Skip to main content

Advertisement

Log in

Fish as proxies of ecological and environmental change

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Anthropogenic impacts have shifted aquatic ecosystems far from prehistoric baseline states; yet, understanding these impacts is impeded by a lack of available long-term data that realistically reflects the organisms and their habitats prior to human disturbance. Fish are excellent, and largely underused, proxies for elucidating the degree, direction and scale of shifts in aquatic ecosystems. This paper highlights potential sources of qualitative and quantitative data derived from contemporary, archived and ancient fish samples, and then, using key examples, discusses the types of long-term temporal information that can be obtained. This paper identifies future research needs with a focus on the Southern Hemisphere, as baseline shifts are poorly described relative to the Northern Hemisphere. Temporal data sourced from fish can improve our understanding of how aquatic ecosystems have changed, particularly when multiple sources of data are used, enhancing our ability to interpret the current state of aquatic ecosystems and establish effective measures to safeguard against further adverse shifts. The range of biological, ecological and environmental data obtained from fish can be integrated to better define ecosystem baseline states on which to establish policy goals for future conservation and exploitation practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainsworth CH, Pitcher TJ, Rotinsulu C (2008) Evidence of fishery depletions and shifting cognitive baselines in Eastern Indonesia. Biol Conserv 141:848–859

    Article  Google Scholar 

  • Alleway HK, Connell SD, Ward TM, Gillanders BM (2014) Historical changes in mean trophic level of southern Australian fisheries. Mar Freshw Res 65:884–893. doi:10.1071/MF13246

    Article  Google Scholar 

  • Alleway HK, Gillanders BM, Connell SD (2016) ‘Neo-Europe’ and its ecological consequences: the example of systematic degradation in Australia’s inland fisheries. Biol Lett 12:20150774. doi:10.1098/rsbl.2015.0774

    Article  PubMed  Google Scholar 

  • Andrus CFT (2011) Shell midden sclerochronology. Quat Sci Rev 30:2892–2905. doi:10.1016/j.quascirev.2011.07.016

    Article  Google Scholar 

  • Andrus CFT, Crowe DE (2002) Alteration of otolith aragonite: effects of prehistoric cooking methods on otolith chemistry. J Archaeol Sci 29:291–299

    Article  Google Scholar 

  • Andrus CFT, Crowe DE, Romanek CS (2002) Oxygen isotope record of the 1997–1998 El Nino in Peruvian sea catfish (Galeichthys peruvianus) otoliths. Paleoceanography 17:5-1–5-8. doi:10.1029/2001PA000652

    Article  Google Scholar 

  • Babcock RC, Kelly S, Shears NT, Walker JW, Willis TJ (1999) Changes in community structure in temperate marine reserves. Mar Ecol Prog Ser 189:125–134

    Article  Google Scholar 

  • Babcock RC, Shears NT, Alcala AC, Barrett NS, Edgar GJ, Lafferty KD, McClanahan TR, Russ GR (2010) Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc Natl Acad Sci 107:18256–18261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balazik MT, Garman GC, Fine ML, Hager CH, McIninch SP (2010) Changes in age composition and growth characteristics of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) over 400 years. Biol Lett 6:708–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes TC, Gillanders BM (2013) Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Can J Fish Aquat Sci 70:1159–1166. doi:10.1139/cjfas-2012-0442

    Article  CAS  Google Scholar 

  • Baumgartner T, Soutar A, Ferreira-Bartrina V (1992) Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, California. Calif Coop Ocean Fish Investig Rep 33:24–40

    Google Scholar 

  • Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323

    Article  Google Scholar 

  • Begg GA, Weidman CR (2001) Stable δ13C and δ18O isotopes in otoiiths of haddock Melanogrammus aeglefinus from the northwest Atlantic Ocean. Mar Ecol Prog Ser 216:223–233

    Article  CAS  Google Scholar 

  • Bell J, Craik G, Pollard D, Russell B (1985) Estimating length frequency distributions of large reef fish underwater. Coral Reefs 4:41–44

    Article  Google Scholar 

  • Bernal-Ramírez JH, Adcock GJ, Hauser L, Carvalho GR, Smith PJ (2003) Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents. Mar Biol 142:567–574. doi:10.1007/s00227-002-0972-9

    Google Scholar 

  • Bird MK (1992) The impact of tropical cyclones on the archaeological record: an Australian example. Archaeol Ocean 27:75–86

    Article  Google Scholar 

  • Bishop J (2006) Standardizing fishery-dependent catch and effort data in complex fisheries with technology change. Rev Fish Biol Fish 16:21–38. doi:10.1007/s11160-006-0004-9

    Article  Google Scholar 

  • Black BA, Boehlert GW, Yoklavich MM (2005) Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Can J Fish Aquat Sci 62:2277–2284

    Article  Google Scholar 

  • Bode M, Bode L, Armsworth PR (2006) Larval dispersal reveals regional sources and sinks in the Great Barrier Reef. Mar Ecol Prog Ser 308:17–25

    Article  Google Scholar 

  • Booth DJ, Bond N, Macreadie P (2011) Detecting range shifts among Australian fishes in response to climate change. Mar Freshw Res 62:1027–1042. doi:10.1071/MF10270

    Article  Google Scholar 

  • Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402. doi:10.1016/j.jmarsys.2008.12.015

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242

    Article  Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38

    Article  Google Scholar 

  • Carpenter SJ, Erickson JM, Holland FD Jr (2003) Migration of a late Cretaceous fish. Nature 423:70–74. doi:10.1038/nature01575

