Reviews in Fish Biology and Fisheries

, Volume 26, Issue 3, pp 265–286 | Cite as

Fish as proxies of ecological and environmental change

  • Christopher IzzoEmail author
  • Zoë A. Doubleday
  • Gretchen L. Grammer
  • Kayla L. Gilmore
  • Heidi K. Alleway
  • Thomas C. Barnes
  • Morgan C. F. Disspain
  • Ana Judith Giraldo
  • Nastaran Mazloumi
  • Bronwyn M. Gillanders


Anthropogenic impacts have shifted aquatic ecosystems far from prehistoric baseline states; yet, understanding these impacts is impeded by a lack of available long-term data that realistically reflects the organisms and their habitats prior to human disturbance. Fish are excellent, and largely underused, proxies for elucidating the degree, direction and scale of shifts in aquatic ecosystems. This paper highlights potential sources of qualitative and quantitative data derived from contemporary, archived and ancient fish samples, and then, using key examples, discusses the types of long-term temporal information that can be obtained. This paper identifies future research needs with a focus on the Southern Hemisphere, as baseline shifts are poorly described relative to the Northern Hemisphere. Temporal data sourced from fish can improve our understanding of how aquatic ecosystems have changed, particularly when multiple sources of data are used, enhancing our ability to interpret the current state of aquatic ecosystems and establish effective measures to safeguard against further adverse shifts. The range of biological, ecological and environmental data obtained from fish can be integrated to better define ecosystem baseline states on which to establish policy goals for future conservation and exploitation practices.


Aquatic ecosystems Fish Historical ecology Baseline state Restoration ecology Southern Hemisphere 



The authors thank Peter Fraser for insight during the early writing stages. This work was Funded by an Australian Research Council Discovery Grant (DP110100716) and Future Fellowship (FT100100767) awarded to BMG.


  1. Ainsworth CH, Pitcher TJ, Rotinsulu C (2008) Evidence of fishery depletions and shifting cognitive baselines in Eastern Indonesia. Biol Conserv 141:848–859CrossRefGoogle Scholar
  2. Alleway HK, Connell SD, Ward TM, Gillanders BM (2014) Historical changes in mean trophic level of southern Australian fisheries. Mar Freshw Res 65:884–893. doi: 10.1071/MF13246 CrossRefGoogle Scholar
  3. Alleway HK, Gillanders BM, Connell SD (2016) ‘Neo-Europe’ and its ecological consequences: the example of systematic degradation in Australia’s inland fisheries. Biol Lett 12:20150774. doi: 10.1098/rsbl.2015.0774 PubMedCrossRefGoogle Scholar
  4. Andrus CFT (2011) Shell midden sclerochronology. Quat Sci Rev 30:2892–2905. doi: 10.1016/j.quascirev.2011.07.016 CrossRefGoogle Scholar
  5. Andrus CFT, Crowe DE (2002) Alteration of otolith aragonite: effects of prehistoric cooking methods on otolith chemistry. J Archaeol Sci 29:291–299CrossRefGoogle Scholar
  6. Andrus CFT, Crowe DE, Romanek CS (2002) Oxygen isotope record of the 1997–1998 El Nino in Peruvian sea catfish (Galeichthys peruvianus) otoliths. Paleoceanography 17:5-1–5-8. doi: 10.1029/2001PA000652 CrossRefGoogle Scholar
  7. Babcock RC, Kelly S, Shears NT, Walker JW, Willis TJ (1999) Changes in community structure in temperate marine reserves. Mar Ecol Prog Ser 189:125–134CrossRefGoogle Scholar
  8. Babcock RC, Shears NT, Alcala AC, Barrett NS, Edgar GJ, Lafferty KD, McClanahan TR, Russ GR (2010) Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc Natl Acad Sci 107:18256–18261PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balazik MT, Garman GC, Fine ML, Hager CH, McIninch SP (2010) Changes in age composition and growth characteristics of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) over 400 years. Biol Lett 6:708–710PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barnes TC, Gillanders BM (2013) Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Can J Fish Aquat Sci 70:1159–1166. doi: 10.1139/cjfas-2012-0442 CrossRefGoogle Scholar
  11. Baumgartner T, Soutar A, Ferreira-Bartrina V (1992) Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, California. Calif Coop Ocean Fish Investig Rep 33:24–40Google Scholar
  12. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323CrossRefGoogle Scholar
  13. Begg GA, Weidman CR (2001) Stable δ13C and δ18O isotopes in otoiiths of haddock Melanogrammus aeglefinus from the northwest Atlantic Ocean. Mar Ecol Prog Ser 216:223–233CrossRefGoogle Scholar
  14. Bell J, Craik G, Pollard D, Russell B (1985) Estimating length frequency distributions of large reef fish underwater. Coral Reefs 4:41–44CrossRefGoogle Scholar
  15. Bernal-Ramírez JH, Adcock GJ, Hauser L, Carvalho GR, Smith PJ (2003) Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents. Mar Biol 142:567–574. doi: 10.1007/s00227-002-0972-9 Google Scholar
  16. Bird MK (1992) The impact of tropical cyclones on the archaeological record: an Australian example. Archaeol Ocean 27:75–86CrossRefGoogle Scholar
  17. Bishop J (2006) Standardizing fishery-dependent catch and effort data in complex fisheries with technology change. Rev Fish Biol Fish 16:21–38. doi: 10.1007/s11160-006-0004-9 CrossRefGoogle Scholar
