Reviews in Fish Biology and Fisheries

, Volume 23, Issue 4, pp 537–546 | Cite as

Climate impacts and oceanic top predators: moving from impacts to adaptation in oceanic systems

  • Alistair J. HobdayEmail author
  • Jock W. Young
  • Osamu Abe
  • Daniel P. Costa
  • Robert K. Cowen
  • Karen Evans
  • Maria A. Gasalla
  • Rudy Kloser
  • Olivier Maury
  • Kevin C. Weng


Climate impacts are now widely reported from coastal marine systems, but less is known for the open ocean. Here we review progress in understanding impacts on large pelagic species presented at an international workshop for the Climate Impacts on Oceanic Top Predators programme, and discuss the future with regard to the next phase of adaptation-focused research. Recent highlights include a plan to map the distribution of key species in the foodweb using both acoustics and biochemical techniques, and development of a new data sharing and access tool for fisheries and associated data, including socio-economic information. A common research focus in pelagic ecosystems is on understanding climate variability and climate change impacts on marine species, but a greater emphasis on developing future scenarios and adaptation options is needed. Workshop participants also concluded that engagement with and provision of science support to regional fisheries management organisations are critical elements for ensuring successful uptake of research. This uptake will be required for future management of fisheries as global warming continues such that some open ocean top predators can be sustainably harvested, impacts on conservation-dependent species can be avoided, and ecosystem function is not compromised.


Climate variability Climate change Fisheries Pelagic ecosystems 



This CLIOTOP workshop was supported by IMBER and the CSIRO Climate Adaptation Flagship. The group wish to thank Dr Mark Howden for his contribution to discussions about adaptation at the meeting. CLIOTOP is an open-access research programme and new collaborators are welcome.


  1. Alemany FL, Quintanilla P, Velez-Belchí A, García D, Cortés JM, Rodríguez ML, Fernández de Puelles C, González-Pola JL, López-Jurado J (2010) Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog Oceanogr 86:2–38CrossRefGoogle Scholar
  2. Ban N, Bax NJ, Gjerde KM, Devillers R, Dunn DC, Dunstan PK, Hobday AJ, Maxwell SM, Kaplan DM, Pressey RL, Ardron JA, Game ET, Halpin PN (2013) Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv Lett. doi: 10.1111/conl.12010 Google Scholar
  3. Bell JD, Johnson JE, Hobday AJ (eds) (2011) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, NoumeaGoogle Scholar
  4. Biuw M, Boehme L, Guinet C, Hindell M, Costa D, Charrassin JB, Roquet F, Bailleul F, Meredith M, Thorpe S, Tremblay Y, McDonald B, Park YH, Rintoul SR, Bindoff N, Goebel M, Crocker D, Lovell P, Nicholson J, Monks F, Fedak MA (2007) Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc Nat Acad Sci 104:13705–13710CrossRefGoogle Scholar
  5. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG, Breed GA, Harrison SR, Ganong JE, Swithenbank AM, Castleton MR, Dewar H, Mate B, Schillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90CrossRefGoogle Scholar
  6. Bowman D (2012) Conservation: bring elephants to Australia? Nature 482:30CrossRefGoogle Scholar
  7. Catalán IA, Alemany F, Morillas A, Morales-Nin B (2007) Diet of larval albacore Thunnus alalunga (Bonnaterre, 1788) off Mallorca Island (NW Mediterranean). Scientia Marina 71:347–354CrossRefGoogle Scholar
  8. Catalán IA, Tejedor A, Alemany F, Reglero P (2011) Trophic ecology of Atlantic bluefin tuna Thunnus thynnus larvae. J Fish Biol 78:1545–1560CrossRefGoogle Scholar
  9. Charrassin J-B, Hindell M, Rintoul SR, Roquet F, Sokolov S, Biuw M, Costa D, Boehme L, Lovell P, Coleman R, Timmernamm R, Meijers A, Meredith M, Park Y-H, Bailleul F, Goebel M, Tremblay Y, Bost C-A, McMahon CR, Field IC, Fedak MA, Guinet C (2008) Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc Nat Acad Sci 105:11634–11639CrossRefGoogle Scholar