    Article  CAS  PubMed  Google Scholar 

  • Case RAJ, Hutchinson WF, Hauser L, Oosterhout CV, Carvalho GR (2005) Macro- and micro-geographic variation in pantophysin (Pan I) allele frequencies in NE Atlantic cod Gadus morhua. Mar Ecol Prog Ser 301:267–278. doi:10.3354/meps301267

    Article  CAS  Google Scholar 

  • Casteel RW (1976) Fish remains in archaeology and paleo-environmental studies. Academic, London

    Google Scholar 

  • Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ, Crawford RJM, Durant JM, Hughes L, Keatley MR, Low M, Morellato PC, Poloczanska ES, Ruoppolo V, Vanstreels RET, Woehler EJ, Wolfaardt AC (2013) Phenological changes in the southern hemisphere. Plos One 8:e75514. doi:10.1371/journal.pone.0075514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuwen BM, Potter IC, Hall NG, Hoeksema SD, Laurenson LJB (2011) Changes in catch rates and length and age at maturity, but not growth, of an estuarine plotosid (Cnidoglanis macrocephalus) after heavy fishing. Fish Bull 109:247–260

    Google Scholar 

  • Clarke LM, Thorrold SR, Conover DO (2011) Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can J Fish Aquat Sci 68:105–114. doi:10.1139/F10-147

    Article  CAS  Google Scholar 

  • Colley SM (1990) The analysis and interpretation of archaeological fish remains. In: Schiffer MB (ed) Archaeological method and theory. The University of Arizona Press, Tucson, pp 207–253

    Google Scholar 

  • Collingsworth PD, Van Tassell JJ, Olesik JW, Marschall EA (2010) Effects of temperature and elemental concentration on the chemical composition of juvenile yellow perch (Perca flavescens) otoliths. Can J Fish Aquat Sci 67:1187–1196. doi:10.1139/f10-050

    Article  CAS  Google Scholar 

  • Connell S, Russell B, Turner D, Shepherd S, Kildea T, Miller D, Airoldi L, Cheshire A (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol Prog Ser 360:63–72. doi:10.3354/meps07526

    Article  Google Scholar 

  • Cottingham A, Hesp SA, Hall NG, Hipsey MR, Potter IC (2014) Marked deleterious changes in the condition, growth and maturity schedules of Acanthopagrus butcheri (Sparidae) in an estuary reflect environmental degradation. Estuar Coast Shelf Sci 149:109–119. doi:10.1016/j.ecss.2014.07.021

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–322. doi:10.1890/1051-0761(1998)008[0309:SBGARE]2.0.CO;2

    Article  Google Scholar 

  • Devereux I (1967) Temperature measurements from oxygen isotope ratios of fish otoliths. Science 155:1684–1685. doi:10.1126/science.155.3770.1684

    Article  CAS  PubMed  Google Scholar 

  • Dissard D, Nehrke G, Reichart GJ, Bijma J (2010) Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences 7:81–93

    Article  CAS  Google Scholar 

  • Disspain M, Wallis LA, Gillanders BM (2011) Developing baseline data to understand environmental change: a geochemical study of archaeological otoliths from the Coorong, South Australia. J Archaeol Sci 38:1842–1857. doi:10.1016/j.jas.2011.03.027

    Article  Google Scholar 

  • Disspain MCF, Wilson CJ, Gillanders BM (2012) Morphological and chemical analysis of archaeological fish otoliths from the Lower Murray River, South Australia. Archaeol Ocean 47:141–150. doi:10.1002/j.1834-4453.2012.tb00126.x

    Article  Google Scholar 

  • Disspain MCF, Ulm S, Gillanders BM (2015) Otoliths in archaeology: methods, applications and future prospects. J Archaeol Sci Rep. doi:10.1016/j.jasrep.2015.05.012

    Google Scholar 

  • Donovan SK (2002) Taphonomy. Geol Today 18:226–231

    Article  Google Scholar 

  • Doubleday ZA, Izzo C, Haddy JA, Lyle JM, Ye Q, Gillanders BM (2015) Long-term patterns in estuarine fish growth across two climatically divergent regions. Oecologia 179:1079–1090. doi:10.1007/s00442-015-3411-6

    Article  PubMed  Google Scholar 

  • Dufour E, Holmden C, Van Neer W, Zazzo A, Patterson WP, Degryse P, Keppens E (2007) Oxygen and strontium isotopes as provenance indicators of fish at archaeological sites: the case study of Sagalassos, SW Turkey. J Archaeol Sci 34:1226–1239. doi:10.1016/j.jas.2006.10.014

    Article  Google Scholar 

  • Dulvy N, Polunin NV, Mill A, Graham NA (2004) Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. Can J Fish Aquat Sci 61:466–475

    Article  Google Scholar 

  • Eiler JM (2007) “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327. doi:10.1016/j.epsl.2007.08.020

    Article  CAS  Google Scholar 

  • Eiler JM (2011) Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat Sci Rev 30:3575–3588. doi:10.1016/j.quascirev.2011.09.001

    Article  Google Scholar 

  • Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796–1808. doi:10.1139/f02-154

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2005) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143–1152

    Article  CAS  Google Scholar 

  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes—hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol Annu Rev 46:297–330

    Article  Google Scholar 

  • Ferguson GJ, Ward TM, Geddes MC (2008) Do recent age structures and historical catches of mulloway, Argyrosomus japonicus (Sciaenidae), reflect freshwater inflows in the remnant estuary of the Murray River, South Australia? Aquat Living Resour 21:145–152. doi:10.1051/alr:2008034