  18. Black BA, Boehlert GW, Yoklavich MM (2005) Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Can J Fish Aquat Sci 62:2277–2284CrossRefGoogle Scholar
  19. Bode M, Bode L, Armsworth PR (2006) Larval dispersal reveals regional sources and sinks in the Great Barrier Reef. Mar Ecol Prog Ser 308:17–25CrossRefGoogle Scholar
  20. Booth DJ, Bond N, Macreadie P (2011) Detecting range shifts among Australian fishes in response to climate change. Mar Freshw Res 62:1027–1042. doi: 10.1071/MF10270 CrossRefGoogle Scholar
  21. Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402. doi: 10.1016/j.jmarsys.2008.12.015 CrossRefGoogle Scholar
  22. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297CrossRefGoogle Scholar
  23. Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242CrossRefGoogle Scholar
  24. Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38CrossRefGoogle Scholar
  25. Carpenter SJ, Erickson JM, Holland FD Jr (2003) Migration of a late Cretaceous fish. Nature 423:70–74. doi: 10.1038/nature01575 PubMedCrossRefGoogle Scholar
  26. Case RAJ, Hutchinson WF, Hauser L, Oosterhout CV, Carvalho GR (2005) Macro- and micro-geographic variation in pantophysin (Pan I) allele frequencies in NE Atlantic cod Gadus morhua. Mar Ecol Prog Ser 301:267–278. doi: 10.3354/meps301267 CrossRefGoogle Scholar
  27. Casteel RW (1976) Fish remains in archaeology and paleo-environmental studies. Academic, LondonGoogle Scholar
  28. Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ, Crawford RJM, Durant JM, Hughes L, Keatley MR, Low M, Morellato PC, Poloczanska ES, Ruoppolo V, Vanstreels RET, Woehler EJ, Wolfaardt AC (2013) Phenological changes in the southern hemisphere. Plos One 8:e75514. doi: 10.1371/journal.pone.0075514 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chuwen BM, Potter IC, Hall NG, Hoeksema SD, Laurenson LJB (2011) Changes in catch rates and length and age at maturity, but not growth, of an estuarine plotosid (Cnidoglanis macrocephalus) after heavy fishing. Fish Bull 109:247–260Google Scholar
  30. Clarke LM, Thorrold SR, Conover DO (2011) Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can J Fish Aquat Sci 68:105–114. doi: 10.1139/F10-147 CrossRefGoogle Scholar
  31. Colley SM (1990) The analysis and interpretation of archaeological fish remains. In: Schiffer MB (ed) Archaeological method and theory. The University of Arizona Press, Tucson, pp 207–253Google Scholar
  32. Collingsworth PD, Van Tassell JJ, Olesik JW, Marschall EA (2010) Effects of temperature and elemental concentration on the chemical composition of juvenile yellow perch (Perca flavescens) otoliths. Can J Fish Aquat Sci 67:1187–1196. doi: 10.1139/f10-050 CrossRefGoogle Scholar
  33. Connell S, Russell B, Turner D, Shepherd S, Kildea T, Miller D, Airoldi L, Cheshire A (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol Prog Ser 360:63–72. doi: 10.3354/meps07526 CrossRefGoogle Scholar
  34. Cottingham A, Hesp SA, Hall NG, Hipsey MR, Potter IC (2014) Marked deleterious changes in the condition, growth and maturity schedules of Acanthopagrus butcheri (Sparidae) in an estuary reflect environmental degradation. Estuar Coast Shelf Sci 149:109–119. doi: 10.1016/j.ecss.2014.07.021 CrossRefGoogle Scholar
  35. Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–322. doi: 10.1890/1051-0761(1998)008[0309:SBGARE]2.0.CO;2 CrossRefGoogle Scholar
  36. Devereux I (1967) Temperature measurements from oxygen isotope ratios of fish otoliths. Science 155:1684–1685. doi: 10.1126/science.155.3770.1684 PubMedCrossRefGoogle Scholar
  37. Dissard D, Nehrke G, Reichart GJ, Bijma J (2010) Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences 7:81–93CrossRefGoogle Scholar
  38. Disspain M, Wallis LA, Gillanders BM (2011) Developing baseline data to understand environmental change: a geochemical study of archaeological otoliths from the Coorong, South Australia. J Archaeol Sci 38:1842–1857. doi: 10.1016/j.jas.2011.03.027 CrossRefGoogle Scholar
  39. Disspain MCF, Wilson CJ, Gillanders BM (2012) Morphological and chemical analysis of archaeological fish otoliths from the Lower Murray River, South Australia. Archaeol Ocean 47:141–150. doi: 10.1002/j.1834-4453.2012.tb00126.x CrossRefGoogle Scholar
  40. Disspain MCF, Ulm S, Gillanders BM (2015) Otoliths in archaeology: methods, applications and future prospects. J Archaeol Sci Rep. doi: 10.1016/j.jasrep.2015.05.012 Google Scholar
  41. Donovan SK (2002) Taphonomy. Geol Today 18:226–231CrossRefGoogle Scholar
  42. Doubleday ZA, Izzo C, Haddy JA, Lyle JM, Ye Q, Gillanders BM (2015) Long-term patterns in estuarine fish growth across two climatically divergent regions. Oecologia 179:1079–1090. doi: 10.1007/s00442-015-3411-6 PubMedCrossRefGoogle Scholar
  43. Dufour E, Holmden C, Van Neer W, Zazzo A, Patterson WP, Degryse P, Keppens E (2007) Oxygen and strontium isotopes as provenance indicators of fish at archaeological sites: the case study of Sagalassos, SW Turkey. J Archaeol Sci 34:1226–1239. doi: 10.1016/j.jas.2006.10.014 CrossRefGoogle Scholar
  44. Dulvy N, Polunin NV, Mill A, Graham NA (2004) Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. Can J Fish Aquat Sci 61:466–475CrossRefGoogle Scholar
  45. Eiler JM (2007) “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327. doi: 10.1016/j.epsl.2007.08.020 CrossRefGoogle Scholar
  46. Eiler JM (2011) Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat Sci Rev 30:3575–3588. doi: 10.1016/j.quascirev.2011.09.001 CrossRefGoogle Scholar
  47. Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796–1808. doi: 10.1139/f02-154 CrossRefGoogle Scholar
  48. Elsdon TS, Gillanders BM (2005) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143–1152CrossRefGoogle Scholar
  49. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes—hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol Annu Rev 46:297–330CrossRefGoogle Scholar
  50. Ferguson GJ, Ward TM, Geddes MC (2008) Do recent age structures and historical catches of mulloway, Argyrosomus japonicus (Sciaenidae), reflect freshwater inflows in the remnant estuary of the Murray River, South Australia? Aquat Living Resour 21:145–152. doi: 10.1051/alr:2008034 CrossRefGoogle Scholar
  51. Ferguson GJ, Ward TM, Ye Q, Geddes MC, Gillanders BM (2013) Impacts of drought, flow regime, and fishing on the fish assemblage in southern Australia’s largest temperate estuary. Estuar Coasts 36:737–753. doi: 10.1007/s12237-012-9582-z CrossRefGoogle Scholar
  52. Feyrer F, Herbold B, Matern S, Moyle P (2003) Dietary shifts in a stressed fish assemblage: consequences of a bivalve invasion in the San Francisco Estuary. Environ Biol Fish 67:277–288. doi: 10.1023/A:1025839132274 CrossRefGoogle Scholar
  53. Finney BP, Alheit J, Emeis K-C, Field DB, Gutiérrez D, Struck U (2010) Paleoecological studies on variability in marine fish populations: a long-term perspective on the impacts of climatic change on marine ecosystems. J Mar Syst 79:316–326. doi: 10.1016/j.jmarsys.2008.12.010 CrossRefGoogle Scholar
  54. Fortibuoni T, Libralato S, Raicevich S, Giovanardi O, Solidoro C (2010) Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). Plos One 5:e15502. doi: 10.1371/journal.pone.0015502 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fowler AJ, Ling JK (2010) Ageing studies done 50 years apart for an inshore fish species from southern Australia—contribution towards determining current stock status. Environ Biol Fish 89:253–265CrossRefGoogle Scholar
  56. Friedrich LA, Halden NM (2008) Alkali element uptake in otoliths: a link between the environment and otolith microchemistry. Environ Sci Technol 42:3514–3518. doi: 10.1021/es072093r PubMedCrossRefGoogle Scholar
  57. Gao Y, Beamish RJ (2003) Stable isotope variations in otoliths of Pacific halibut (Hippoglossus stenolepis) and indications of the possible 1990 regime shift. Fish Res 60:393–404. doi: 10.1016/s0165-7836(02)00134-0 CrossRefGoogle Scholar
  58. Gartside DF, Harrison B, Ryan BL (1999) An evaluation of the use of fishing club records in the management of marine recreational fisheries. Fish Res 41:47–61. doi: 10.1016/S0165-7836(99)00007-7 CrossRefGoogle Scholar
  59. Genner MJ, Sims DW, Southward AJ, Budd GC, Masterson P, McHugh M, Rendle P, Southall EJ, Wearmouth VJ, Hawkins SJ (2010) Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob Change Biol 16:517–527. doi: 10.1111/j.1365-2486.2009.02027.x CrossRefGoogle Scholar
  60. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456. doi: 10.1016/j.gca.2005.11.014 CrossRefGoogle Scholar
  61. Ghosh P, Eiler J, Campana SE, Feeney RF (2007) Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim Cosmochim Acta 71:2736–2744. doi: 10.1016/j.gca.2007.03.015 CrossRefGoogle Scholar
  62. Gilbert DJ (1994) A total catch history model for SNA 1. MAF Fisheries, N.Z. Ministry of Agriculture and Fisheries, WellingtonGoogle Scholar
  63. Gilbert DJ, McKenzie JR, Davies NM, Field KD (2000) Assessment of the SNA 1 stocks for the 1999–2000 fishing year. Ministry of Fisheries, WellingtonGoogle Scholar
  64. Gillanders BM, Black BA, Meekan MG, Morrison MA (2012) Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Mar Biol 1559:1327–1333. doi: 10.1007/s00227-012-1913-x CrossRefGoogle Scholar
  65. Girone A, Nolf D (2009) Fish otoliths from the Priabonian (Late Eocene) of North Italy and South-East France—their paleobiogeographical significance. Rev Micropaléontol 52:195–218. doi: 10.1016/j.revmic.2007.10.006 CrossRefGoogle Scholar
  66. Grammer GL, Fallon SJ, Izzo C, Wood RE, Gillanders BM (2015) Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon. Earth Planet Sci Lett 424:59–68. doi: 10.1016/j.epsl.2015.05.008 CrossRefGoogle Scholar
  67. Grønkjær P, Pedersen JB, Ankjærø TT, Kjeldsen H, Heinemeier J, Steingrund P, Nielsen JM, Christensen JT (2013) Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Can J Fish Aquat Sci 70:143–146. doi: 10.1139/cjfas-2012-0386 CrossRefGoogle Scholar
  68. Haltuch MA, Hamel OS, Piner KR, McDonald P, Kastelle CR, Field JC (2013) A California Current bomb radiocarbon reference chronology and petrale sole (Eopsetta jordani) age validation. Can J Fish Aquat Sci 70:22–31. doi: 10.1139/cjfas-2011-0504 CrossRefGoogle Scholar
  69. Hanson PJ, Zdanowicz VS (1999) Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient. J Fish Biol 54:656–668. doi: 10.1111/j.1095-8649.1999.tb00644.x CrossRefGoogle Scholar
  70. Hardt MJ (2009) Lessons from the past: the collapse of Jamaican coral reefs. Fish Fish 10:143–158. doi: 10.1111/j.1467-2979.2008.00308.x CrossRefGoogle Scholar
  71. Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci 99:11742–11747PubMedPubMedCentralCrossRefGoogle Scholar
  72. Heino M, Dieckmann U, Godø OR (2002) Measuring probabilistic reaction norms for age and size at maturation. Evolution 56:669–678. doi: 10.1111/j.0014-3820.2002.tb01378.x PubMedCrossRefGoogle Scholar
  73. Higgs E, Falk DA, Guerrini A, Hall M, Harris J, Hobbs RJ, Jackson ST, Rhemtulla JM, Throop W (2014) The changing role of history in restoration ecology. Front Ecol Environ 12:499–506. doi: 10.1890/110267 CrossRefGoogle Scholar
  74. Higham TFG, Horn PL (2000) Seasonal dating using fish otoliths: results from the Shag River Mouth site, New Zealand. J Archaeol Sci 27:439–448. doi: 10.1006/jasc.1999.0473 CrossRefGoogle Scholar
  75. Hobday AJ (2011) Sliding baselines and shuffling species: implications of climate change for marine conservation. Mar Ecol 32:392–403. doi: 10.1111/j.1439-0485.2011.00459.x CrossRefGoogle Scholar
  76. Hobday A, Evans K (2013) Detecting climate impacts with oceanic fish and fisheries data. Clim Change 119:49–62. doi: 10.1007/s10584-013-0716-5 CrossRefGoogle Scholar
  77. Hobday AJ, Lough JM (2011) Projected climate change in Australian marine and freshwater environments. Mar Freshw Res 62:1000–1014. doi: 10.1071/MF10302 CrossRefGoogle Scholar
  78. Holbrook SJ, Schmitt RJ, Stephens JS Jr (1997) Changes in an assemblage of temperate reef fishes associated with a climate shift. Ecol Appl 7:1299–1310CrossRefGoogle Scholar
  79. Hsieh C-H, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862PubMedCrossRefGoogle Scholar
  80. Humphries P, Winemiller KO (2009) Historical impacts on river fauna, shifting baselines, and challenges for restoration. Bioscience 59:673–684. doi: 10.1525/bio.2009.59.8.9 CrossRefGoogle Scholar
  81. Ingram BL, Sloan D (1992) Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255:68–72. doi: 10.1126/science.255.5040.68 PubMedCrossRefGoogle Scholar
  82. Ishimaru E, Tayasu I, Umino T, Yumoto T (2011) Reconstruction of ancient trade routes in the Japanese Archipelago using carbon and nitrogen stable isotope analysis: identification of the stock origins of marine fish found at the Inland Yokkaichi Site, Hiroshima Prefecture, Japan. J Isl Coast Archaeol 6:160–163. doi: 10.1080/15564894.2010.541552 CrossRefGoogle Scholar
  83. Jackson JBC (1997) Reefs since Columbus. Coral Reefs 16:S23–S32. doi: 10.1007/s003380050238 CrossRefGoogle Scholar
  84. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638. doi: 10.1126/science.1059199 PubMedCrossRefGoogle Scholar
  85. Jakobsdóttir KB, Pardoe H, Magnússon Á, Björnsson H, Pampoulie C, Ruzzante DE, Marteinsdóttir G (2011) Historical changes in genotypic frequencies at the Pantophysin locus in Atlantic cod (Gadus morhua) in Icelandic waters: evidence of fisheries-induced selection? Evol Appl 4:562–573. doi: 10.1111/j.1752-4571.2010.00176.x PubMedPubMedCentralCrossRefGoogle Scholar
  86. Jennings S, Dulvy NK (2005) Reference points and reference directions for size-based indicators of community structure. ICES J Mar Sci J Cons 62:397–404CrossRefGoogle Scholar
  87. Juanes F, Gephard S, Beland KF (2004) Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. Can J Fish Aquat Sci 61:2392–2400. doi: 10.1139/f04-207 CrossRefGoogle Scholar
  88. Kalish JM (1993) Pre- and post-bomb radiocarbon in fish otoliths. Earth Planet Sci Lett 114:549–554. doi: 10.1016/0012-821X(93)90082-K CrossRefGoogle Scholar
  89. Kalish JM (1994) Investigating global change and fish biology with fish otolith radiocarbon. Nucl Instrum Methods Phys Res Sect B 92:421–425. doi: 10.1016/0168-583X(94)96047-X CrossRefGoogle Scholar
  90. Kalish JM (1995) Application of the bomb radiocarbon chronometer to the validation of redfish Centroberyx affinis age. Can J Fish Aquat Sci 52:1399–1405. doi: 10.1139/f95-135 CrossRefGoogle Scholar
  91. Kerr LA, Secor DH, Kraus RT (2007) Stable isotope (δ13C and δ18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish. Mar Ecol Prog Ser 349:245–253. doi: 10.3354/meps07064 CrossRefGoogle Scholar
  92. Kingsford MJ, Hughes JM, Patterson HM (2009) Otolith chemistry of the non-dispersing reef fish Acanthochromis polyacanthus: cross-shelf patterns from the central Great Barrier Reef. Mar Ecol Prog Ser 377:279–288CrossRefGoogle Scholar
  93. Kirby MX (2004) Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins. Proc Natl Acad Sci 101:13096–13099PubMedPubMedCentralCrossRefGoogle Scholar
  94. Klaer NL (2001) Steam trawl catches from south-eastern Australia from 1918 to 1957: trends in catch rates and species composition. Mar Freshw Res 52:399–410. doi: 10.1071/MF00101 CrossRefGoogle Scholar
  95. Last PR, White WT, Gledhill DC, Hobday AJ, Brown R, Edgar GJ, Pecl G (2011) Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob Ecol Biogeogr 20:58–72. doi: 10.1111/j.1466-8238.2010.00575.x CrossRefGoogle Scholar