  10. Costa DP, Huckstadt LA, Crocker DE, McDonald BI, Goebel ME, Fedak MA (2010) Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. Integr Comp Biol 50:1018–1030CrossRefGoogle Scholar
  11. Cowen RK, Guigand CM (2008) In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol Oceanogr Methods 6:126–132CrossRefGoogle Scholar
  12. Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34CrossRefGoogle Scholar
  13. Dambacher JM, Young JW, Olson RJ, Allain V, Galván-Magaña F, Lansdell MJ, Bocanegra-Castillo N, Alatorre-Ramírez V, Cooper SP, Duffy LM (2010) Analyzing pelagic food webs leading to top predators in the Pacific Ocean: a graph-theoretic approach. Prog Oceanogr 86:153–165CrossRefGoogle Scholar
  14. Dueri S, Faugeras B, Maury O (2012a) Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E: Part 1 model formulation. Ecol Mod 245:41–54CrossRefGoogle Scholar
  15. Dueri S, Faugeras B, Maury O (2012b) Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E. Part 2: parameter estimation and sensitivity analysis. Ecol Mod 245:55–64CrossRefGoogle Scholar
  16. Durack PJ, Wjiffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458CrossRefGoogle Scholar
  17. Ekau W, Auel H, Poertner HO, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–1699CrossRefGoogle Scholar
  18. Estes JA et al (2011) Trophic downgrading of planet Earth. Science 333:301–306CrossRefGoogle Scholar
  19. Faugeras B, Maury O (2005) An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: application to the Indian Ocean skipjack tuna fishery. Math Biosci Eng 2:719–741CrossRefGoogle Scholar
  20. Faugeras B, Maury O (2007) Modelling fish population movements: from an individual-based representation to an advection-diffusion equation. J Theoret Biol 247:837–848CrossRefGoogle Scholar
  21. Frusher SD, Hobday AJ, Jennings SM, Pecl GT, Haward M, Nursey-Bray M, Holbrook NJ, van Putten EI, Crighton C, D’Silva D (in review) History of a hotspot—from anecdote to adaptation in south-east Australia. Rev Fish Biol FishGoogle Scholar
  22. Fulton EA (2010) Approaches to end-to-end models. J Mar Syst 81:171–183CrossRefGoogle Scholar
  23. Game ET, Grantham HS, Hobday AJ, Pressey RL, Lombard AT, Beckley LE, Gjerde K, Bustamante RH, Possingham HP, Richardson AJ (2009) Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol Evol 24:360–369CrossRefGoogle Scholar
  24. Gleiss AC, Norman B, Wilson RP (2011) Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct Ecol 25:595–607CrossRefGoogle Scholar
  25. Grafton RQ (2010) Adaptation to climate change in marine capture fisheries. Mar Pol 34:606–615CrossRefGoogle Scholar
  26. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spaulding M, Steneck RS, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952CrossRefGoogle Scholar
  27. Halsey LG, Shepard ELC, Wilson RP (2011) Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp Biochem Physiol Mol Integr Physiol 158:305–314CrossRefGoogle Scholar
  28. Handegard NO, Ld Buisson, Brehmer P, Chalmers SJ, De Robertis A, Huse G, Kloser R, Macaulay G, Maury O, Ressler PH, Stenseth NC, Godø OR (2012) Towards an acoustic-based coupled observation and modelling system for monitoring and predicting ecosystem dynamics of the open ocean. Fish Fish. doi: 10.1111/j.1467-2979.2012.00480.x Google Scholar
  29. Hazen EL, Jorgensen S, Rykaczewski RR, Bograd SJ, Foley DG, Jonsen ID, Shaffer SA, Dunne JP, Costa DP, Crowder LB, Block BA (2013) Predicted habitat shifts of Pacific top predators in a changing climate. Nat Clim Change 3:234–238CrossRefGoogle Scholar
  30. Hobday AJ, Evans K (2013) Detecting climate impacts with oceanic fish and fisheries data. Clim Change. doi: 10.1007/s10584-013-0716-5 Google Scholar
