Skip to main content

Advertisement

Log in

Geographic isolation and physiological mechanisms underpinning species distributions at the range limit hotspot of South Georgia

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

In order to allocate quotas for sustainable harvests, that account for climate warming, it is important to incorporate species vulnerabilities that will underlie likely changes in population dynamics. Hotspots, regions with rapidly changing climate, are important locations for rapid advances in mechanistic understanding of the factors driving these changes, particularly if they coincide with regions with a high incidence of range limits, such as the sub-Antarctic Island of South Georgia. This archipelago is at the Northern limit of the Southern Ocean and therefore the northern distribution limit for many Southern Ocean shallow water marine species, which are amongst the most sensitive fauna to increasing temperature. At range limits species may either be living close to their physiological limits, or they may have more resistant phenotypes. In case studies, the northern range limit population of the gastropod limpet, Nacella concinna, has greater physiological plasticity at South Georgia than those from further south, allowing them to cope better with the warmer and more variable seasonal temperatures. Bivalve species, however, alter their depth distributions at South Georgia, to avoid the warmer water masses, indicating that they may not be able to cope with the warmer temperatures. Mackerel icefish, Champsocephalus gunnari, has a unique Antarctic trait, the loss of haemoglobin. A combination of temperature driven change in food web structure, and this extreme physiological cold adaptation, may explain why rapid warming at its northern range limit of South Georgia, has prevented stocks fully recovering from over fishing in the 1980s, despite highly conservative management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnew DJ (2004) Fishing South. The history and management of South Georgia fisheries. Penna Press, St. Albans

    Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  PubMed  Google Scholar 

  • Barnes DKA, Linse K, Waller C et al (2005) Shallow benthic communities of South Georgia Island. Pol Biol 29:223–228

    Article  Google Scholar 

  • Barnes DKA, Kaiser S, Griffiths HJ, Linse K (2009) Marine, intertidal, freshwater and terrestrial biodiversity of an isolated polar archipelago. J Biogeogr 36:756–769

    Article  Google Scholar 

  • Barrett RDH, Schlutter D (2008) Adaptation from standing genetic variation. TREE 23:38–44

    PubMed  Google Scholar 

  • Beers JM, Sidell BD (2011) Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool 84:353–362

    Article  CAS  PubMed  Google Scholar 

  • Belchier M, Collins MA (2008) Recruitment and body size in relation to temperature in juvenile Patagonian toothfish (Dissostichus eleginoides) at South Georgia. Mar Biol 155(5):493–503. doi:10.1007/s00227-008-1047-3

    Article  Google Scholar 

  • Bilyk KT, DeVries AL (2011) Heat tolerance and its plasticity in Antarctic fishes. Comp Biochem Physiol A 158:382–390

    Article  Google Scholar 

  • Brandon MA, Naganobu M, Demer DA et al (2004) Physical oceanography in the Scotia Sea during the CCAMLR 2000 survey, austral summer 2000. Deep-Sea Res II 51:1301–1321

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB et al (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  CAS  PubMed  Google Scholar 

  • Chen L, DeVries AL, Cheng CH (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Nat Acad Sci 94:3817–3822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Clarke AC, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Animal Ecol 68:893–905

    Article  Google Scholar 

  • Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751

    Article  PubMed  Google Scholar 

  • Collins MA, Jones C, Clark J, Fielding S, Slakowski J, North T, Reid W, Watts J (2006) Report of the South Georgia groundfish survey (Subarea 48.3) in Jan 2006. SC-CCAMLR-WG-FSA06.51

  • Crame JA (1999) An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci Mar 63:1–14

    Article  Google Scholar 

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Article  Google Scholar 

  • Denney NH, Jennings S, Reynolds JD (2002) Life-history correlates of maximum population growth rates in marine fishes. Proc Roy Soc B 269:2229–2237

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Nat Acad Sci 105:6668–6672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J App Ecol 45:1029–1039

    Article  Google Scholar 

  • Eagles G (2010) The age and origin of the central Scotia Sea. Geophys J Int 183:587–600

    Article  Google Scholar 

  • Egginton S, Silbeck C, Hoofd L, Calvo J, Johnston IA (2002) Peripheral oxygen transport in skeletal muscle of Antarctic and sub-Antarctic notothenioid fish. J Exp Biol 205:769–779

    CAS  PubMed  Google Scholar 

  • Eliason EJ, Clark TD, Hague MJ et al (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332:109–112

    Article  CAS  PubMed  Google Scholar 

  • Everson I, Parkes G, Kock KH, Boyd IL (1999) Variation in standing stock of the mackerel icefish Champsocephalus gunnari at South Georgia. J Applied Ecol 36:591–603

    Article  Google Scholar 

  • Feldman GC, McClain CR (2012) Ocean color web, MODIC Reprocessing 2012, NASA goddard space flight center. Kuring N, Bailey SW (ed). http://oceancolor.gsfc.nasa.gov/

  • Gaston KJ, Chown SL, Calosi P et al (2009) Macrophysiology: a conceptual reunification. Am Nat 174:595–612

    Article  PubMed  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004

    Article  Google Scholar 

  • Hartl D, Clark AG (1997) Principles of Population Genetics, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Helmuth B, Veit RR, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve Gaimardia trapesina by kelp-rafting. Mar Biol 120:421–426

    Article  Google Scholar 

  • Hoffman JI, Peck LS, Linse K, Clarke A (2011) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Heredity 102:55–66