    Article  Google Scholar 

  • Ferguson GJ, Ward TM, Ye Q, Geddes MC, Gillanders BM (2013) Impacts of drought, flow regime, and fishing on the fish assemblage in southern Australia’s largest temperate estuary. Estuar Coasts 36:737–753. doi:10.1007/s12237-012-9582-z

    Article  CAS  Google Scholar 

  • Feyrer F, Herbold B, Matern S, Moyle P (2003) Dietary shifts in a stressed fish assemblage: consequences of a bivalve invasion in the San Francisco Estuary. Environ Biol Fish 67:277–288. doi:10.1023/A:1025839132274

    Article  Google Scholar 

  • Finney BP, Alheit J, Emeis K-C, Field DB, Gutiérrez D, Struck U (2010) Paleoecological studies on variability in marine fish populations: a long-term perspective on the impacts of climatic change on marine ecosystems. J Mar Syst 79:316–326. doi:10.1016/j.jmarsys.2008.12.010

    Article  Google Scholar 

  • Fortibuoni T, Libralato S, Raicevich S, Giovanardi O, Solidoro C (2010) Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). Plos One 5:e15502. doi:10.1371/journal.pone.0015502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fowler AJ, Ling JK (2010) Ageing studies done 50 years apart for an inshore fish species from southern Australia—contribution towards determining current stock status. Environ Biol Fish 89:253–265

    Article  Google Scholar 

  • Friedrich LA, Halden NM (2008) Alkali element uptake in otoliths: a link between the environment and otolith microchemistry. Environ Sci Technol 42:3514–3518. doi:10.1021/es072093r

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Beamish RJ (2003) Stable isotope variations in otoliths of Pacific halibut (Hippoglossus stenolepis) and indications of the possible 1990 regime shift. Fish Res 60:393–404. doi:10.1016/s0165-7836(02)00134-0

    Article  Google Scholar 

  • Gartside DF, Harrison B, Ryan BL (1999) An evaluation of the use of fishing club records in the management of marine recreational fisheries. Fish Res 41:47–61. doi:10.1016/S0165-7836(99)00007-7

    Article  Google Scholar 

  • Genner MJ, Sims DW, Southward AJ, Budd GC, Masterson P, McHugh M, Rendle P, Southall EJ, Wearmouth VJ, Hawkins SJ (2010) Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob Change Biol 16:517–527. doi:10.1111/j.1365-2486.2009.02027.x

    Article  Google Scholar 

  • Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456. doi:10.1016/j.gca.2005.11.014

    Article  CAS  Google Scholar 

  • Ghosh P, Eiler J, Campana SE, Feeney RF (2007) Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim Cosmochim Acta 71:2736–2744. doi:10.1016/j.gca.2007.03.015

    Article  CAS  Google Scholar 

  • Gilbert DJ (1994) A total catch history model for SNA 1. MAF Fisheries, N.Z. Ministry of Agriculture and Fisheries, Wellington

    Google Scholar 

  • Gilbert DJ, McKenzie JR, Davies NM, Field KD (2000) Assessment of the SNA 1 stocks for the 1999–2000 fishing year. Ministry of Fisheries, Wellington

    Google Scholar 

  • Gillanders BM, Black BA, Meekan MG, Morrison MA (2012) Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Mar Biol 1559:1327–1333. doi:10.1007/s00227-012-1913-x

    Article  Google Scholar 

  • Girone A, Nolf D (2009) Fish otoliths from the Priabonian (Late Eocene) of North Italy and South-East France—their paleobiogeographical significance. Rev Micropaléontol 52:195–218. doi:10.1016/j.revmic.2007.10.006

    Article  Google Scholar 

  • Grammer GL, Fallon SJ, Izzo C, Wood RE, Gillanders BM (2015) Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon. Earth Planet Sci Lett 424:59–68. doi:10.1016/j.epsl.2015.05.008

    Article  CAS  Google Scholar 

  • Grønkjær P, Pedersen JB, Ankjærø TT, Kjeldsen H, Heinemeier J, Steingrund P, Nielsen JM, Christensen JT (2013) Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Can J Fish Aquat Sci 70:143–146. doi:10.1139/cjfas-2012-0386

    Article  CAS  Google Scholar 

  • Haltuch MA, Hamel OS, Piner KR, McDonald P, Kastelle CR, Field JC (2013) A California Current bomb radiocarbon reference chronology and petrale sole (Eopsetta jordani) age validation. Can J Fish Aquat Sci 70:22–31. doi:10.1139/cjfas-2011-0504

    Article  Google Scholar 

  • Hanson PJ, Zdanowicz VS (1999) Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient. J Fish Biol 54:656–668. doi:10.1111/j.1095-8649.1999.tb00644.x

    Article  Google Scholar 

  • Hardt MJ (2009) Lessons from the past: the collapse of Jamaican coral reefs. Fish Fish 10:143–158. doi:10.1111/j.1467-2979.2008.00308.x

    Article  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci 99:11742–11747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heino M, Dieckmann U, Godø OR (2002) Measuring probabilistic reaction norms for age and size at maturation. Evolution 56:669–678. doi:10.1111/j.0014-3820.2002.tb01378.x

    Article  PubMed  Google Scholar 

  • Higgs E, Falk DA, Guerrini A, Hall M, Harris J, Hobbs RJ, Jackson ST, Rhemtulla JM, Throop W (2014) The changing role of history in restoration ecology. Front Ecol Environ 12:499–506. doi:10.1890/110267

    Article  Google Scholar 

  • Higham TFG, Horn PL (2000) Seasonal dating using fish otoliths: results from the Shag River Mouth site, New Zealand. J Archaeol Sci 27:439–448. doi:10.1006/jasc.1999.0473

    Article  Google Scholar 

  • Hobday AJ (2011) Sliding baselines and shuffling species: implications of climate change for marine conservation. Mar Ecol 32:392–403. doi:10.1111/j.1439-0485.2011.00459.x

    Article  Google Scholar 

  • Hobday A, Evans K (2013) Detecting climate impacts with oceanic fish and fisheries data. Clim Change 119:49–62. doi:10.1007/s10584-013-0716-5

    Article  Google Scholar 

  • Hobday AJ, Lough JM (2011) Projected climate change in Australian marine and freshwater environments. Mar Freshw Res 62:1000–1014. doi:10.1071/MF10302

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ, Stephens JS Jr (1997) Changes in an assemblage of temperate reef fishes associated with a climate shift. Ecol Appl 7:1299–1310

    Article  Google Scholar 

  • Hsieh C-H, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862

    Article  CAS  PubMed  Google Scholar 

  • Humphries P, Winemiller KO (2009) Historical impacts on river fauna, shifting baselines, and challenges for restoration. Bioscience 59:673–684. doi:10.1525/bio.2009.59.8.9

    Article  Google Scholar 

  • Ingram BL, Sloan D (1992) Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255:68–72. doi:10.1126/science.255.5040.68

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru E, Tayasu I, Umino T, Yumoto T (2011) Reconstruction of ancient trade routes in the Japanese Archipelago using carbon and nitrogen stable isotope analysis: identification of the stock origins of marine fish found at the Inland Yokkaichi Site, Hiroshima Prefecture, Japan. J Isl Coast Archaeol 6:160–163. doi:10.1080/15564894.2010.541552

    Article  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Coral Reefs 16:S23–S32. doi:10.1007/s003380050238

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638. doi:10.1126/science.1059199

    Article  CAS  PubMed  Google Scholar 

  • Jakobsdóttir KB, Pardoe H, Magnússon Á, Björnsson H, Pampoulie C, Ruzzante DE, Marteinsdóttir G (2011) Historical changes in genotypic frequencies at the Pantophysin locus in Atlantic cod (Gadus morhua) in Icelandic waters: evidence of fisheries-induced selection? Evol Appl 4:562–573. doi:10.1111/j.1752-4571.2010.00176.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennings S, Dulvy NK (2005) Reference points and reference directions for size-based indicators of community structure. ICES J Mar Sci J Cons 62:397–404

    Article  Google Scholar 

  • Juanes F, Gephard S, Beland KF (2004) Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. Can J Fish Aquat Sci 61:2392–2400. doi:10.1139/f04-207

    Article  Google Scholar 

  • Kalish JM (1993) Pre- and post-bomb radiocarbon in fish otoliths. Earth Planet Sci Lett 114:549–554. doi:10.1016/0012-821X(93)90082-K

    Article  CAS  Google Scholar 

  • Kalish JM (1994) Investigating global change and fish biology with fish otolith radiocarbon. Nucl Instrum Methods Phys Res Sect B 92:421–425. doi:10.1016/0168-583X(94)96047-X

    Article  Google Scholar 

  • Kalish JM (1995) Application of the bomb radiocarbon chronometer to the validation of redfish Centroberyx affinis age. Can J Fish Aquat Sci 52:1399–1405. doi:10.1139/f95-135

    Article  Google Scholar 

  • Kerr LA, Secor DH, Kraus RT (2007) Stable isotope (δ13C and δ18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish. Mar Ecol Prog Ser 349:245–253. doi:10.3354/meps07064

    Article  Google Scholar 

  • Kingsford MJ, Hughes JM, Patterson HM (2009) Otolith chemistry of the non-dispersing reef fish Acanthochromis polyacanthus: cross-shelf patterns from the central Great Barrier Reef. Mar Ecol Prog Ser 377:279–288

    Article  CAS  Google Scholar 

  • Kirby MX (2004) Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins. Proc Natl Acad Sci 101:13096–13099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaer NL (2001) Steam trawl catches from south-eastern Australia from 1918 to 1957: trends in catch rates and species composition. Mar Freshw Res 52:399–410. doi:10.1071/MF00101

    Article  Google Scholar 

  • Last PR, White WT, Gledhill DC, Hobday AJ, Brown R, Edgar GJ, Pecl G (2011) Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob Ecol Biogeogr 20:58–72. doi:10.1111/j.1466-8238.2010.00575.x

    Article  Google Scholar 

  • Leach F, Davidson J (2000) Pre-European catches of snapper Pagrus auratus in northern New Zealand. J Archaeol Sci 27:509–522

    Article  Google Scholar 

  • Limburg KE, Huang R, Bilderback DH (2007) Fish otolith trace element maps: new approaches with synchrotron microbeam X-ray fluorescence. X-ray Spectrom 36:336–342. doi:10.1002/xrs.980

    Article  CAS  Google Scholar 

  • Limburg K, Lochet A, Driscoll D, Dale D, Huang R (2010) Selenium detected in fish otoliths: a novel tracer for a polluted lake? Environ Biol Fish 89:433–440. doi:10.1007/s10641-010-9671-4

    Article  Google Scholar 

  • Limburg KE, Olson C, Walther Y, Dale D, Slomp CP, Høie H (2011) Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proc Natl Acad Sci 108:E177–E182. doi:10.1073/pnas.1100684108

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling J (1958) The sea garfish, Reporhamphus melanochir (Cuvier & Valenciennes) (Hemi-ramphidae), in South Australia: breeding, age determination, and growth rate. Aust J Mar Freshw Res 9:60–110. doi:10.1071/MF9580060

    Article  Google Scholar 

  • Litzow MA, Hobday AJ, Frusher SD, Dann P, Tuck GN (2016) Detecting regime shifts in marine systems with limited biological data: an example from southeast Australia. Prog Oceanogr 141:96–108. doi:10.1016/j.pocean.2015.12.001

    Article  Google Scholar 

  • Long JA, Trinajstic K (2010) The Late Devonian Gogo Formation lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annu Rev Earth Planet Sci 38:255–279

    Article  CAS  Google Scholar 

  • Long K, Stern N, Williams IS, Kinsley L, Wood R, Sporcic K, Smith T, Fallon S, Kokkonen H, Moffat I, Grün R (2014) Fish otolith geochemistry, environmental conditions and human occupation at Lake Mungo, Australia. Quat Sci Rev 88:82–95. doi:10.1016/j.quascirev.2014.01.012

    Article  Google Scholar 

  • Lotze HK, Milewski I (2004) Two centuries of multiple human impacts and successive changes in a North Atlantic food web. Ecol Appl 14:1428–1447. doi:10.1890/03-5027

    Article  Google Scholar 

  • Lotze HK, Worm B (2009) Historical baselines for large marine animals. Trends Ecol Evol 24:254–262. doi:10.1016/j.tree.2008.12.004

    Article  PubMed  Google Scholar 

  • Lubinski PM (1996) Fish heads, fish heads: an experiment on differential bone preservation in a salmonid fish. J Archaeol Sci 23:175–181. doi:10.1006/jasc.1996.0015

    Article  Google Scholar 

  • Luff RM, Bailey GN (2000) Analysis of size changes and incremental growth structures in African catfish Synodontis schall (Schall) from tell El-Amarna, middle Egypt. J Archaeol Sci 27:821–835

    Article  Google Scholar 

  • Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F (2012) Socio-economic and management implications of range-shifting species in marine systems. Glob Environ Change 22:137–146

    Article  Google Scholar 

  • Mahadevan A (2001) An analysis of bomb radiocarbon trends in the Pacific. Mar Chem 73:273–290. doi:10.1016/S0304-4203(00)00113-4

    Article  CAS  Google Scholar 

  • Mallen-Cooper M, Brand DA (2007) Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fish Manag Ecol 14:319–332. doi:10.1111/j.1365-2400.2007.00557.x

    Article  Google Scholar 

  • Mannino MA, Thomas KD (2002) Depletion of a resource? the impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeol 33:452–474. doi:10.1080/00438240120107477

    Article  Google Scholar 

  • Martin EE, Haley BA (2000) Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochim Cosmochim Acta 64:835–847

    Article  CAS  Google Scholar 

  • McClenachan L (2009) Documenting loss of large trophy fish from the florida keys with historical photographs. Conserv Biol 23:636–643

    Article  PubMed  Google Scholar 

  • McClenachan L, Ferretti F, Baum JK (2012) From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv Lett 5:349–359. doi:10.1111/j.1755-263X.2012.00253.x

    Article  Google Scholar 

  • McMahon KW, Fogel ML, Johnson BJ, Houghton LA, Thorrold SR (2011) A new method to reconstruct fish diet and movement patterns from δ13C values in otolith amino acids. Can J Fish Aquat Sci 68:1330–1340. doi:10.1139/f2011-070

    Article  Google Scholar 

  • Miller JA (2009) The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. J Fish Biol 75:39–60

    Article  CAS  PubMed  Google Scholar 

  • Monsch KA (1998) Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeogr Palaeoclimatol Palaeoecol 143:31–50. doi:10.1016/S0031-0182(98)00064-9

    Article  Google Scholar 

  • Morrongiello JR, Thresher RE (2015) A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example. Ecol Monogr 85:93–115. doi:10.1890/13-2355.1

    Article  Google Scholar 

  • Morrongiello JR, Crook DA, King AJ, Ramsey DSL, Brown P (2011) Impacts of drought and predicted effects of climate change on fish growth in temperate Australian lakes. Glob Change Biol 17:745–755. doi:10.1111/j.1365-2486.2010.02259.x

    Article  Google Scholar 

  • Morrongiello JR, Thresher RE, Smith DC (2012) Aquatic biochronologies and climate change. Nat Clim Change 2:849–857. doi:10.1038/nclimate1616

    Article  Google Scholar 

  • Morrongiello JR, Walsh CT, Gray CA, Stocks JR, Crook DA (2014) Environmental change drives long-term recruitment and growth variation in an estuarine fish. Glob Change Biol 20:1844–1860. doi:10.1111/gcb.12545

    Article  Google Scholar 

  • Moulton PL, Walker TI, Saddlier SR (1992) Age and growth studies of gummy shark, Mustelus antarcticus Günther, and school shark, Galeorhinus galeus (Linnaeus), from southern Australian waters. Aust J Mar Freshw Res 43:1241–1267

    Article  Google Scholar 

  • Nagaoka L (2005) Differential recovery of Pacific Island fish remains. J Archaeol Sci 32:941–955

    Article  Google Scholar 

  • Neuheimer A, Thresher R, Lyle J, Semmens J (2011) Tolerance limit for fish growth exceeded by warming waters. Nat Clim Change 1:110–113

    Article  Google Scholar 

  • Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish Fish 9:450–461. doi:10.1111/j.1467-2979.2008.00304.x

    Article  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol 6:487–492. doi:10.1046/j.1365-294X.1997.00204.x

    Article  CAS  Google Scholar 

  • Nielsen EE, MacKenzie BR, Magnussen E, Meldrup D (2007) Historical analysis of Pan I in Atlantic cod (Gadus morhua): temporal stability of allele frequencies in the southeastern part of the species distribution. Can J Fish Aquat Sci 64:1448–1455. doi:10.1139/f07-104

    Article  Google Scholar 

  • Nock CJ, Ovenden JR, Butler GL, Wooden I, Moore A, Baverstock PR (2011) Population structure, effective population size and adverse effects of stocking in the endangered Australian eastern freshwater cod Maccullochella ikei. J Fish Biol 78:303–321. doi:10.1111/j.1095-8649.2010.02865.x

    Article  CAS  PubMed  Google Scholar 

  • Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135. doi:10.1046/j.1365-294X.2003.01976.x

    Article  PubMed  Google Scholar 

  • Overholtz WJ, Link JS, Suslowicz LE (2000) Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J Mar Sci J Cons 57:1147–1159. doi:10.1006/jmsc.2000.0802

    Article  Google Scholar 

  • Palomares ML, Heymans JT, Pauly D (2007) Historical ecology of the Raja Ampat Archipelago, Papua Province, Indonesia. Hist Philos Life Sci 29:33–56

    PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Can J Fish Aquat Sci 67:225–242. doi:10.1139/F09-176

    Article  Google Scholar 

  • Parsons DM, Morrison MA, MacDiarmid AB, Stirling B, Cleaver P, Smith IWG, Butcher M (2009) Risks of shifting baselines highlighted by anecdotal accounts of New Zealand’s snapper (Pagrus auratus) fishery. N Z J Mar Freshwat Res 43:965–983. doi:10.1080/00288330909510054

    Article  Google Scholar 

  • Patterson WP (1998) North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeogr Palaeoclimatol Palaeoecol 138:271–303. doi:10.1016/s0031-0182(97)00137-5

    Article  Google Scholar 

  • Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10:430

    Article  CAS  PubMed  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  PubMed  Google Scholar 

  • Pinnegar JK, Engelhard GH (2008) The ‘shifting baseline’ phenomenon: a global perspective. Rev Fish Biol Fish 18:1–16. doi:10.1007/s11160-007-9058-6

    Article  Google Scholar 

  • Pitcher TJ (2001) Fisheries managed to rebuild ecosystems? reconstructing the past to salvage the future. Ecol Appl 11:601–617

    Article  Google Scholar 

  • Pitcher TJ (2005) Back-to-the-future: a fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems. Philos Trans R Soc Lond B Biol Sci 360:107–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925. doi:10.1038/nclimate1958

    Article  Google Scholar 

  • Price GD, Wilkinson D, Hart MB, Page KN, Grimes ST (2009) Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: implications for upper-ocean water temperature estimates. Geology 37:215–218. doi:10.1130/g25377a.1

    Article  CAS  Google Scholar 

  • Przywolnik K (2002) Coastal sites and severe weather in Cape Range Peninsula, northwest Australia. Archaeol Ocean 37:137–152

    Article  Google Scholar 

  • Quinn TJ, Dersio RB (1999) Quantitative fish dynamics. Oxford University Press, New York

    Google Scholar 

  • Reitz EJ (2004) “Fishing down the food web”: a case study from St. Augustine, Florida. USA Am Antiq 69:63–83

    Article  Google Scholar 

  • Rieman BE, Myers DL, Nielsen RL (1994) Use of otolith microchemistry to discriminate Oncorhynchus nerka of resident and anadromous origin. Can J Fish Aquat Sci 51:68–77. doi:10.1139/f94-009

    Article  CAS  Google Scholar 

  • Rivers PJ, Ardren WR (1998) The value of archives. Fisheries 23:6–9. doi:10.1577/1548-8446

    Article  Google Scholar 

  • Rochet M-J, Trenkel VM (2003) Which community indicators can measure the impact of fishing? a review and proposals. Can J Fish Aquat Sci 60:86–99

    Article  Google Scholar 

  • Rose M (1996) Fishing at Minoan Pseira: formation of a Bronze Age fish assemblage from Crete. Archaeo Int J Archaeozool 5:135–140

    Google Scholar 

  • Rosenberg AA, Bolster WJ, Alexander KE, Leavenworth WB, Cooper AB, McKenzie MG (2005) The history of ocean resources: modeling cod biomass using historical records. Front Ecol Environ 3:84–90

    Article  Google Scholar 

  • Rountrey AN, Coulson PG, Meeuwig JJ, Meekan M (2014) Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Glob Change Biol 20:2450–2458. doi:10.1111/gcb.12617

    Article  Google Scholar 

  • Rowell K, Dettman D, Dietz R (2010) Nitrogen isotopes in otoliths reconstruct ancient trophic position. Environ Biol Fish 89:415–425. doi:10.1007/s10641-010-9687-9

    Article  Google Scholar 

  • Rowland S (1989) Aspects of the history and fishery of the Murray cod, Maccullochella peeli (Mitchell) (Percichthyidae). Proc Linn Soc NSW 111:201–213

    Google Scholar 

  • Sadovy Y, Cheung WL (2003) Near extinction of a highly fecund fish: the one that nearly got away. Fish Fish 4:86–99

    Article  Google Scholar 

  • Schmidt DJ, Crook DA, MacDonald JI, Huey JA, Zampatti BP, Chilcott S, Raadik TA, Hughes JM (2014) Migration history and stock structure of two putatively diadromous teleost fishes, as determined by genetic and otolith chemistry analyses. Freshw Sci 33:193–206. doi:10.1086/674796

    Article  Google Scholar 

  • Schmitz B, Åberg G, Werdelin L, Forey P, Bendix-Almgreen SE (1991) 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geol Soc Am Bull 103:786–794. doi:10.1130/0016-7606(1991)103<0786:ssnfsa>2.3.co;2

    Article  CAS  Google Scholar 

  • Schöne BR, Gillikin DP (2013) Unraveling environmental histories from skeletal diaries—advances in sclerochronology. Palaeogeogr Palaeoclimatol Palaeoecol 373:1–5. doi:10.1016/j.palaeo.2012.11.026

    Article  Google Scholar 

  • Schwarcz HP, Gao Y, Campana SE, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1798–1806

    Article  Google Scholar 

  • Schwerdtner Máñez K, Holm P, Blight L, Coll M, MacDiarmid A, Ojaveer H, Poulsen B, Tull M (2014) The future of the oceans past: towards a global marine historical research initiative. Plos One 9:e101466. doi:10.1371/journal.pone.0101466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahidul Islam M, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649. doi:10.1016/j.marpolbul.2003.12.004

    Article  PubMed  CAS  Google Scholar 

  • Sherwood GD, Rose RA (2003) Influence of swimming form on otolith δ13C in marine fish. Mar Ecol Prog Ser 258:283–289

    Article  CAS  Google Scholar 

  • Smith PJ, Francis RICC, McVeagh M (1991) Loss of genetic diversity due to fishing pressure. Fish Res 10:309–316. doi:10.1016/0165-7836(91)90082-Q

    Article  Google Scholar 

  • Smith DC, Robertson SG, Fenton GE, Short SA (1995) Age determination and growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with radiometric ageing. Can J Fish Aquat Sci 52:391–401

    Article  Google Scholar 

  • Spencer K, Shafer DJ, Gauldie RW, DeCarlo EH (2000) Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery ground stock marker. Comp Biochem Physiol A Mol Integr Physiol 127:273–284

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (2011) Evidence of age-class truncation in some exploited marine fish populations in New South Wales, Australia. Fish Res 108:209–213

    Article  Google Scholar 

  • Stobutzki I, Miller M, Brewer D (2001) Sustainability of fishery bycatch: a process for assessing highly diverse and numerous by-catch. Environ Conserv 28:167–181

    Article  Google Scholar 

  • Stuart-Smith RD, Barrett NS, Stevenson DG, Edgar GJ (2010) Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Glob Change Biol 16:122–134. doi:10.1111/j.1365-2486.2009.01955.x

    Article  Google Scholar 

  • Sturrock AM, Trueman CN, Milton JA, Waring CP, Cooper MJ, Hunter E (2014) Physiological influences can outweigh environmental signals in otolith microchemistry research. Mar Ecol Prog Ser 500:245–264. doi:10.3354/meps10699

    Article  CAS  Google Scholar 

  • Swain DP, Sinclair AF, Mark Hanson J (2007) Evolutionary response to size-selective mortality in an exploited fish population. Proc R Soc Lond B Biol Sci 274:1015–1022

    Article  Google Scholar 

  • Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 61:2909–2919

    Article  CAS  Google Scholar 

  • Thresher RE, Koslow JA, Morison AK, Smith DC (2007) Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proc Natl Acad Sci 104:7461–7465. doi:10.1073/pnas.0610546104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thresher R, Morrongiello J, Sloyan BM, Krusic-Golub K, Shephard S, Minto C, Nolan CP, Cerna F, Cid L (2014) Parallel decadal variability of inferred water temperatures for Northern and Southern Hemisphere intermediate water masses. Geophys Res Lett 41:1232–1237. doi:10.1002/2013GL058638

    Article  Google Scholar 

  • Thurstan RH, Hawkins JP, Roberts CM (2013) Origins of the bottom trawling controversy in the British Isles: 19th century witness testimonies reveal evidence of early fishery declines. Fish Fish Early View. doi:10.1111/faf.12034

    Google Scholar 

  • Thurstan RH, Buckley SM, Ortiz JC, Pandolfi JM (2015) Setting the record straight: assessing the reliability of retrospective accounts of change. Conserv Lett. doi:10.1111/conl.12184

    Google Scholar 

  • Thurstan RH, Campbell AB, Pandolfi JM (2016) Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish Fish 17:210–225. doi:10.1111/faf.12103

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Broecker WS (1991) The Peru upwelling and the ventilation of the south Pacific thermocline. J Geophys Res Ocean 96:20467–20497. doi:10.1029/91JC02063

    Article  CAS  Google Scholar 

  • Trippel EA (1995) Age at maturity as a stress indicator in fisheries. Bioscience 45:759–771. doi:10.2307/1312628

    Article  Google Scholar 

  • Turvey ST, Barrett LA, Yujiang HAO, Lei Z, Xinqiao Z, Xianyan W, Yadong H, Kaiya Z, Hart TOM, Ding W (2010) Rapidly shifting baselines in Yangtze fishing communities and local memory of extinct species. Conserv Biol 24:778–787. doi:10.1111/j.1523-1739.2009.01395.x

    Article  PubMed  Google Scholar 

  • Vale D, Gargett RH (2002) Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra I, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia. J Archaeol Sci 29:57–63

    Article  Google Scholar 

  • Van Houtan KS, McClenachan L, Kittinger JN (2013) Seafood menus reflect long-term ocean changes. Front Ecol Environ 11:289–290. doi:10.1890/13.WB.015

    Article  Google Scholar 

  • Van Neer W, Ervynck A, Bolle LJ, Millner RS, Rijnsdorp AD (2002) Fish otoliths and their relevance to archaeology: an analysis of medieval, post-medieval, and recent material of plaice, cod and haddock from the North Sea. Environ Archaeol 7:61–76

    Article  Google Scholar 

  • Vines TH, Andrew RL, Bock DG, Franklin MT, Gilbert KJ, Kane NC, Moore J-S, Moyers BT, Renaut S, Rennison DJ, Veen T, Yeaman S (2013) Mandated data archiving greatly improves access to research data. FASEB J 27:1304–1308. doi:10.1096/fj.12-218164

    Article  CAS  PubMed  Google Scholar 

  • Walker TI (2007) Spatial and temporal variation in the reproductive biology of gummy shark Mustelus antarcticus (Chondrichthyes: Triakidae) harvested off southern Australia. Mar Freshw Res 58:67–97. doi:10.1071/MF06074

    Article  Google Scholar 

  • Walker TI, Taylor BL, Hudson RJ, Cottier JP (1998) The phenomenon of apparent change of growth rate in gummy shark (Mustelus antarcticus) harvested off southern Australia. Fish Res 39:139–163

    Article  Google Scholar 

  • Walsh CT, Gray CA, West RJ, van der Meulen DE, Williams LF (2010) Growth, episodic recruitment and age truncation in populations of a catadromous percichthyid, Macquaria colonorum. Mar Freshw Res 61:397–407

    Article  CAS  Google Scholar 

  • Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642. doi:10.1016/j.tree.2007.08.017

    Article  PubMed  Google Scholar 

  • Wells B, Bath G, Thorrold S, Jones C (2000) Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can J Fish Aquat Sci 57:2122–2129

    Article  CAS  Google Scholar 

  • Whitten AR, Klaer NL, Tuck GN, Day RW (2013) Accounting for cohort-specific variable growth in fisheries stock assessments: a case study from south-eastern Australia. Fish Res 142:27–36. doi:10.1016/j.fishres.2012.06.021

    Article  Google Scholar 

  • Wilby PR, Martill DM (1992) Fossil fish stomachs: a microenvironment for exceptional preservation. Hist Biol 6:25–36. doi:10.1080/10292389209380416

    Article  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482. doi:10.1890/070037

    Article  Google Scholar 

  • Woydack A, Morales-Nin B (2001) Growth patterns and biological information in fossil fish otoliths. Paleobiology 27:369–378. doi:10.1666/0094-8373(2001)027%3C0369:GPABII%3E2.0.co;2

    Article  Google Scholar 

  • Wurster CM, Patterson WP (2001) Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths. Palaeogeogr Palaeoclimatol Palaeoecol 170:81–100

    Article  Google Scholar 

  • Ye Q, Short DA, Green C, Coutin PC (2002) Age and growth rate determination. In: Jones GK, Ye Q, Ayvazian S, Coutin P (eds) Fisheries biology and habitat ecology of southern sea garfish (Hyporhamphus melanochir) in southern Australian waters. Final report to FRDC. Project No 1997/133, pp 35–99

  • Zazzo A, Smith GR, Patterson WP, Dufour E (2006) Life history reconstruction of modern and fossil sockeye salmon (Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: implication for paleoenvironmental reconstructions. Earth Planet Sci Lett 249:200–215. doi:10.1016/j.epsl.2006.07.003

    Article  CAS  Google Scholar 

  • Zeller D, Pauly D (2005) Good news, bad news: global fisheries discards are declining, but so are total catches. Fish Fish 6:156–159. doi:10.1111/j.1467-2979.2005.00177.x

    Article  Google Scholar 

  • Zeller D, Froese R, Pauly D (2005) On losing and recovering fisheries and marine science data. Mar Policy 29:69–73. doi:10.1016/j.marpol.2004.02.003

    Article  Google Scholar 

  • Ziegler PE, Lyle JM, Haddon M, Ewing GP (2007) Rapid changes in life-history characteristics of a long-lived temperate reef fish. Mar Freshw Res 58:1096–1107. doi:10.1071/MF07137

    Article  Google Scholar 

  • Zohar I, Belmaker M, Nadel D, Gafny S, Goren M, Hershkovitz I, Dayan T (2008) The living and the dead: how do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish? Palaeogeogr Palaeoclimatol Palaeoecol 258:292–316

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Peter Fraser for insight during the early writing stages. This work was Funded by an Australian Research Council Discovery Grant (DP110100716) and Future Fellowship (FT100100767) awarded to BMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Izzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izzo, C., Doubleday, Z.A., Grammer, G.L. et al. Fish as proxies of ecological and environmental change. Rev Fish Biol Fisheries 26, 265–286 (2016). https://doi.org/10.1007/s11160-016-9424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9424-3

Keywords

Navigation