Reviews in Fish Biology and Fisheries

, Volume 26, Issue 2, pp 249–264 | Cite as

Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities

  • Alistair J. Hobday
  • Kevern Cochrane
  • Nicola Downey-Breedt
  • James Howard
  • Shankar Aswani
  • Val Byfield
  • Greg Duggan
  • Elethu Duna
  • Leo X. C. Dutra
  • Stewart D. Frusher
  • Elizabeth A. Fulton
  • Louise Gammage
  • Maria A. Gasalla
  • Chevon Griffiths
  • Almeida Guissamulo
  • Marcus Haward
  • Astrid Jarre
  • Sarah M. Jennings
  • Tia Jordan
  • Jessica Joyner
  • Narayana Kumar Ramani
  • Swathi Lekshmi Perumal Shanmugasundaram
  • Willem Malherbe
  • Kelly Ortega Cisneros
  • Adina Paytan
  • Gretta T. Pecl
  • Éva E. Plagányi
  • Ekaterina E. Popova
  • Haja Razafindrainibe
  • Michael Roberts
  • Prathiba Rohit
  • Shyam Salim Sainulabdeen
  • Warwick Sauer
  • Sathianandan Thayyil Valappil
  • Paryiappanal Ulahannan Zacharia
  • E. Ingrid van Putten
Report

Abstract

Many coastal communities rely on living marine resources for livelihoods and food security. These resources are commonly under stress from overfishing, pollution, coastal development and habitat degradation. Climate change is an additional stressor beginning to impact coastal systems and communities, but may also lead to opportunities for some species and the people they sustain. We describe the research approach for a multi-country project, focused on the southern hemisphere, designed to contribute to improving fishing community adaptation efforts by characterizing, assessing and predicting the future of coastal-marine food resources, and co-developing adaptation options through the provision and sharing of knowledge across fast-warming marine regions (i.e. marine ‘hotspots’). These hotspots represent natural laboratories for observing change and concomitant human adaptive responses, and for developing adaptation options and management strategies. Focusing on adaptation options and strategies for enhancing coastal resilience at the local level will contribute to capacity building and local empowerment in order to minimise negative outcomes and take advantage of opportunities arising from climate change. However, developing comparative approaches across regions that differ in political institutions, socio-economic community demographics, resource dependency and research capacity is challenging. Here, we describe physical, biological, social and governance tools to allow hotspot comparisons, and several methods to evaluate and enhance interactions within a multi-nation research team. Strong partnerships within and between the focal regions are critical to scientific and political support for development of effective approaches to reduce future vulnerability. Comparing these hotspot regions will enhance local adaptation responses and generate outcomes applicable to other regions.

Keywords

Coastal marine resources Fisheries Food security Livelihoods Vulnerability Governance 

References

  1. Allison E, Horemans B (2006) Putting the principles of the sustainable livelihoods approach into fisheries development policy and practice. Mar Policy 30:757–766CrossRefGoogle Scholar
  2. Allison EH, Perry AL, Badjeck M, Adger WN, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fisher 10:173–196CrossRefGoogle Scholar
  3. Aswani S, Christie P, Muthiga N, Mahon R, Primavera JH, Cramer LA, Barbier EB, Granek EF, Kennedy CJ, Wolanski E, Hacker SD (2012) The way forward with ecosystem-based management in tropical contexts: reconciling with existing management systems. Mar Policy 36:1–10CrossRefGoogle Scholar
  4. Bainbridge JM, Potts T, O’Higgens TG (2011) Rapid policy network mapping: a new method for understanding governance structures for implementation of marine environmental policy. PLoS One 6(10):e26149. doi:10.1371/journal.pone.0026149 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bennett NJ, Dearden P, Murray G, Kadfak A (2014) The capacity to adapt? communities in a changing climate, environment and economy on the northern Andaman coast of Thailand. Ecol Soc 19(2):5. doi:10.5751/ES-06315-190205 CrossRefGoogle Scholar
  6. Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402CrossRefGoogle Scholar
  7. Castilla JC, Defeo O (2001) Latin American benthic shellfisheries: emphasis on co-management and experimental practices. Rev Fish Biol Fisher 11:1–30CrossRefGoogle Scholar
  8. CI and WWF (2008) Assessing the impacts of climate change on Madagascar’s biodiversity and livelihoods. A workshop report prepared by Conservation International and World Wildlife Fund, p 33Google Scholar
  9. Cinner JE, McClanahan TR, Graham NAJ, Daw TM, Maina J, Stead SM, Wamukota A, Brown K, Bodin Ö (2012) Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob Environ Change 22:12–20CrossRefGoogle Scholar
  10. CMFRI (2012) Annual report 2011–2012. Central Marine Fisheries Research Institute, Cochin, p 186. ISSN 0972-2378Google Scholar
  11. CMFRI (2013) Annual report 2012–2013. Central Marine Fisheries Research Institute, Cochin, p 200. ISSN 0972-2378Google Scholar
  12. CMFRI (2014) Annual report 2013–2014. Central Marine Fisheries Research Institute, Cochin, p 274. ISSN 0972-2378Google Scholar
  13. Cochrane KL (2008) What should we care about when attempting to reconcile fisheries with conservation? In: Nielson J, Dodson JJ, Friedland K, Hamon TR, Musick J, Verspoor E (eds) Reconciling fisheries with conservation: proceedings of the fourth world fisheries congress, vol 1. American Fisheries Society, Bethesda, pp 5–24Google Scholar
  14. Cochrane KL, Butterworth DS, de Oliveira JAA, Roel B (1998) Management procedures in a fishery based on highly variable stocks and with conflicting objectives: experiences in the South African pelagic fishery. Rev Fish Biol Fisher 8:177–214CrossRefGoogle Scholar
  15. Cochrane K, De Young C, Soto D, Bahri T (eds) (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper No. 530. FAO, Rome, 2009, p 212Google Scholar
  16. Cochrane KL, Emerson W, Willmann R (2011) Sustainable fisheries: the importance of the bigger picture. In: Taylor WW, Lynch AJ, Schechter MG (eds) Sustainable fisheries: multi-level approaches to a global problem. American Fisheries Society, Bethesda Maryland, pp 3–19Google Scholar
  17. Creighton C, Hobday AJ, Lockwood M, Pecl GT (2015) Adapting management of marine environments to a changing climate: a checklist to guide reform and assess progress. Ecosystems doi:10.1007/s10021-015-9925-2
  18. Daw T, Adger WN, Brown K, Badjeck MC (2009) Climate change and capture fisheries: potential impacts, adaptation and mitigation. In: Cochrane K, De Young C, Soto D, Bahri T (eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper No. 530. FAO, Rome, pp 107–150Google Scholar
  19. de Moor CL, Butterworth DS, De Oliveira JAA (2011) Is the management procedure approach equipped to handle short-lived pelagic species with their boom and bust dynamics? The case of the South African fishery for sardine and anchovy. ICES J Mar Sci 68(10):2075–2085CrossRefGoogle Scholar
  20. De Oliveira JAA, Butterworth DS (2004) Developing and refining a joint management procedure for the multispecies South African pelagic fishery. ICES J Mar Sci 61:1432–1442CrossRefGoogle Scholar
  21. Dulvy NK, Rogers SI, Jennings S, StelzenmullerV Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Anim Ecol 45:1029–1039CrossRefGoogle Scholar
  22. Dunlap RE (2008) The new environmental paradigm scale: from marginality to worldwide use. J Environ Educ 40(1):3–18CrossRefGoogle Scholar
  23. Dutra LXC, Haworth RJ, Taboada MB (2011) An integrated approach to tourism planning in a developing nation: a case study from Beloi (Timor-Leste). In: Dredge D, Jenkins J (eds) Stories of practice: tourism policy and planning. Ashgate, Farnham, pp 269–293Google Scholar
  24. Dutra LXC, Ellis N, Perez P, Dichmont CM, de la Mare W, Boschetti F (2014) Drivers influencing adaptive management: a retrospective evaluation of water quality decisions in South East Queensland (Australia). AMBIO 43:1069–1081CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dutra LXC, Bustamante RH, Sporne I, van Putten I, Dichmont CM, Ligtermoet E, Sheaves M, Deng RA (2015) Organizational drivers that strengthen adaptive capacity in the coastal zone of Australia. Ocean Coast Manag 109:64–76CrossRefGoogle Scholar
  26. FAO (2013) Report of the FAO/PaCFA expert workshop on assessing climate change vulnerability in fisheries and aquaculture: available methodologies and their relevance for the sector, Windhoek, Namibia, 8–10 April 2013. FAO Fisheries and Aquaculture Report No. 1047. RomeGoogle Scholar
  27. FAO (2014) The state of world fisheries and aquaculture 2014. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  28. Frusher SD, Hobday AJ, Jennings SM, Crighton C, D’Silva D, Haward M, Holbrook NJ, Nursey-Bray M, Pecl GT, van Putten SD (2014) A short history of a marine hotspot—from anecdote to adaptation in south-east Australia. Rev Fish Biol Fisher 24:593–611Google Scholar
  29. Fulton EA (2011) Interesting times: winners, losers, and system shifts under climate change around Australia. ICES J Mar Sci 68(6):1329–1342CrossRefGoogle Scholar
  30. Fulton EA, Gorton R (2014) Adaptive futures for SE australian fisheries and aquaculture: climate adaptation simulations. CSIRO, Australia, p 309Google Scholar
  31. Gasalla MA, Diegues ACS (2011) People’s seas “ethno-oceanography” as an interdisciplinary means to approach marine ecosystem change. In: Ommer RE, Perry RI, Cochrane K, Cury P (eds) World fisheries: a social-ecological analysis. Blackwell, OxfordGoogle Scholar
  32. Gasalla MA, Rossi-Wongtschowski CLDB (2004) Contribution of ecosystem analysis to investigating the effects of changes in fishing strategies in the South Brazil Bight. Ecol Model 172:283–306CrossRefGoogle Scholar
  33. Gasalla MA, Velasco G, Rossi-Wongtschowski CLDB, Haimovici M, Madureira LSP (2007) Modelo de equilibrio de biomassas do ecossistema marinho da região SE/S do Brasil entre 100 e 1000 m de profundidade. Instituto Oceanográfico, Universidade de São Paulo, Série Documentos REVIZEE-Score SUL, Albuquerque, p 56Google Scholar
  34. Gasalla MA, Rodrigues AR, Pincinato RBM, Christensen V (2010) Modelagem quantitativa do ecossistema marinho da Bacia de Santos: um modelo trófico geral. Síntese das informações pretéritas da Bacia de Campos. IOUSP-FUNDESPA-PETROBRÁS. Chapter 10. São Paulo, Brazil, p 74Google Scholar
  35. González J, Stotz W, Garrido J, Orensanz JM, Parma AM, Tapia C, Zuleta A (2006) The Chilean turf system: How is it performing in the case of the loco fishery? Bull Mar Sci 78(3):499–527Google Scholar
  36. Hawcroft LJ, Milfont TL (2010) The use (and abuse) of the new environmental paradigm scale over the last 30 years: a meta-analysis. J Environ Psychol 30:143–158CrossRefGoogle Scholar
  37. Hobday AJ, Pecl GT (2014) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fisher 24:415–425CrossRefGoogle Scholar
  38. Hobday AJ, Chambers LE, Arnould JPY (2015) Prioritizing climate change adaptation options for iconic marine species. Biodiv Cons. doi:10.1007/s10531-015-1007-4 Google Scholar
  39. IPCC (2007) Summary for Policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 7–22Google Scholar
  40. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Available at http://www.ipcc.ch/. Accessed 13 Dec 2014
  41. Jentoft S, Chuenpagdee R (2009) Fisheries and coastal governance as a wicked problem. Mar Policy 33:553–560CrossRefGoogle Scholar
  42. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NL, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol 400:17–32CrossRefGoogle Scholar
  43. Jung S, Pang IC, Lee J, Choi I, Cha HK (2014) Latitudinal shifts in the distribution of exploited fishes in Korean waters during the last 30 years: a consequence of climate change. Rev Fish Biol Fisher 24:443–462CrossRefGoogle Scholar
  44. Last PR, White WT, Gledhill DC, Hobday AJ, Brown R, Edgar GJ, Pecl GT (2011) Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob Ecol Biogeogr 20:58–72CrossRefGoogle Scholar
  45. Leith P, Ogier E, Pecl G, Hoshino E, Davidson J, Haward M (2014) Towards a diagnostic approach to climate adaptation for fisheries. Clim Change 122:55–66CrossRefGoogle Scholar
  46. Lloyd P, Plagányi EE, Weeks SJ, Magno-Canto M, Plagányi G (2012) Ocean warming alters species abundance patterns and increases species diversity in an African sub-tropical reef-fish community. Fish Oceanogr 21(1):78–94CrossRefGoogle Scholar
  47. Marshall NA, Fenton DM, Marshall PA, Sutton SG (2007) How resource dependency can influence social resilience within a primary resource industry. Rural Sociol 72(3):359–390CrossRefGoogle Scholar
  48. Marshall NA, Tobin RC, Marshall PA, Gooch M, Hobday AJ (2013) Vulnerability of marine resource users to extreme weather events. Ecosystems 16(5):797–809CrossRefGoogle Scholar
  49. Martins RS, Camargo R, Gasalla MA (2014) The São Paulo shelf (SE Brazil) as a nursery ground for Doryteuthis plei (Blainville, 1823) (Cephalopoda, Loliginidae) paralarvae: a Lagrangian particle-tracking Individual-Based Model approach. Hydrobiologia 725(1):57–68CrossRefGoogle Scholar
  50. McClanahan TR, Cinner JE, Maina J, Graham NAJ, Daw TM, Stead SM, Wamukota A, Brown K, Ateweberhan M, Venus V, Polunin NVC (2008) Conservation action in a changing climate. Conserv Lett 1:53–59CrossRefGoogle Scholar
  51. Metcalf SJ, van Putten EI, Frusher SD, Tull M, Marshall NA (2013) Adaptation options for marine industries and coastal communities using community structure and dynamics. Sust Sci 9(3):247–261Google Scholar
  52. Metcalf SJ, van Putten EI, Frusher S, Marshall NA, Tull M, Caputi N, Haward M, Hobday AJ, Holbrook NJ, Jennings S, Pecl GT, Shaw J (2015) Vulnerability influences the successful implementation of climate change adaptations. Ecol Soc 20(2) http://www.ecologyandsociety.org/vol20/iss2/art35/
  53. Moloney CL, Fennessy S, Gibbons MJ, Roychoudhury A, Shillington FA, von der Heyden BP, Watermeyer K (2013) Reviewing evidence of marine ecosystem change off South Africa. Afr J Mar Sci 35:427–448CrossRefGoogle Scholar
  54. Mora C (2014) Revisiting the environmental and socioeconomic effects of population growth: a fundamental but fading issue in modern scientific, public, and political circles. Ecol Soc 19(1):38CrossRefGoogle Scholar
  55. Muehe D (2010) Brazilian coastal vulnerability. Pan-American J Aquat Sci 5:173–183Google Scholar
  56. Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the bering sea continental shelf. Ecol App 18(2):309–320CrossRefGoogle Scholar
  57. Pecl G, Frusher S, Sauer W, Hobday A (2010) 2010 Sendai workshop on “networking across global marine hotspots”. In: Climate change effects on fish and fisheries, vol 18, pp 26–28. PICES Press, Sendai. Available at https://pices.int/publications/presentations/2010-Climate-Change/P3/P3-6335-Pecl.pdf
  58. Pecl GT, Hobday AJ, Frusher SD, Sauer W, Bates AE (2014a) Ocean warming hotspots provide early warning laboratories for climate change impacts. Rev Fish Biol Fisher 24:409–413CrossRefGoogle Scholar
  59. Pecl GT, Ward T, Doubleday ZA, Clarke S, Day J, Dixon C, Frusher S, Gibbs PJ, Hobday AJ, Hutchinson N, Jennings S, Jones K, Li X, Spooner D, Stoklosa R (2014b) Rapid assessment of fisheries species sensitivity to climate change. Clim Change. doi:10.1007/s10584-014-1284-z Google Scholar
  60. Pinsky M, Fogarty MJ (2012) Lagged social-ecological responses to climate and range shifts in fisheries. Clim Change 115(3–4):883–891CrossRefGoogle Scholar
  61. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA (2013) Marine taxa track local climate velocities. Science 341:1239–1242CrossRefPubMedGoogle Scholar
  62. Plagányi EE (2016) Using simulation evaluation to account for ecosystem considerations in fisheries management. In: Edwards C, Dankel, D (eds) Management science in fisheries: a practical introduction to simulation-based methods, chap 15. Taylor & Francis Group, pp 300–320Google Scholar
  63. Plaganyi EE, Punt A, Hillary R, Morello EB, Thebaud O, Hutton T, Pillans R, Thorson JT, Fulton EA, Smith ADM, Smith F, Bayliss P, Haywood M, Lyne V, Rothlisberg PC (2012) Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fisher 15:1–22CrossRefGoogle Scholar
  64. Plagányi ÉE, van Putten I, Hutton T, Deng R, Dennis D, Pascoe S, Skewes T, Campbell R (2013) Integrating indigenous livelihood and lifestyle objectives in managing a natural resource. Proc Natl Acad Sci USA 110(9):3639–3644CrossRefPubMedPubMedCentralGoogle Scholar
  65. Popova EE, Yool A, Byfield V, Cochrane K, Coward A, Icar S, Gasalla M, Henson S, Hobday A, Pecl G, Sauer W, Roberts M (2016). From global to regional and back again: unifying mechanisms of climate change relevant for adaptation across five ocean warming hotspots. Glob Change Biol. doi:10.1111/gcb.13247
  66. Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2014) Food security and food production systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 485–533Google Scholar
  67. Pörtner HO, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO (2014) Ocean systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL(eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 411–484Google Scholar
  68. Roberts MJ, Mullon C (2010) First Lagrangian ROMS–IBM simulations indicate large losses of chokka squid Loligo reynaudii paralarvae from South Africa’s Agulhas Bank. Afr J Mar Sci 32:71–84CrossRefGoogle Scholar
  69. Robinson LM, Gledhill DC, Moltschaniwskyj NA, Hobday AJ, Frusher SD, Barrett N, Stuart-Smith JF, Pecl GT (2015) Rapid assessment of short-term datasets in an ocean warming hotspot reveals “high” confidence in potential range extensions. Glob Environ Change 31:28–37CrossRefGoogle Scholar
  70. Schmidt G, Moyer E (2008) A new kind of scientist. Nat Clim Change 2:102–103CrossRefGoogle Scholar
  71. Shin YJ, Shannon LJ, Cury PM (2004) Ecosystem approaches to fisheries in the southern Benguela. Afr J Mar Sci 26:95–114CrossRefGoogle Scholar
  72. Shyam SS, Kripa V, Zachariah PU, Mohan A, Ambrose TV, Rani M (2014a) Vulnerability assessment of coastal fisher households in Kerala: a climate change perspective. Ind J Fisher 61(4):98–103Google Scholar
  73. Shyam SS, Kripa V, Zacharia PU, Shridhar N, Ambrose TV (2014b) Climate change awareness, preparedness, adaptation and mitigation strategies: fisherfolks perception in coastal Kerala. J Aquat Biol Fisher 2:670–681Google Scholar
  74. Smith ADM, Sainsbury KJ, Stevens RA (1999) Implementing effective fisheries-management systems: management strategy evaluation and the Australian partnership approach. ICES J Mar Sci 56:967–979CrossRefGoogle Scholar
  75. Smith MD, Fulton EA, Day RW (2014) An investigation into fisheries interaction effects using Atlantis. ICES J Mar Sci. doi:10.1093/icesjms/fsu114 Google Scholar
  76. Souza P, Siegle E, Tessler MG (2013) Vulnerability assessment of Massaguaçú Beach (SE Brazil). Ocean Coast Manag 77:24–30CrossRefGoogle Scholar
  77. Sunday JM, Pecl GT, Frusher SD, Hobday AJ, Hill N, Holbrook NJ, Edgar GJ, Stuart-Smith R, Barrett NS, Wernberg T, Watson R, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, Bates AE (2015) Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett. doi:10.1111/ele.12474 PubMedGoogle Scholar
  78. Travers M, Watermeyer K, Shannon LJ, Shin YJ (2010) Changes in food web structure under scenarios of overfishing in the southern Benguela: comparison of the Ecosim and OSMOSE modelling approaches. J Mar Syst 79:101–111CrossRefGoogle Scholar
  79. UNCSD (2012). The future we want. Outcome document from the United Nations Conference on sustainable development, Rio de Janeiro, 20–22 June 2012. http://sustainabledevelopment.un.org/futurewewant.html accessed 10 January 2015
  80. USAID (2008) Impacts of climate change on rural livelihoods in Madagascar and the potential for adaptation. International Resources Group, EPIQ II TASGoogle Scholar
  81. van Putten I, Metcalf S, Frusher S, Marshall NA, Tull M (2014) Fishing for the impacts of climate change in the marine sector: a case study. Int J Clim Change Strateg Manag 6(4):421–441CrossRefGoogle Scholar
  82. Vivekanandan E (2011) Marine fisheries policy brief-3; climate change and indian marine fisheries. CMFRI Spec Publ 105:1–97Google Scholar
  83. Walters C, Maguire JJ (1996) Lessons for stock assessment from the northern cod collapse. Rev Fish Biol Fisher 6:125–137Google Scholar
  84. Wendland KJ, Honzak M, Portela R, Vitale B, Rubinoff S, Randrianarisoa J (2010) Targeting and implementing payments for ecosystem services: opportunities for bundling biodiversity conservation with carbon and water services in Madagascar. Ecol Econ 69:2093–2107CrossRefGoogle Scholar
  85. Wise RM, Fazey I, Stafford Smith M, Park SE, Eakin HC, Archer Van Garderen ERM, Campbell B (2014) Reconceptualising adaptation to climate change as part of pathways of change and response. Glob Environ Change. doi:10.1016/j.gloenvcha.2013.12.002
  86. Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 361–409Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alistair J. Hobday
    • 1
    • 2
  • Kevern Cochrane
    • 3
  • Nicola Downey-Breedt
    • 3
  • James Howard
    • 4
  • Shankar Aswani
    • 3
  • Val Byfield
    • 5
  • Greg Duggan
    • 4
  • Elethu Duna
    • 3
  • Leo X. C. Dutra
    • 6
    • 7
  • Stewart D. Frusher
    • 2
    • 8
  • Elizabeth A. Fulton
    • 1
    • 2
  • Louise Gammage
    • 4
  • Maria A. Gasalla
    • 9
  • Chevon Griffiths
    • 4
  • Almeida Guissamulo
    • 10
  • Marcus Haward
    • 2
    • 8
  • Astrid Jarre
    • 4
  • Sarah M. Jennings
    • 2
    • 11
  • Tia Jordan
    • 3
  • Jessica Joyner
    • 3
  • Narayana Kumar Ramani
    • 12
  • Swathi Lekshmi Perumal Shanmugasundaram
    • 12
  • Willem Malherbe
    • 3
  • Kelly Ortega Cisneros
    • 3
  • Adina Paytan
    • 13
  • Gretta T. Pecl
    • 2
    • 8
  • Éva E. Plagányi
    • 6
  • Ekaterina E. Popova
    • 5
  • Haja Razafindrainibe
    • 14
  • Michael Roberts
    • 4
  • Prathiba Rohit
    • 12
  • Shyam Salim Sainulabdeen
    • 12
  • Warwick Sauer
    • 3
  • Sathianandan Thayyil Valappil
    • 12
  • Paryiappanal Ulahannan Zacharia
    • 12
  • E. Ingrid van Putten
    • 1
    • 2
  1. 1.CSIRO Oceans and AtmosphereHobartAustralia
  2. 2.Centre for Marine SocioecologyUniversity of TasmaniaHobartAustralia
  3. 3.Department of Ichthyology and Fisheries ScienceRhodes UniversityGrahamstownSouth Africa
  4. 4.University of Cape TownCape TownSouth Africa
  5. 5.National Oceanography CentreSouthamptonUK
  6. 6.CSIRO Oceans and AtmosphereBrisbaneAustralia
  7. 7.School of Marine Studies, Faculty of Science, Technology & EnvironmentThe University of the South PacificSuvaFiji Islands
  8. 8.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  9. 9.Fisheries Ecosystems Laboratory, Oceanographic InstituteUniversity of São Paulo, Cidade UniversitáriaSão PauloBrazil
  10. 10.Universidade Eduardo MondlaneMaputoMozambique
  11. 11.Tasmanian School of Business and EconomicsUniversity of TasmaniaHobartAustralia
  12. 12.Central Marine Fisheries Research InstituteIndian Council of Agricultural ResearchKochiIndia
  13. 13.University of California Santa CruzSanta CruzUSA
  14. 14.K Service d’appui a la gestion de l’environnement (SAGE – Fampandrosoana Maharitra)AntananarivoMadagascar

Personalised recommendations