  96. Leach F, Davidson J (2000) Pre-European catches of snapper Pagrus auratus in northern New Zealand. J Archaeol Sci 27:509–522CrossRefGoogle Scholar
  97. Limburg KE, Huang R, Bilderback DH (2007) Fish otolith trace element maps: new approaches with synchrotron microbeam X-ray fluorescence. X-ray Spectrom 36:336–342. doi: 10.1002/xrs.980 CrossRefGoogle Scholar
  98. Limburg K, Lochet A, Driscoll D, Dale D, Huang R (2010) Selenium detected in fish otoliths: a novel tracer for a polluted lake? Environ Biol Fish 89:433–440. doi: 10.1007/s10641-010-9671-4 CrossRefGoogle Scholar
  99. Limburg KE, Olson C, Walther Y, Dale D, Slomp CP, Høie H (2011) Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proc Natl Acad Sci 108:E177–E182. doi: 10.1073/pnas.1100684108 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ling J (1958) The sea garfish, Reporhamphus melanochir (Cuvier & Valenciennes) (Hemi-ramphidae), in South Australia: breeding, age determination, and growth rate. Aust J Mar Freshw Res 9:60–110. doi: 10.1071/MF9580060 CrossRefGoogle Scholar
  101. Litzow MA, Hobday AJ, Frusher SD, Dann P, Tuck GN (2016) Detecting regime shifts in marine systems with limited biological data: an example from southeast Australia. Prog Oceanogr 141:96–108. doi: 10.1016/j.pocean.2015.12.001 CrossRefGoogle Scholar
  102. Long JA, Trinajstic K (2010) The Late Devonian Gogo Formation lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annu Rev Earth Planet Sci 38:255–279CrossRefGoogle Scholar
  103. Long K, Stern N, Williams IS, Kinsley L, Wood R, Sporcic K, Smith T, Fallon S, Kokkonen H, Moffat I, Grün R (2014) Fish otolith geochemistry, environmental conditions and human occupation at Lake Mungo, Australia. Quat Sci Rev 88:82–95. doi: 10.1016/j.quascirev.2014.01.012 CrossRefGoogle Scholar
  104. Lotze HK, Milewski I (2004) Two centuries of multiple human impacts and successive changes in a North Atlantic food web. Ecol Appl 14:1428–1447. doi: 10.1890/03-5027 CrossRefGoogle Scholar
  105. Lotze HK, Worm B (2009) Historical baselines for large marine animals. Trends Ecol Evol 24:254–262. doi: 10.1016/j.tree.2008.12.004 PubMedCrossRefGoogle Scholar
  106. Lubinski PM (1996) Fish heads, fish heads: an experiment on differential bone preservation in a salmonid fish. J Archaeol Sci 23:175–181. doi: 10.1006/jasc.1996.0015 CrossRefGoogle Scholar
  107. Luff RM, Bailey GN (2000) Analysis of size changes and incremental growth structures in African catfish Synodontis schall (Schall) from tell El-Amarna, middle Egypt. J Archaeol Sci 27:821–835CrossRefGoogle Scholar
  108. Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F (2012) Socio-economic and management implications of range-shifting species in marine systems. Glob Environ Change 22:137–146CrossRefGoogle Scholar
  109. Mahadevan A (2001) An analysis of bomb radiocarbon trends in the Pacific. Mar Chem 73:273–290. doi: 10.1016/S0304-4203(00)00113-4 CrossRefGoogle Scholar
  110. Mallen-Cooper M, Brand DA (2007) Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fish Manag Ecol 14:319–332. doi: 10.1111/j.1365-2400.2007.00557.x CrossRefGoogle Scholar
  111. Mannino MA, Thomas KD (2002) Depletion of a resource? the impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeol 33:452–474. doi: 10.1080/00438240120107477 CrossRefGoogle Scholar
  112. Martin EE, Haley BA (2000) Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochim Cosmochim Acta 64:835–847CrossRefGoogle Scholar
  113. McClenachan L (2009) Documenting loss of large trophy fish from the florida keys with historical photographs. Conserv Biol 23:636–643PubMedCrossRefGoogle Scholar
  114. McClenachan L, Ferretti F, Baum JK (2012) From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv Lett 5:349–359. doi: 10.1111/j.1755-263X.2012.00253.x CrossRefGoogle Scholar
  115. McMahon KW, Fogel ML, Johnson BJ, Houghton LA, Thorrold SR (2011) A new method to reconstruct fish diet and movement patterns from δ13C values in otolith amino acids. Can J Fish Aquat Sci 68:1330–1340. doi: 10.1139/f2011-070 CrossRefGoogle Scholar
  116. Miller JA (2009) The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. J Fish Biol 75:39–60PubMedCrossRefGoogle Scholar
  117. Monsch KA (1998) Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeogr Palaeoclimatol Palaeoecol 143:31–50. doi: 10.1016/S0031-0182(98)00064-9 CrossRefGoogle Scholar
  118. Morrongiello JR, Thresher RE (2015) A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example. Ecol Monogr 85:93–115. doi: 10.1890/13-2355.1 CrossRefGoogle Scholar
  119. Morrongiello JR, Crook DA, King AJ, Ramsey DSL, Brown P (2011) Impacts of drought and predicted effects of climate change on fish growth in temperate Australian lakes. Glob Change Biol 17:745–755. doi: 10.1111/j.1365-2486.2010.02259.x CrossRefGoogle Scholar
  120. Morrongiello JR, Thresher RE, Smith DC (2012) Aquatic biochronologies and climate change. Nat Clim Change 2:849–857. doi: 10.1038/nclimate1616 CrossRefGoogle Scholar
  121. Morrongiello JR, Walsh CT, Gray CA, Stocks JR, Crook DA (2014) Environmental change drives long-term recruitment and growth variation in an estuarine fish. Glob Change Biol 20:1844–1860. doi: 10.1111/gcb.12545 CrossRefGoogle Scholar
  122. Moulton PL, Walker TI, Saddlier SR (1992) Age and growth studies of gummy shark, Mustelus antarcticus Günther, and school shark, Galeorhinus galeus (Linnaeus), from southern Australian waters. Aust J Mar Freshw Res 43:1241–1267CrossRefGoogle Scholar
  123. Nagaoka L (2005) Differential recovery of Pacific Island fish remains. J Archaeol Sci 32:941–955CrossRefGoogle Scholar
  124. Neuheimer A, Thresher R, Lyle J, Semmens J (2011) Tolerance limit for fish growth exceeded by warming waters. Nat Clim Change 1:110–113CrossRefGoogle Scholar
  125. Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish Fish 9:450–461. doi: 10.1111/j.1467-2979.2008.00304.x CrossRefGoogle Scholar
  126. Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol 6:487–492. doi: 10.1046/j.1365-294X.1997.00204.x CrossRefGoogle Scholar
  127. Nielsen EE, MacKenzie BR, Magnussen E, Meldrup D (2007) Historical analysis of Pan I in Atlantic cod (Gadus morhua): temporal stability of allele frequencies in the southeastern part of the species distribution. Can J Fish Aquat Sci 64:1448–1455. doi: 10.1139/f07-104 CrossRefGoogle Scholar
  128. Nock CJ, Ovenden JR, Butler GL, Wooden I, Moore A, Baverstock PR (2011) Population structure, effective population size and adverse effects of stocking in the endangered Australian eastern freshwater cod Maccullochella ikei. J Fish Biol 78:303–321. doi: 10.1111/j.1095-8649.2010.02865.x PubMedCrossRefGoogle Scholar
  129. Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135. doi: 10.1046/j.1365-294X.2003.01976.x PubMedCrossRefGoogle Scholar
  130. Overholtz WJ, Link JS, Suslowicz LE (2000) Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J Mar Sci J Cons 57:1147–1159. doi: 10.1006/jmsc.2000.0802 CrossRefGoogle Scholar
  131. Palomares ML, Heymans JT, Pauly D (2007) Historical ecology of the Raja Ampat Archipelago, Papua Province, Indonesia. Hist Philos Life Sci 29:33–56PubMedGoogle Scholar
  132. Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Can J Fish Aquat Sci 67:225–242. doi: 10.1139/F09-176 CrossRefGoogle Scholar
  133. Parsons DM, Morrison MA, MacDiarmid AB, Stirling B, Cleaver P, Smith IWG, Butcher M (2009) Risks of shifting baselines highlighted by anecdotal accounts of New Zealand’s snapper (Pagrus auratus) fishery. N Z J Mar Freshwat Res 43:965–983. doi: 10.1080/00288330909510054 CrossRefGoogle Scholar
  134. Patterson WP (1998) North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeogr Palaeoclimatol Palaeoecol 138:271–303. doi: 10.1016/s0031-0182(97)00137-5 CrossRefGoogle Scholar
  135. Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10:430PubMedCrossRefGoogle Scholar
  136. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 PubMedCrossRefGoogle Scholar
  137. Pinnegar JK, Engelhard GH (2008) The ‘shifting baseline’ phenomenon: a global perspective. Rev Fish Biol Fish 18:1–16. doi: 10.1007/s11160-007-9058-6 CrossRefGoogle Scholar
  138. Pitcher TJ (2001) Fisheries managed to rebuild ecosystems? reconstructing the past to salvage the future. Ecol Appl 11:601–617CrossRefGoogle Scholar
  139. Pitcher TJ (2005) Back-to-the-future: a fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems. Philos Trans R Soc Lond B Biol Sci 360:107–121PubMedPubMedCentralCrossRefGoogle Scholar
  140. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925. doi: 10.1038/nclimate1958 CrossRefGoogle Scholar
  141. Price GD, Wilkinson D, Hart MB, Page KN, Grimes ST (2009) Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: implications for upper-ocean water temperature estimates. Geology 37:215–218. doi: 10.1130/g25377a.1 CrossRefGoogle Scholar
  142. Przywolnik K (2002) Coastal sites and severe weather in Cape Range Peninsula, northwest Australia. Archaeol Ocean 37:137–152CrossRefGoogle Scholar
  143. Quinn TJ, Dersio RB (1999) Quantitative fish dynamics. Oxford University Press, New YorkGoogle Scholar
  144. Reitz EJ (2004) “Fishing down the food web”: a case study from St. Augustine, Florida. USA Am Antiq 69:63–83CrossRefGoogle Scholar
  145. Rieman BE, Myers DL, Nielsen RL (1994) Use of otolith microchemistry to discriminate Oncorhynchus nerka of resident and anadromous origin. Can J Fish Aquat Sci 51:68–77. doi: 10.1139/f94-009 CrossRefGoogle Scholar
  146. Rivers PJ, Ardren WR (1998) The value of archives. Fisheries 23:6–9. doi: 10.1577/1548-8446 CrossRefGoogle Scholar
  147. Rochet M-J, Trenkel VM (2003) Which community indicators can measure the impact of fishing? a review and proposals. Can J Fish Aquat Sci 60:86–99CrossRefGoogle Scholar
  148. Rose M (1996) Fishing at Minoan Pseira: formation of a Bronze Age fish assemblage from Crete. Archaeo Int J Archaeozool 5:135–140Google Scholar
  149. Rosenberg AA, Bolster WJ, Alexander KE, Leavenworth WB, Cooper AB, McKenzie MG (2005) The history of ocean resources: modeling cod biomass using historical records. Front Ecol Environ 3:84–90CrossRefGoogle Scholar
  150. Rountrey AN, Coulson PG, Meeuwig JJ, Meekan M (2014) Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Glob Change Biol 20:2450–2458. doi: 10.1111/gcb.12617 CrossRefGoogle Scholar
  151. Rowell K, Dettman D, Dietz R (2010) Nitrogen isotopes in otoliths reconstruct ancient trophic position. Environ Biol Fish 89:415–425. doi: 10.1007/s10641-010-9687-9 CrossRefGoogle Scholar
  152. Rowland S (1989) Aspects of the history and fishery of the Murray cod, Maccullochella peeli (Mitchell) (Percichthyidae). Proc Linn Soc NSW 111:201–213Google Scholar
  153. Sadovy Y, Cheung WL (2003) Near extinction of a highly fecund fish: the one that nearly got away. Fish Fish 4:86–99CrossRefGoogle Scholar
  154. Schmidt DJ, Crook DA, MacDonald JI, Huey JA, Zampatti BP, Chilcott S, Raadik TA, Hughes JM (2014) Migration history and stock structure of two putatively diadromous teleost fishes, as determined by genetic and otolith chemistry analyses. Freshw Sci 33:193–206. doi: 10.1086/674796 CrossRefGoogle Scholar
  155. Schmitz B, Åberg G, Werdelin L, Forey P, Bendix-Almgreen SE (1991) 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geol Soc Am Bull 103:786–794. doi:10.1130/0016-7606(1991)103<0786:ssnfsa>;2CrossRefGoogle Scholar
  156. Schöne BR, Gillikin DP (2013) Unraveling environmental histories from skeletal diaries—advances in sclerochronology. Palaeogeogr Palaeoclimatol Palaeoecol 373:1–5. doi: 10.1016/j.palaeo.2012.11.026 CrossRefGoogle Scholar
  157. Schwarcz HP, Gao Y, Campana SE, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1798–1806CrossRefGoogle Scholar
  158. Schwerdtner Máñez K, Holm P, Blight L, Coll M, MacDiarmid A, Ojaveer H, Poulsen B, Tull M (2014) The future of the oceans past: towards a global marine historical research initiative. Plos One 9:e101466. doi: 10.1371/journal.pone.0101466 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Shahidul Islam M, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649. doi: 10.1016/j.marpolbul.2003.12.004 PubMedCrossRefGoogle Scholar
  160. Sherwood GD, Rose RA (2003) Influence of swimming form on otolith δ13C in marine fish. Mar Ecol Prog Ser 258:283–289CrossRefGoogle Scholar
  161. Smith PJ, Francis RICC, McVeagh M (1991) Loss of genetic diversity due to fishing pressure. Fish Res 10:309–316. doi: 10.1016/0165-7836(91)90082-Q CrossRefGoogle Scholar
  162. Smith DC, Robertson SG, Fenton GE, Short SA (1995) Age determination and growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with radiometric ageing. Can J Fish Aquat Sci 52:391–401CrossRefGoogle Scholar
  163. Spencer K, Shafer DJ, Gauldie RW, DeCarlo EH (2000) Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery ground stock marker. Comp Biochem Physiol A Mol Integr Physiol 127:273–284PubMedCrossRefGoogle Scholar
  164. Stewart J (2011) Evidence of age-class truncation in some exploited marine fish populations in New South Wales, Australia. Fish Res 108:209–213CrossRefGoogle Scholar
  165. Stobutzki I, Miller M, Brewer D (2001) Sustainability of fishery bycatch: a process for assessing highly diverse and numerous by-catch. Environ Conserv 28:167–181CrossRefGoogle Scholar
  166. Stuart-Smith RD, Barrett NS, Stevenson DG, Edgar GJ (2010) Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Glob Change Biol 16:122–134. doi: 10.1111/j.1365-2486.2009.01955.x CrossRefGoogle Scholar
  167. Sturrock AM, Trueman CN, Milton JA, Waring CP, Cooper MJ, Hunter E (2014) Physiological influences can outweigh environmental signals in otolith microchemistry research. Mar Ecol Prog Ser 500:245–264. doi: 10.3354/meps10699 CrossRefGoogle Scholar
  168. Swain DP, Sinclair AF, Mark Hanson J (2007) Evolutionary response to size-selective mortality in an exploited fish population. Proc R Soc Lond B Biol Sci 274:1015–1022CrossRefGoogle Scholar
  169. Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 61:2909–2919CrossRefGoogle Scholar
  170. Thresher RE, Koslow JA, Morison AK, Smith DC (2007) Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proc Natl Acad Sci 104:7461–7465. doi: 10.1073/pnas.0610546104 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Thresher R, Morrongiello J, Sloyan BM, Krusic-Golub K, Shephard S, Minto C, Nolan CP, Cerna F, Cid L (2014) Parallel decadal variability of inferred water temperatures for Northern and Southern Hemisphere intermediate water masses. Geophys Res Lett 41:1232–1237. doi: 10.1002/2013GL058638 CrossRefGoogle Scholar
  172. Thurstan RH, Hawkins JP, Roberts CM (2013) Origins of the bottom trawling controversy in the British Isles: 19th century witness testimonies reveal evidence of early fishery declines. Fish Fish Early View. doi: 10.1111/faf.12034 Google Scholar
  173. Thurstan RH, Buckley SM, Ortiz JC, Pandolfi JM (2015) Setting the record straight: assessing the reliability of retrospective accounts of change. Conserv Lett. doi: 10.1111/conl.12184 Google Scholar
  174. Thurstan RH, Campbell AB, Pandolfi JM (2016) Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish Fish 17:210–225. doi: 10.1111/faf.12103 CrossRefGoogle Scholar
  175. Toggweiler JR, Dixon K, Broecker WS (1991) The Peru upwelling and the ventilation of the south Pacific thermocline. J Geophys Res Ocean 96:20467–20497. doi: 10.1029/91JC02063 CrossRefGoogle Scholar
  176. Trippel EA (1995) Age at maturity as a stress indicator in fisheries. Bioscience 45:759–771. doi: 10.2307/1312628 CrossRefGoogle Scholar