    Article  CAS  Google Scholar 

  • Hogg OT, Barnes DKA, Griffiths HJ (2011) Highly diverse, poorly studied and uniquely threatened by climate change: an assessment of marine biodiversity on South Georgia’s continental shelf. PLoS One 6:e19795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchings JA, Reynolds JD (2004) Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54:297–309

    Article  Google Scholar 

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria inperciform fishes. J Exp Biol 201:1–12

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) The strength of indirect selection on female mating preferences. Proc Nat Acad Sci 94:1282–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kock KH (1992) Antarctic fish and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee JE, Janion C, Marais E, van Vuuren BJ, Chown SL (2009) Physiological tolerances account for range limits and abundance in an invasive slug. Proc Roy Soc B 276:1459–1468

    Article  Google Scholar 

  • Livermore R, Hillenbrand C-D, Meredith M, Eagles G (2007) Drake passage and cenozoic climate: an open and shut case? Geochem Geophys Geosyst 8:Q01005

    Article  Google Scholar 

  • Main CE, Collins MA, Mitchell R, Belchier M (2009) Identifying patterns in the diet of mackerel icefish (Champsocephalus gunnari) at South Georgia using bootstrapped confidence intervals of a dietary index. Polar Biol 32(4):569–581

    Article  Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the notothenioid adaptive radiation. PLoS One 6:e18911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the twentieth century. Geophys Res Let 32:L19604

    Article  Google Scholar 

  • Morley SA, Hirse T, Pörtner HO, Peck LS (2009a) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A 153:154–161

    Article  Google Scholar 

  • Morley SA, Lurmann GL, Skepper J, Pörtner HO, Peck LS (2009b) Thermal plasticity of mitochondria: a latitudinal comparison between Southern Ocean molluscs. Comp Biochem Physiol A 152:423–430

    Article  Google Scholar 

  • Morley SA, Clark MS, Peck LS (2010) Depth gradients in shell morphology correlate with thermal limits for activity and ice disturbance in Antarctic limpets. J Exp Mar Biol Ecol 390:1–5

    Article  Google Scholar 

  • Morley SA, Martin SM, Bates AE, Clark MS, Ericson J, Lamare M, Peck LS (2012) Spatial and temporal variation in the heat tolerance limits of two abundant Southern Ocean invertebrates. Mar Ecol Prog Ser 450:81–92

    Google Scholar 

  • Mukasa SB, Dalziel IWD (1996) Southernmost Andes and South Georgia Island, North Scotia Ridge: zircon U-Pb and muscovite 40Ar39Ar age constraints on tectonic evolution of Southwestern Gondwanaland. J S Am Earth Sci 9:349–365

    Article  Google Scholar 

  • Murphy EJ, Trathan PN, Watkins JL, Reid K, Meredith MP, Forcada J, Thorpe SE, Johnston NM, Rothery P (2007) Climatically driven fluctuations in Southern Ocean ecosystems. Proc Roy Soc B 274:3057–3067

    Article  Google Scholar 

  • Nguyen KDT, Morley SA, Lai C-H, Clark MS, Tan KS, Bates A, Peck LS (2011) Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS One 6:e29340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Ant Sci 17:497–507

    Article  Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  CAS  PubMed  Google Scholar 

  • Poloczanska ES, Hawkins SJ, Southward AJ, Burrows MT (2008) Modelling the response of populations of competing species to climate change. Ecology 89:3138–3149

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  Google Scholar 

  • Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B, Giuliani A, Johansen T, Fischer T, Knust RK, Lannig G, Naevdal G, Nedenes A, Nyhammer G, Sartoris FJ, Serendero I, Sirabella P, Thorkildsen S, Zakhartsev M (2001) Climate induced temperature effects on growth and performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997

    Google Scholar 

  • Richard J, Morley SA, Peck LS (2012) Upper temperature limits in temperate marine species: a macrophysiological view. PLoS One 7:e34655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258

    Article  CAS  PubMed  Google Scholar 

  • Spicer JI, Gaston KJ (1999) Amphipod gigantism dictated by oxygen availability? Eco Lett 2:397–401

    Article  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    Article  CAS  PubMed  Google Scholar 

  • Thomson MRA (2004) Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep Sea Res II 51:1467–1487

    Article  Google Scholar 

  • Verde C, Giordano D, Russo R, Riccio A, Coppola D, di Prisco G (2011) Adaptations in Antarctic fish: the oxygen-transport system. Oecologia Australis 15:40–50

    Article  Google Scholar 

  • Whitehouse MJ, Meredith MP, Rothery P, Atkinson A, Ward P, Korb RE (2008) Rapid warming of the ocean around South Georgia, Southern Ocean, during the twentieth century: forcings, characteristics and implications for lower trophic levels. Deep-Sea Res I 55:1218–1228

    Article  Google Scholar 

Download references

Acknowledgments

This contribution to the hotspots symposium was funded by the UK Natural Environment Research Council’s British Antarctic Survey, Adaptations and physiology program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Morley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morley, S.A., Belchier, M., Sands, C. et al. Geographic isolation and physiological mechanisms underpinning species distributions at the range limit hotspot of South Georgia. Rev Fish Biol Fisheries 24, 485–492 (2014). https://doi.org/10.1007/s11160-013-9308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-013-9308-8

Keywords

Navigation