Reviews in Fish Biology and Fisheries

, Volume 26, Issue 1, pp 53–70 | Cite as

Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific

  • Laura D. Puk
  • Sebastian C. A. Ferse
  • Christian Wild


Browsing fishes have been identified as an important component of coral reef resilience, because in contrast to other herbivorous fishes they are able to feed on established macroalgae. Climate change and local anthropogenic impacts have contributed to phase shifts in many coral reefs from coral to macroalgae dominance, and recent research suggests the potential ability of browsers to reverse such phase shifts. However, there is high variation among studies and some contradicting findings exist. Here, we review the relevant literature to assemble a list of species currently known to contribute to browsing in the Indo-Pacific. Furthermore, we identify spatial and temporal patterns, outline factors influencing browsing, and discuss the probability of phase shift reversal. We formulate research recommendations addressing the identified gaps in knowledge about the interactions of browsing fishes and their environment. To date, 37 species of fishes have been observed consuming macroalgae in the Indo-Pacific. The most important groups are the family Siganidae, the subfamily Scarinae (Labridae), and the subfamily Nasinae (Acanthuridae). Browsing species vary between studies depending on location, season and macroalgae species examined. Several influencing factors, such as structural complexity, palatability of macroalgae and ecosystem connectivity have been suggested to cause these discrepancies. The most promising avenues for future research are the effect of structural complexity, the importance of mobile link species and influences of food availability on the selectivity of browsing species. Increasing our knowledge in these fields will provide a better basis for successful management strategies directed at increasing the resilience of coral reefs.


Resilience Herbivory Climate change Overfishing Camera-based surveys Macroalgae-feeding assay 



We would like to thank Tom Langbehn, Jasmin Gross and Jessica Knoop as well as three anonymous reviewers for helpful comments on the manuscript.


  1. Adam TC, Schmitt RJ, Holbrook SJ et al (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PLoS One 6:1–8. doi: 10.1371/journal.pone.0023717 Google Scholar
  2. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833. doi: 10.1038/nature02691 PubMedCrossRefGoogle Scholar
  3. Bellwood DR, Hughes TP, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439. doi: 10.1016/j.cub.2006.10.030 PubMedCrossRefGoogle Scholar
  4. Bennett S, Bellwood D (2011) Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef. Mar Ecol Prog Ser 426:241–252. doi: 10.3354/meps09016 CrossRefGoogle Scholar
  5. Bennett S, Vergés A, Bellwood DR (2010) Branching coral as a macroalgal refuge in a marginal coral reef system. Coral Reefs 29:471–480. doi: 10.1007/s00338-010-0594-5 CrossRefGoogle Scholar
  6. Birrell C, Mccook L, Willis B, Diaz-Pulido G (2008) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol An Annu Rev 46:25–63. doi: 10.1201/9781420065756.ch2 CrossRefGoogle Scholar
  7. Borell EM, Steinke M, Fine M (2013) Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea). Coral Reefs 32:937–947. doi: 10.1007/s00338-013-1066-5 CrossRefGoogle Scholar
  8. Brandl SJ, Robbins WD, Bellwood DR (2015) Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use. Proc R Soc B Biol Sci 282:20151147. doi: 10.1098/rspb.2015.1147 CrossRefGoogle Scholar
  9. Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345. doi: 10.2307/1942551 CrossRefGoogle Scholar
  10. Carpenter RC, Edmunds PJ (2006) Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol Lett 9:271–280. doi: 10.1111/j.1461-0248.2005.00866.x PubMedCrossRefGoogle Scholar
  11. Cheal AJ, MacNeil MA, Cripps E et al (2010) Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–1015. doi: 10.1007/s00338-010-0661-y CrossRefGoogle Scholar
  12. Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu Rev Ecol Syst 29:375–403CrossRefGoogle Scholar
  13. Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs. Mar Biol 140:613–623. doi: 10.1007/s00227-001-0715-3 CrossRefGoogle Scholar
  14. Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs. Mar Biol 145:445–454. doi: 10.1007/s00227-004-1341-7 CrossRefGoogle Scholar
  15. Chong-Seng KM, Nash KL, Bellwood DR, Graham NAJ (2014) Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33:409–419. doi: 10.1007/s00338-014-1134-5 CrossRefGoogle Scholar
  16. Clements KD, Choat JH (1997) Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar Biol 127:579–586. doi: 10.1007/s002270050048 CrossRefGoogle Scholar
  17. Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488. doi: 10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2 CrossRefGoogle Scholar
  18. Crabbe MJC (2009) Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica. Mar Environ Res 67:189–198. doi: 10.1016/j.marenvres.2009.01.003 PubMedCrossRefGoogle Scholar
  19. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS One. doi: 10.1371/journal.pone.0022736 PubMedPubMedCentralGoogle Scholar
  20. Cvitanovic C, Bellwood DR (2009) Local variation in herbivore feeding activity on an inshore reef of the Great Barrier Reef. Coral Reefs 28:127–133. doi: 10.1007/s00338-008-0433-0 CrossRefGoogle Scholar
  21. Cvitanovic C, Hoey AS (2010) Benthic community composition influences within-habitat variation in macroalgal browsing on the Great Barrier Reef. Mar Freshw Res 61:999–1005. doi: 10.1071/MF09168 CrossRefGoogle Scholar
  22. Diaz-Pulido G, McCook LJ, Dove S et al (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS One 4:e5239. doi: 10.1371/journal.pone.0005239 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x PubMedCrossRefGoogle Scholar
  24. Dixson DL, Abrego D, Hay ME (2014) Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345:892–897. doi: 10.1126/science.1255057 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Done TJ (1985) Effects of two Acanthaster outbreaks on coral community structure—the meaning of devastation. In: Proceedings of the fifth international coral reef congress. pp 315–320Google Scholar
  26. Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132. doi: 10.1007/BF00008211 CrossRefGoogle Scholar
  27. Dudgeon SR, Aronson RB, Bruno JF, Precht WF (2010) Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser 413:201–216. doi: 10.3354/meps08751 CrossRefGoogle Scholar
  28. Edmunds PJ, Carpenter RC (2001) Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci 98:5067–5071. doi: 10.1073/pnas.071524598 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Endean R, Cameron AM (1985) Ecocatastrophe on the Great Barrier Reef. In: Proceedings of the fifth international coral reef symposium. pp 309–314Google Scholar
  30. Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59. doi: 10.3354/meps339049 CrossRefGoogle Scholar
  31. Fox RJ, Bellwood DR (2008) Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef. Coral Reefs 27:605–615. doi: 10.1007/s00338-008-0359-6 CrossRefGoogle Scholar
  32. Fox R, Sunderland T, Hoey A, Bellwood D (2009) Estimating ecosystem function: contrasting roles of closely related herbivorous rabbitfishes (Siganidae) on coral reefs. Mar Ecol Prog Ser 385:261–269. doi: 10.3354/meps08059 CrossRefGoogle Scholar
  33. Goatley CHR, Hoey AS, Bellwood DR (2012) The role of turtles as coral reef macroherbivores. PLoS One 7:e39979. doi: 10.1371/journal.pone.0039979 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326. doi: 10.1007/s00338-012-0984-y CrossRefGoogle Scholar
  35. Graham NAJ, Wilson SK, Jennings S et al (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci 103:8425–8429. doi: 10.1073/pnas.0600693103 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Graham NAJ, Wilson SK, Jennings S et al (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300. doi: 10.1111/j.1523-1739.2007.00754.x PubMedCrossRefGoogle Scholar
  37. Graham NA, Bellwood DR, Cinner JE et al (2013) Managing resilience to reverse phase shifts in coral reefs. Front Ecol Environ 11:541–548. doi: 10.1890/120305 CrossRefGoogle Scholar
  38. Graham NAJ, Jennings S, MacNeil MA et al (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97. doi: 10.1038/nature14140 PubMedCrossRefGoogle Scholar
  39. Green AL, Bellwood DR (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience: a practical guide for coral reef managers in the Asia Pacific region. IUCN Work. Gr. Clim. Chang. Coral Reefs. IUCN, Gland. Switz. pp 6–70Google Scholar
  40. Hay ME (1981) Spatial patterns of grazing intensity on a caribbean barrier reef: herbivory and algal distribution. Aquat Bot 11:97–109. doi: 10.1016/0304-3770(81)90051-6 CrossRefGoogle Scholar
  41. Hay ME, Fenical W, Gustafson K (1987) Chemical defense against diverse coral-reef herbivores. Ecology 68:1581. doi: 10.2307/1939850 CrossRefGoogle Scholar
  42. Hoey AS (2010) Size matters: macroalgal height influences the feeding response of coral reef herbivores. Mar Ecol Prog Ser 411:299–302. doi: 10.3354/meps08660 CrossRefGoogle Scholar
  43. Hoey AS, Bellwood DR (2009a) Among-habitat variation in herbivory on Sargassum spp. on a mid-shelf reef in the northern Great Barrier Reef. Mar Biol 157:189–200. doi: 10.1007/s00227-009-1309-8 CrossRefGoogle Scholar
  44. Hoey AS, Bellwood DR (2009b) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328. doi: 10.1007/s10021-009-9291-z CrossRefGoogle Scholar
  45. Hoey AS, Bellwood DR (2010) Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29:499–508. doi: 10.1007/s00338-010-0605-6 CrossRefGoogle Scholar
  46. Hoey AS, Bellwood DR (2011) Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecol Lett 14:267–273. doi: 10.1111/j.1461-0248.2010.01581.x PubMedCrossRefGoogle Scholar
  47. Hoey AS, Brandl SJ, Bellwood DR (2013) Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function. Coral Reefs 32:973–984. doi: 10.1007/s00338-013-1043-z CrossRefGoogle Scholar
  48. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a caribbean coral reef. Science 265:1547–1551. doi: 10.1126/science.265.5178.1547 PubMedCrossRefGoogle Scholar
  49. Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi: 10.1126/science.1085046 PubMedCrossRefGoogle Scholar
  50. Hughes TP, Rodrigues MJ, Bellwood DR et al (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365. doi: 10.1016/j.cub.2006.12.049 PubMedCrossRefGoogle Scholar
  51. Hughes TP, Graham NAJ, Jackson JBC et al (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642. doi: 10.1016/j.tree.2010.07.011 PubMedCrossRefGoogle Scholar
  52. Hunter CL, Evans CW (1995) Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull Mar Sci 57:501–515Google Scholar
  53. Idjadi JA, Lee SC, Bruno JF et al (2006) Rapid phase-shift reversal on a Jamaican coral reef. CoralReefs 25:209–211. doi: 10.1007/s00338-006-0088-7 Google Scholar
  54. Jackson JB, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi: 10.1126/science.1059199 PubMedCrossRefGoogle Scholar
  55. Jompa J, McCook LJ (2002) Effects of competition and herbivory on interactions between a hard coral and a brown alga. J Exp Mar Bio Ecol 271:25–39. doi: 10.1016/S0022-0981(02)00040-0 CrossRefGoogle Scholar
  56. Knowlton N (1992) Thresholds and multiple stable states in coral reef community dynamics. Am Zool 32:674–682. doi: 10.1093/icb/32.6.674 CrossRefGoogle Scholar
  57. Ledlie MH, Graham NAJ, Bythell JC et al (2007) Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26:641–653. doi: 10.1007/s00338-007-0230-1 CrossRefGoogle Scholar
  58. Lefévre CD, Bellwood DR (2011) Temporal variation in coral reef ecosystem processes: herbivory of macroalgae by fishes. Mar Ecol Prog Ser 422:239–251. doi: 10.3354/meps08916 CrossRefGoogle Scholar
  59. Lefèvre CD, Bellwood DR (2010) Seasonality and dynamics in coral reef macroalgae: variation in condition and susceptibility to herbivory. Mar Biol 157:955–965. doi: 10.1007/s00227-009-1376-x CrossRefGoogle Scholar
  60. Lewis SM, Wainwright PC (1985) Herbivore abundance and grazing intensity on a Caribbean coral reef. J Exp Mar Bio Ecol 87:215–228. doi: 10.1016/0022-0981(85)90206-0 CrossRefGoogle Scholar
  61. Littler MM (1976) Calcification and its role among the macroalgae. Micronesia 12:27–41Google Scholar
  62. Littler MM, Littler DS, Taylor PR (1983) Evolutionary strategies in a tropical barrier reef system: function-form groups of marine macroalgae. J Phycol 19:229–237. doi: 10.1111/j.0022-3646.1983.00229.x CrossRefGoogle Scholar
  63. Loffler Z, Bellwood DR, Hoey AS (2015) Among-habitat algal selectivity by browsing herbivores on an inshore coral reef. Coral Reefs. doi: 10.1007/s00338-015-1265-3 Google Scholar
  64. Lukoschek V, McCormick MI (2000) A review of multi-species foraging associations in fishes and their ecological significance. In: Proceedings of the fifth international coral reef symposium. pp 467–474Google Scholar
  65. Lundberg J, Moberg F (2003) Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6:87–98. doi: 10.1007/s10021-002-0150-4 CrossRefGoogle Scholar
  66. Mantyka CS, Bellwood DR (2007a) Macroalgal grazing selectivity among herbivorous coral reef fishes. Mar Ecol Prog Ser 352:177–185. doi: 10.3354/meps07055 CrossRefGoogle Scholar
  67. Mantyka CS, Bellwood DR (2007b) Direct evaluation of macroalgal removal by herbivorous coral reef fishes. Coral Reefs 26:435–442. doi: 10.1007/s00338-007-0214-1 CrossRefGoogle Scholar
  68. Marsh H, Channells P, Heinsohn G, Morrissey J (1982) Analysis of stomach contents of dugongs from Queensland. Wildl Res 9:55–67. doi: 10.1071/WR9820055 CrossRefGoogle Scholar
  69. Marsh H, De’ath G, Gribble N, Lane B (2005) Historical marine population estimates: triggers or targets for conservation? The dugong case study. Ecol Appl 15:481–492. doi: 10.1890/04-0673 CrossRefGoogle Scholar
  70. McClanahan TR (1994) Kenyan coral reef lagoon fish: effects of fishing, substrate complexity, and sea urchins. Coral Reefs 13:231–241. doi: 10.1007/BF00303637 CrossRefGoogle Scholar
  71. McClanahan TR, Shafir SH (1990) Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia 83:362–370. doi: 10.1007/BF00317561 CrossRefGoogle Scholar
  72. McClanahan TR, Hendrick V, Rodrigues MJ, Polunin NVC (1999) Varying responses of herbivorous and invertebrate-feeding fishes to macroalgal reduction on a coral reef. Coral Reefs 18:195–203. doi: 10.1007/s003380050181 CrossRefGoogle Scholar
  73. McClanahan TR, Muthiga NA, Mangi S (2001) Coral and algal changes after the 1998 coral bleaching: interaction with reef management and herbivores on Kenyan reefs. Coral Reefs 19:380–391. doi: 10.1007/s003380000133 CrossRefGoogle Scholar
  74. Meyer CG, Holland KN (2005) Movement patterns, home range size and habitat utilization of the bluespine unicornfish, Naso unicornis (Acanthuridae) in a Hawaiian marine reserve. Environ Biol Fishes 73:201–210. doi: 10.1007/s10641-005-0559-7 CrossRefGoogle Scholar
  75. Meyer KD, Paul VJ, Sanger HR, Nelson SG (1994) Effects of seaweed extracts and secondary metabolites on feeding by the herbivorous surgeonfish Naso lituratus. Coral Reefs 13:105–112. doi: 10.1007/BF00300770 CrossRefGoogle Scholar
  76. Meyer CG, Papastamatiou YP, Clark TB (2010) Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar Biol 157:1499–1511. doi: 10.1007/s00227-010-1424-6 CrossRefGoogle Scholar
  77. Michael P, Hyndes G, Vanderklift M, Vergés A (2013) Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar Ecol Prog Ser 482:227–240. doi: 10.3354/meps10262 CrossRefGoogle Scholar
  78. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233. doi: 10.1016/S0921-8009(99)00009-9 CrossRefGoogle Scholar
  79. Mumby PJ (2009) Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28:761–773. doi: 10.1007/s00338-009-0506-8 CrossRefGoogle Scholar
  80. Mumby PJ (2014) Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish Fish. doi: 10.1111/faf.12078 Google Scholar
  81. Mumby PJ, Hastings A (2008) The impact of ecosystem connectivity on coral reef resilience. J Appl Ecol 45:854–862. doi: 10.1111/j.1365-2664.2008.01459.x CrossRefGoogle Scholar
  82. Mumby PJ, Edwards AJ, Ernesto Arias-González J et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536. doi: 10.1038/nature02286 PubMedCrossRefGoogle Scholar
  83. Mumby PJ, Dahlgren CP, Harborne AR et al (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101. doi: 10.1126/science.1121129 PubMedCrossRefGoogle Scholar
  84. Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101. doi: 10.1038/nature06252 PubMedCrossRefGoogle Scholar
  85. Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Change Biol 10:1642–1647. doi: 10.1111/j.1365-2486.2004.00839.x CrossRefGoogle Scholar
  86. Munday PL, Dixson DL, Donelson JM et al (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci 106:1848–1852. doi: 10.1073/pnas.0809996106 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nash K, Graham N, Januchowski-Hartley et al (2012) Influence of habitat condition and competition on foraging behaviour of parrotfishes. Mar Ecol Prog Ser 457:113–124. doi: 10.3354/meps09742 CrossRefGoogle Scholar
  88. Nyström M, Folke C (2001) Spatial resilience of coral reefs. Ecosystems 4:406–417. doi: 10.1007/s10021-001-0019-y CrossRefGoogle Scholar
  89. Nyström M, Norström AV, Blenckner T et al (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15:695–710. doi: 10.1007/s10021-012-9530-6 CrossRefGoogle Scholar
  90. Ojeda F, Muñoz A (1999) Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Mar Ecol Prog Ser 184:219–229. doi: 10.3354/meps184219 CrossRefGoogle Scholar
  91. Olds A, Connolly R, Pitt K, Maxwell P (2012a) Primacy of seascape connectivity effects in structuring coral reef fish assemblages. Mar Ecol Prog Ser 462:191–203. doi: 10.3354/meps09849 CrossRefGoogle Scholar
  92. Olds AD, Pitt KA, Maxwell PS, Connolly RM (2012b) Synergistic effects of reserves and connectivity on ecological resilience. J Appl Ecol 49:1195–1203. doi: 10.1111/jpe.12002 CrossRefGoogle Scholar
  93. Paddack MJ, Cowen RK, Sponaugle S (2006) Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 25:461–472. doi: 10.1007/s00338-006-0112-y CrossRefGoogle Scholar
  94. Paul VJ, Fenical W (1983) Isolation of halimedatrial: chemical defense adaptation in the calcareous reef-building alga halimeda. Science 221:747–749. doi: 10.1126/science.221.4612.747 PubMedCrossRefGoogle Scholar
  95. Plass-Johnson JG, Ferse SC, Jompa J et al (2015) Maintenance of fish herbivory as key ecological function in a heavily degraded coral reef system. Limnol Oceanogr. doi: 10.1002/lno.10105 Google Scholar
  96. Polunin NV, Klumpp D (1992) Algal food supply and grazer demand in a very productive coral-reef zone. J Exp Mar Bio Ecol 164:1–15. doi: 10.1016/0022-0981(92)90132-T CrossRefGoogle Scholar
  97. Pratchett MS, Wilson SK, Baird AH (2006) Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion. J Fish Biol 69:1269–1280. doi: 10.1111/j.1095-8649.2006.01161.x CrossRefGoogle Scholar
  98. Pratchett MS, Munday PL, Wilson SK et al (2008) Effects of climate-induced coral bleaching on coral-reef fishes—ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296. doi: 10.1201/9781420065756.ch6 CrossRefGoogle Scholar
  99. Pratchett MS, Hoey AS, Wilson SK (2014) Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr Opin Environ Sustain 7:37–43. doi: 10.1016/j.cosust.2013.11.022 CrossRefGoogle Scholar
  100. Quinn NJ, Kojis BL (2007) The recent collapse of a rapid phase-shift reversal on a Jamaican north coast coral reef after the 2005 bleaching event. Rev Biol Trop 56:149–159. doi: 10.15517/rbt.v56i0.5584 Google Scholar
  101. Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94:1347–1358. doi: 10.1890/12-0389.1 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Russ GR (1984a) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I: levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34CrossRefGoogle Scholar
  103. Russ GR (1984b) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II: patterns of zonation of mid-shelf and outershelf reefs. Mar Ecol Prog Ser 20:35–44CrossRefGoogle Scholar
  104. Saito H, Yamashiro R, Alasalvar C, Konno T (1999) Influence of diet on fatty acids of three subtropical fish, subfamily Caesioninae (Caesio diagramma and C. tile) and family Siganidae (Siganus canaliculatus). Lipids 34:1073–1082. doi: 10.1007/s11745-999-0459-4 PubMedCrossRefGoogle Scholar
  105. Smith TB (2008) Temperature effects on herbivory for an Indo-Pacific parrotfish in Panamá: implications for coral–algal competition. Coral Reefs 27:397–405. doi: 10.1007/s00338-007-0343-6 CrossRefGoogle Scholar
  106. Soliman VS, Mendoza AB, Yamaoka K (2008) Seaweed-associated fishes of Lagonoy Gulf in bicol, the Philippines—with emphasis on Siganids (Teleoptei: Siganidae). Kuroshio Sci 2:67–72Google Scholar
  107. Steneck RS (2001) Functional Groups. Encycl Biodivers 3:121–139CrossRefGoogle Scholar
  108. Streit RP, Hoey AS, Bellwood DR (2015) Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs. doi: 10.1007/s00338-015-1322-y Google Scholar
  109. Vergés A, Vanderklift MA, Doropoulos C, Hyndes GA (2011) Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PLoS One 6:e17115. doi: 10.1371/journal.pone.0017115 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vergés A, Bennett S, Bellwood DR (2012) Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison. PLoS One 7:e45543. doi: 10.1371/journal.pone.0045543 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Welsh JQ, Bellwood DR (2014) Herbivorous fishes, ecosystem function and mobile links on coral reefs. Coral Reefs 33:303–311. doi: 10.1007/s00338-014-1124-7 CrossRefGoogle Scholar
  112. Welsh JQ, Bellwood DR (2015) Simulated macro-algal outbreak triggers a large-scale response on coral reefs. PLoS One 10:e0132895. doi: 10.1371/journal.pone.0132895 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wilson SK, Graham NAJ, Pratchett MS et al (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol 12:2220–2234. doi: 10.1111/j.1365-2486.2006.01252.x CrossRefGoogle Scholar
  114. Wilson SK, Graham NAJ, Polunin NVC (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076. doi: 10.1007/s00227-006-0538-3 CrossRefGoogle Scholar
  115. Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54. doi: 10.3354/meps07790 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura D. Puk
    • 1
  • Sebastian C. A. Ferse
    • 2
  • Christian Wild
    • 1
  1. 1.Marine Ecology, Faculty of Biology and Chemistry (FB2)University of BremenBremenGermany
  2. 2.Leibniz Center for Tropical Marine Ecology (ZMT) GmbHBremenGermany

Personalised recommendations