  31. Hollowed AB, Hare SR, Wooster WS (2001) Pacific Basin climate variability and patterns of Northeast Pacific marine fish production. Prog Oceanogr 49:257–282CrossRefGoogle Scholar
  32. Iverson SJ, Springer AM, Kitaysky AS (2007) Seabirds as indicators of food web structure and ecosystem variability: qualitative and quantitative diet analyses using fatty acids. Mar Ecol Progr Ser 352:235–244CrossRefGoogle Scholar
  33. Juan-Jorde MJ, Mosqueira I, Cooper AB, Freire J, Dulvey NK (2011) Global population trajectories of tunas and their relatives. Proc Nat Acad Sci 108:20650–20655CrossRefGoogle Scholar
  34. Kloser RJ, Ryan T, Young J, Lewis ME (2009) Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES J Mar Sci 66:998–1006CrossRefGoogle Scholar
  35. Koched W, Hattour A, Alemany F, Zarrad R, Gaarcia A (2012) Distribution of tuna larvae in Tunisian east coasts and its environmental scenario. Cah Biol Mar 53:505–515Google Scholar
  36. Koehn JD, Hobday AJ, Pratchett MS, Gillanders BM (2011) Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Mar Freshw Res 62:1148–1164CrossRefGoogle Scholar
  37. Kooijman SALM (2000) Dynamic energy mass budgets in biological systems. Cambridge University Press, AmsterdamCrossRefGoogle Scholar
  38. Kuhnert PM, Duffy LM, Young JW, Olson RJ (2012) Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Mar Biol 159:87–100CrossRefGoogle Scholar
  39. Laiz-Carrión R, Quintanilla JM, Torres AP, Alemany F, García A (2013) Hydrographic patterns conditioning variable trophic pathways and early life dynamics of bullet tuna Auxis rochei larvae in the Balearic Sea. Mar Ecol Progr Ser 475:203–212CrossRefGoogle Scholar
  40. Lehodey P, Maury O (2010) CLimate Impacts on Oceanic TOp Predators (CLIOTOP): introduction to the special issue of the CLIOTOP international symposium, La Paz, Mexico, 3–7 December 2007. Prog Oceanogr 86:1–7CrossRefGoogle Scholar
  41. Lehodey P, Chai F, Hampton J (2003) Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model. Fish Oceanogr 12:483–494CrossRefGoogle Scholar
  42. Lewison RL, Crowder LB (2007) Putting longline bycatch of sea turtles into perspective. Cons Bio 21:79–86CrossRefGoogle Scholar
  43. Llopiz JK (2013) Latitudinal patterns in the feeding of fish larvae. J Mar Sys 109–110:69–77CrossRefGoogle Scholar
  44. Llopiz JK, Cowen RK (2008) Precocious, selective and successful feeding of larval billfishes in the oceanic Straits of Florida. Mar Ecol Prog Ser 358:231–244CrossRefGoogle Scholar
  45. Llopiz JK, Richardson DE, Shiroza A, Smith SL, Cowen RK (2010) The spatial and trophic niches of larval tunas in the subtropical ocean and the important role of appendicularians. Limnol Oceanogr 55:983–996CrossRefGoogle Scholar
  46. Marshall NA (2010) Understanding social resilience to climate variability in primary enterprises and industries. Glob Environ Change 20:36–43CrossRefGoogle Scholar
  47. Maury O (2010) An overview of APECOSM, a spatialized mass balanced “Apex Predators ECO System Model” to study physiologically structured tuna population dynamics in their ecosystem. Prog Oceanogr 84:113–117CrossRefGoogle Scholar
  48. Maury O, Shin Y-J, Faugeras B, Ben Ari T, Marsac F (2007a) Modelling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Prog Oceanogr 74:500–514CrossRefGoogle Scholar
  49. Maury O, Faugeras B, Shin Y-J, Poggiale JC, Ben Ari T, Marsac F (2007b) Modelling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog Oceanogr 74:479–499CrossRefGoogle Scholar
  50. Maury O, Miller K, Campling L, Arrizabalaga H, Aumont O, Bodin O, Guillotreau P, Hobday A, Marsac F, Pulvenis de Seligny JF, Suzuki Z, Murtugudde R (in review) Global science-policy partnership for the sustainability of oceanic ecosystems and fisheriesGoogle Scholar
  51. Miller KA, Charles AT, Barange M, Brander K, Gallucci VF, Gasalla MA, Khan A, Munro G, Murtugudde R, Ommer RE, Perry RI (2010) Climate change, uncertainty, and resilient fisheries: institutional responses through integrative science. Prog Oceanogr 87:338–346CrossRefGoogle Scholar
