones GP, Thorrold SR (2009) An experimental evaluation of transgenerational isotope labelling in a coral reef grouper. Mar Biol 156:2517–2525CrossRefGoogle Scholar
  162. Williamson DH, Ceccarelli DM, Evans RD, Jones GP, Russ GR (2014) Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities. Ecol Evol 4:337–354PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wong C, Hung P, Lee KLH, Kam K (2005) Study of an outbreak of ciguatera fish poisoning in Hong Kong. Toxicon 46:563–571PubMedCrossRefGoogle Scholar
  164. Wright KJ, Higgs DM, Belanger AJ, Leis JM (2008) Auditory and olfactory abilities of the Indo-Pacific coral trout Plectropomus leopardus (Lacepede) at settlement. J Fish Biol 72:2543–2556CrossRefGoogle Scholar
  165. Yin X (2014) Sustainability of coral trout, Plectropomus leopardus, fisheries in the Philippines and Indonesia. MSc Thesis, University of Hong Kong, ChinaGoogle Scholar
  166. Yoseda K, Yamamoto K, Asami K, Chimura M, Hashimoto K (2008) Influence of light intensity on feeding, growth, and early survival of leopard coral grouper (Plectropomus leopardus) larvae under mass-scale rearing conditions. Aquaculture 279:55–62CrossRefGoogle Scholar
  167. Zeller DC (1997) Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Mar Ecol Prog Ser 154:65–77CrossRefGoogle Scholar
  168. Zeller DC (1998) Spawning aggregations: patterns of movement of the coral trout Plectropomus leopardus (Serranidae) as determined by ultrasonic telemetry. Mar Ecol Prog Ser 162:253–263CrossRefGoogle Scholar
  169. Zeller DC, Russ GR (1998) Marine reserves: patterns of adult movement of the coral trout (Plectropomus leopardus, Serranidae). Can J Fish Aquat Sci 55:917–924CrossRefGoogle Scholar
  170. Zhu ZY, Yue GH (2008) The complete mitochondrial genome of red grouper Plectropomus leopardus and its applications in identification of grouper species. Aquaculture 276:44–49CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ashley J. Frisch
    • 1
    Email author
  • Darren S. Cameron
    • 2
  • Morgan S. Pratchett
    • 1
  • David H. Williamson
    • 1
  • Ashley J. Williams
    • 3
  • Adam D. Reynolds
    • 4
  • Andrew S. Hoey
    • 1
  • Justin R. Rizzari
    • 1
  • Louisa Evans
    • 5
  • Brigid Kerrigan
    • 6
  • Geoffrey Muldoon
    • 7
  • David J. Welch
    • 8
  • Jean-Paul A. Hobbs
    • 9
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Great Barrier Reef Marine Park AuthorityTownsvilleAustralia
  3. 3.Secretariat of the Pacific CommunityNouméaNew Caledonia
  4. 4.Northern Fisheries CentreQueensland Department of Agriculture, Fisheries and ForestryCairnsAustralia
  5. 5.College of Life and Environmental SciencesUniversity of ExeterExeterUK
  6. 6.Marine Ecology, Conservation and Fisheries ConsultingTownsvilleAustralia
  7. 7.World Wide Fund for NatureTownsvilleAustralia
  8. 8.CO2 FisheriesCairnsAustralia
  9. 9.Department of Environment and AgricultureCurtin UniversityPerthAustralia

Personalised recommendations