  177. Turvey ST, Barrett LA, Yujiang HAO, Lei Z, Xinqiao Z, Xianyan W, Yadong H, Kaiya Z, Hart TOM, Ding W (2010) Rapidly shifting baselines in Yangtze fishing communities and local memory of extinct species. Conserv Biol 24:778–787. doi: 10.1111/j.1523-1739.2009.01395.x PubMedCrossRefGoogle Scholar
  178. Vale D, Gargett RH (2002) Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra I, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia. J Archaeol Sci 29:57–63CrossRefGoogle Scholar
  179. Van Houtan KS, McClenachan L, Kittinger JN (2013) Seafood menus reflect long-term ocean changes. Front Ecol Environ 11:289–290. doi: 10.1890/13.WB.015 CrossRefGoogle Scholar
  180. Van Neer W, Ervynck A, Bolle LJ, Millner RS, Rijnsdorp AD (2002) Fish otoliths and their relevance to archaeology: an analysis of medieval, post-medieval, and recent material of plaice, cod and haddock from the North Sea. Environ Archaeol 7:61–76CrossRefGoogle Scholar
  181. Vines TH, Andrew RL, Bock DG, Franklin MT, Gilbert KJ, Kane NC, Moore J-S, Moyers BT, Renaut S, Rennison DJ, Veen T, Yeaman S (2013) Mandated data archiving greatly improves access to research data. FASEB J 27:1304–1308. doi: 10.1096/fj.12-218164 PubMedCrossRefGoogle Scholar
  182. Walker TI (2007) Spatial and temporal variation in the reproductive biology of gummy shark Mustelus antarcticus (Chondrichthyes: Triakidae) harvested off southern Australia. Mar Freshw Res 58:67–97. doi: 10.1071/MF06074 CrossRefGoogle Scholar
  183. Walker TI, Taylor BL, Hudson RJ, Cottier JP (1998) The phenomenon of apparent change of growth rate in gummy shark (Mustelus antarcticus) harvested off southern Australia. Fish Res 39:139–163CrossRefGoogle Scholar
  184. Walsh CT, Gray CA, West RJ, van der Meulen DE, Williams LF (2010) Growth, episodic recruitment and age truncation in populations of a catadromous percichthyid, Macquaria colonorum. Mar Freshw Res 61:397–407CrossRefGoogle Scholar
  185. Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642. doi: 10.1016/j.tree.2007.08.017 PubMedCrossRefGoogle Scholar
  186. Wells B, Bath G, Thorrold S, Jones C (2000) Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can J Fish Aquat Sci 57:2122–2129CrossRefGoogle Scholar
  187. Whitten AR, Klaer NL, Tuck GN, Day RW (2013) Accounting for cohort-specific variable growth in fisheries stock assessments: a case study from south-eastern Australia. Fish Res 142:27–36. doi: 10.1016/j.fishres.2012.06.021 CrossRefGoogle Scholar
  188. Wilby PR, Martill DM (1992) Fossil fish stomachs: a microenvironment for exceptional preservation. Hist Biol 6:25–36. doi: 10.1080/10292389209380416 CrossRefGoogle Scholar
  189. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482. doi: 10.1890/070037 CrossRefGoogle Scholar
  190. Woydack A, Morales-Nin B (2001) Growth patterns and biological information in fossil fish otoliths. Paleobiology 27:369–378. doi: 10.1666/0094-8373(2001);2 CrossRefGoogle Scholar
  191. Wurster CM, Patterson WP (2001) Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths. Palaeogeogr Palaeoclimatol Palaeoecol 170:81–100CrossRefGoogle Scholar
  192. Ye Q, Short DA, Green C, Coutin PC (2002) Age and growth rate determination. In: Jones GK, Ye Q, Ayvazian S, Coutin P (eds) Fisheries biology and habitat ecology of southern sea garfish (Hyporhamphus melanochir) in southern Australian waters. Final report to FRDC. Project No 1997/133, pp 35–99Google Scholar
  193. Zazzo A, Smith GR, Patterson WP, Dufour E (2006) Life history reconstruction of modern and fossil sockeye salmon (Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: implication for paleoenvironmental reconstructions. Earth Planet Sci Lett 249:200–215. doi: 10.1016/j.epsl.2006.07.003 CrossRefGoogle Scholar
  194. Zeller D, Pauly D (2005) Good news, bad news: global fisheries discards are declining, but so are total catches. Fish Fish 6:156–159. doi: 10.1111/j.1467-2979.2005.00177.x CrossRefGoogle Scholar
  195. Zeller D, Froese R, Pauly D (2005) On losing and recovering fisheries and marine science data. Mar Policy 29:69–73. doi: 10.1016/j.marpol.2004.02.003 CrossRefGoogle Scholar
  196. Ziegler PE, Lyle JM, Haddon M, Ewing GP (2007) Rapid changes in life-history characteristics of a long-lived temperate reef fish. Mar Freshw Res 58:1096–1107. doi: 10.1071/MF07137 CrossRefGoogle Scholar
  197. Zohar I, Belmaker M, Nadel D, Gafny S, Goren M, Hershkovitz I, Dayan T (2008) The living and the dead: how do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish? Palaeogeogr Palaeoclimatol Palaeoecol 258:292–316CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher Izzo
    • 1
    Email author
  • Zoë A. Doubleday
    • 1
  • Gretchen L. Grammer
    • 1
    • 2
  • Kayla L. Gilmore
    • 1
  • Heidi K. Alleway
    • 1
    • 3
  • Thomas C. Barnes
    • 1
  • Morgan C. F. Disspain
    • 1
  • Ana Judith Giraldo
    • 1
    • 4
  • Nastaran Mazloumi
    • 1
  • Bronwyn M. Gillanders
    • 1
  1. 1.Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideAustralia
  2. 2.Aquatic SciencesSouth Australian Research and Development InstituteHenley BeachAustralia
  3. 3.Fisheries and AquaculturePrimary Industries and Regions South AustraliaAdelaideAustralia
  4. 4.Grupo GAIAUniversidad de AntioquiaMedellínColombia

Personalised recommendations