  52. Mitani Y, Andrews RD, Sato K, Kato A, Naito Y, Costa DP (2010) Three-dimensional resting behaviour of northern elephant seals: drifting like a falling leaf. Biol Lett 6:163–166CrossRefGoogle Scholar
  53. Muhling BA, Lamkin JT, Roffer MA (2010) Predicting the occurrence of Atlantic bluefin tuna (Thunnus thynnus) larvae in the northern Gulf of Mexico: building a classification model from archival data. Fish Oceanogr 9:526–539CrossRefGoogle Scholar
  54. Muhling BA, Lee S-L, Lamkin JT, Liu Y (2011) Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. ICES J Mar Sci 68:1051–1062CrossRefGoogle Scholar
  55. Newsome SD, Clementz MT, Koch PL (2010) Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mam Sci 26:509–572Google Scholar
  56. Nicol SJ, Allain V, Pilling GM, Polovina J, Coll M, Bell JD, Dalzell P, Sharples P, Olson R, Griffiths S, Dambacher JM, Young J, Lewis A, Hampton J, Molina JJ, Hoyle S, Briand K, Bax N, Lehodey P, Williams P (2013) An ocean observation system for monitoring the affects of climate change on the ecology and sustainability of pelagic fisheries in the Pacific Ocean. Clim Change. doi: 10.1007/s10584-012-0598-y
  57. Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Ballance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog Oceanogr 86:124–138CrossRefGoogle Scholar
  58. Padman L, Costa DP, Bolmer ST, Goebel ME, Huckstadt LA, Jenkins A, McDonald BI, Shoosmith DR (2010) Seals map bathymetry of the Antarctic continental shelf. Geophys Res Lett 37:L21601CrossRefGoogle Scholar
  59. Plagányi EE, Bell JD, Bustamante RH, Dambacher JM, Dennis D, Dichmont CM, Dutra L, Fulton EA, Hobday AJ, van Putten EI, Smith F, Smith ADM, Zhou S (2011) Modelling climate change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Mar Freshw Res 62:1132–1147CrossRefGoogle Scholar
  60. Reglero P, Urtizberea A, Torres AP, Alemany F, Fiksen Ø (2011) Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar Ecol Prog Ser 433:205–219CrossRefGoogle Scholar
  61. Reglero P, Ciannelli L, Alvarez-Berastegui D, Balbín R, López-Jurado JL, Alemany F (2012) Geographically and environmentally driven spawning distributions of tuna species in the western Mediterranean Sea. Mar Ecol Prog Ser 463:273–284CrossRefGoogle Scholar
  62. Reygondeau G, Maury O, Beaugrand G, Fromentin JM, Fonteneau A, Cury P (2012) Biogeography of tuna and billfish communities. J Biogeogr 39:114–129CrossRefGoogle Scholar
  63. Richardson DE, Cowen RK, Prince ED, Sponaugle S (2009a) Importance of the Straits of Florida spawning ground to Atlantic sailfish (Istiophorus platypterus) and blue marlin (Makaira nigricans). Fish Oceanogr 18:402–418CrossRefGoogle Scholar
  64. Richardson DE, Llopiz JK, Leaman KD, Vertes PS, Muller-Karger FE, Cowen RK (2009b) Sailfish (Istiophorus platypterus) spawning and larval environment in a Florida Current frontal eddy. Prog Oceanogr 82:252–264CrossRefGoogle Scholar
  65. Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583CrossRefGoogle Scholar
  66. Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD, Fowler MA, Goetsch C, Goetz KT, Hassrick JL, Huckstadt LA, Kuhn CE, Maresh JL, Maxwell SM, McDonald BI, Peterson SH, Simmons SE, Teutschel NM, Villegas-Amtmann S, Yoda K (2012) Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS ONE 7:e36728. doi: 10.1371/journal.pone.0036728 CrossRefGoogle Scholar
  67. Shillinger GL, Bailey H, Bograd SJ, Hazen EL, Hamann M, Gaspar P, Godley BJ, Wilson RP, Spotila JR (2012) Tagging through the stages: technical and ecological challenges in observing life histories through biologging. Mar Ecol Prog Ser 457:165–170Google Scholar
  68. Sibert J, Hampton J, Kleiber P, Maunder M (2006) Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314:1773–1776CrossRefGoogle Scholar
  69. Sponaugle S, Walter KD, Denit K, Llopiz JL, Cowen RK (2010) Variation in pelagic larval growth of Atlantic billfishes: the role of prey composition and selective mortality. Mar Biol 157:839–849CrossRefGoogle Scholar
  70. Stevens J, Bonfil R, Dulvy N, Walker P (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494CrossRefGoogle Scholar
  71. Stokes CJ, Howden MA (2010) Adapting agriculture to climate change: Preparing Australian agriculture, forestry and fisheries for the future. CSIRO Publishing, MelbourneGoogle Scholar
  72. Tanaka Y, Satoh K, Yamada H, Takebe T, Nikaido H, Shiozawa S (2008) Assessment of the nutritional status of field-caught larval Pacific bluefin tuna by RNA/DNA ratio based on a starvation experiment of hatchery-reared fish. J Exp Mar Biol Ecol 354:56–64CrossRefGoogle Scholar
  73. Weng KC, Foley DG, Ganong J, Perle C, Shillinger G, Block B (2008) Migration of an upper trophic level predator, the salmon shark Lamna ditropis, between distant ecoregions. Mar Ecol Prog Ser 372:253–264CrossRefGoogle Scholar
  74. Weng K, O’Sullivan J, Lowe C, Winkler C, Blasius M, Loke-Smith K, Sippel T, Ezcurra J, Jorgensen S, Murray M (2012) Back to the wild: release of juvenile white sharks from the Monterey Bay Aquarium. In: Domeier ML (ed) Global perspectives on the biology and life history of the great white shark. CRC Press, Boca Raton, FLGoogle Scholar
  75. Wilcox C, Donlan CJ (2007) Compensatory mitigation as a solution to fisheries bycatch–biodiversity conservation conflicts. Front Ecol Environ 5:325–331CrossRefGoogle Scholar
  76. Wilson RP, Liebsch N, Davies IM, Quintana F, Weimerskirsch H, Storch S, Lucke K, Siebert U, Zankl S, Müller G, Zimmer I, Scolaro A, Campagna C, Plötz J, Bornemann H, Teilmann J, McMahon CR (2007) All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Res II 54:193–210CrossRefGoogle Scholar
  77. Wilson RP, McMahon CR, Quintana F, Frere E, Scolaro A, Hays GC, Bradshaw CJA (2011) N-dimensional animal energetic niches clarify behavioural options in a variable marine environment. J Exp Biol 214:646–656CrossRefGoogle Scholar
  78. Wilson RP, Quintana F, Hobson VJ (2012) Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proc R Soc B 279:975–980. doi: 10.1098/rspb.2011.1544 CrossRefGoogle Scholar
  79. Yoda K, Sato K, Niizuma Y, Kurita M, Bost CA, Le Maho Y, Naito Y (1999) Precise monitoring of proposing behaviour of Adélie penguins determined using acceleration data loggers. J Exp Biol 202:3121–3126Google Scholar
  80. Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA (2010a) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Bio 157:2347–2368CrossRefGoogle Scholar
  81. Young JW, Guest MA, Lansdell MJ, Phleger CF, Nichols PD (2010b) Discrimination of prey species of juvenile swordfish Xiphias gladius (Linnaeus, 1758) using signature fatty acid analyses. Progr Oceanogr 86:139–151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alistair J. Hobday
    • 1
    Email author
  • Jock W. Young
    • 1
  • Osamu Abe
    • 2
  • Daniel P. Costa
    • 3
  • Robert K. Cowen
    • 4
  • Karen Evans
    • 1
  • Maria A. Gasalla
    • 5
  • Rudy Kloser
    • 1
  • Olivier Maury
    • 6
    • 7
  • Kevin C. Weng
    • 8
  1. 1.CSIRO Climate Adaptation and Wealth from Oceans FlagshipsHobartAustralia
  2. 2.National Research Institute of Far Seas FisheriesShimizuJapan
  3. 3.Long Marine LaboratoryUniversity of CaliforniaSanta CruzUSA
  4. 4.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  5. 5.Fisheries Ecosystems Laboratory, Oceanographic InstituteUniversity of São PauloSão PauloBrazil
  6. 6.Institut de Recherche pour le Développement (IRD), UMR 212 EMESèteFrance
  7. 7.ICEMASA, Department of OceanographyUniversity of Cape TownCape TownSouth Africa
  8. 8.Pelagic Fisheries Research ProgramUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations