Climate effects on growth, phenology, and survival of sockeye salmon (Oncorhynchus nerka): a synthesis of the current state of knowledge and future research directions

Abstract

Sockeye salmon (Oncorhynchus nerka) is one of the most iconic and valued species of Pacific salmon. Various studies have examined the potential effects of future climate change on sockeye salmon, but there is currently no synthesis of the documented effects of climate on this species. In this paper, we present a synthesis of 80 peer-reviewed publications in the English language evaluating the effects of climate on sockeye salmon growth, phenology, and survival. The great majority of studies examined have been conducted with stocks from North America (90 % of studies). Survival (55 %) has been the most frequently studied aspect of the sockeye salmon life history in relation to climate, followed by growth (45 %) and phenology (30 %), with temperature (83.4 %) being the climate-related variable most frequently examined in such studies. Across life stages, the effects of climate-related variables have been most frequently studied on fry (36.3 %) and least studied on spawners (7.5 %). Our synthesis revealed that associations between temperature and growth, phenology, or survival have been uncovered for all the life stages of sockeye salmon, whereas relationships with other climate-related variables have been sparse. There is substantial evidence that sockeye salmon are influenced by thermal conditions experienced at regional, rather than ocean- or continental-wide scales, and that responses to temperature vary among and within stocks. The mechanisms by which climate affect sockeye salmon during the early stages in freshwater and while at sea are still poorly understood and warrant future research. More research on the effects of non-temperature, climate-related variables (e.g. stream flow, ocean pH), inter-generational and carry-over effects of climate, interaction between climate and non-climate stressors, and adaptation to climate change are also needed. Such information will be critical to advance our understanding of how sockeye salmon stocks will fare with future climate change.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abdul-Aziz OI, Mantua NJ, Myers KW (2011) Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Can J Fish Aquat Sci 68(9):1660–1680. doi:10.1139/F2011-079

    Article  Google Scholar 

  2. Adkison MD, Peterman RM, Lapointe MF, Gillis DM, Korman J (1996) Alternative models of climatic effects on sockeye salmon, Oncorhynchus nerka, productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia. Fish Oceanogr 5(3/4):137–152. doi:10.1111/j.1365-2419.1996.tb00113.x

    Article  Google Scholar 

  3. Ainsworth LM, Routledge R, Cao J (2011) Functional data analysis in ecosystem research: the decline of Oweekeno Lake sockeye salmon and Wannock River flow. J Agric Biol Environ Stat 16(2):282–300. doi:10.1007/s13253-010-0049-z

    Article  Google Scholar 

  4. Arlinghaus R, Cooke SJ, Lyman J, Policansky D, Schwab A, Suski C, Sutton SG, Thorstad EB (2007) Understanding the complexity of catch-and-release in recreational fishing: an integrative synthesis of global knowledge from historical, ethical, social, and biological perspectives. Rev Fish Sci 15(1–2):75–167. doi:10.1080/10641260601149432

    Article  Google Scholar 

  5. Augerot X (2005) Atlas of Pacific Salmon: the first map-based status assessment of salmon in the North Pacific. University of California Press, Berkeley

    Google Scholar 

  6. Aydin KY, Myers KW, Walker RV (2000) Variation in summer distribution of the prey of Pacific salmon (Oncorhynchus spp.) in the offshore Gulf of Alaska in relation to oceanographic conditions, 1994–98. In: Helle J (ed) Recent changes in ocean production of Pacific salmon, Bulletin, vol 2. North Pacific Anadromous Fish Commission, Vancouver, pp 43–54

    Google Scholar 

  7. Azumaya T, Nagasawa T, Temnykh OS, Khen GV (2007) Regional and seasonal differences in temperature and salinity limitations of Pacific salmon (Oncorhynchus spp.). In: Beamish RJ (ed) Status of Pacific salmon and their role in North Pacific marine ecosystems, Bulletin, vol 4. North Pacific Anadromous Fish Commission, Vancouver, pp 179–187

    Google Scholar 

  8. Ban M (2001) Effects of water temperature and day length on seawater tolerance of yearling sockeye salmon (Oncorhynchus nerka). In: Beamish R, Ishida Y, Karpenko V, Livingston P, Myers K (eds) Factors affecting production of juvenile salmon: comparative studies on juvenile salmon ecology between the east and west North Pacific. North Pacific Anadromous Fish Commission, Vancouver

    Google Scholar 

  9. BCMOE (2008) British Columbia seafood industry: year in review 2008. British Columbia Ministry of Environment, Victoria. Available at http://www.env.gov.bc.ca/omfd/reports/YIR-2008.pdf

  10. Beacham TD, Murray CB (1989) Variation in developmental biology of sockeye salmon (Oncorhynchus nerka) and chinook salmon (O. tshawytscha) in British Columbia. Can J Zool 67:2081–2089. doi:10.1139/z89-297

    Article  Google Scholar 

  11. Beacham TD, Murray CB (1990) Temperature, egg size, and development of embryos and alevins of five species of Pacific salmon: a comparative analysis. Trans Am Fish Soc 119:927–945. doi:10.1577/1548-8659(1990)119<0927:TESADO>2.3.CO;2

    Article  Google Scholar 

  12. Beamish RJ, Bouillon DR (1993) Pacific salmon production trends in relation to climate. Can J Fish Aquat Sci 50(5):1002–1016. doi:10.1139/f93-116

    Article  Google Scholar 

  13. Beamish RJ, Noakes DJ (2002) The role of climate in the past, present, and future of pacific salmon fisheries off the west coast of Canada. In: McGinn NA (ed) Fisheries in a changing climate, vol 32. American Fisheries Society, Bethesda, pp 231–244

    Google Scholar 

  14. Beamish RJ, Neville CE, Cass AJ (1997) Production of Fraser River sockeye salmon (Oncorhynchus nerka) in relation to decadal-scale changes in the climate and the ocean. Can J Fish Aquat Sci 54(3):543–554. doi:10.1139/f96-310

    Google Scholar 

  15. Beamish RJ, Noakes DJ, McFarlane GA, Klyashtorin L, Ivanov VV, Kurashov V (1999) The regime concept and natural trends in the production of Pacific salmon. Can J Fish Aquat Sci 56(3):516–526. doi:10.1139/cjfas-56-3-516

    Article  Google Scholar 

  16. Beamish RJ, Schnute JT, Cass AJ, Neville CM, Sweeting RM (2004) The influence of climate on the stock and recruitment of pink and sockeye salmon from the Fraser River, British Columbia, Canada. Trans Am Fish Soc 133(6):1396–1412. doi:10.1577/T03-221.1

    Article  Google Scholar 

  17. Beauchamp DA (1995) Riverine predation on sockeye salmon fry migrating to Lake Washington. North Am J Fish Manage 15:358–365. doi:10.1577/1548-8675(1995)015<0358:RPOSSF>2.3.CO;2

    Article  Google Scholar 

  18. Bentley KT, Burgner RL (2011) An assessment of parasite infestation rates of juvenile sockeye salmon after 50 years of climate warming in southwest Alaska. Environ Biol Fish 92:267–273. doi:10.1007/s10641-011-9830-2

    Article  Google Scholar 

  19. Biette RM, Geen GH (1980) Growth of underyearling salmon (Oncorhynchus nerka) under constant and cyclic temperatures in relation to live zooplankton ration size. Can J Fish Aquat Sci 37(2):203–210. doi:10.1139/f80-026

    Article  Google Scholar 

  20. Bjornn TC, Craddock DR, Corley DR (1968) Migration and survival of Redfish Lake, Idaho, sockeye salmon, Oncorhynchus nerka. Trans Am Fish Soc 97(4):360–373. doi:10.1577/1548-8659(1968)97[360:masorl]2.0.co;2

    Article  Google Scholar 

  21. Blackbourn DJ (1987) Sea surface temperature and pre-season prediction of return timing in Fraser River sockeye salmon (Oncorhynchus nerka). In: Smith HD, Margolis L, Wood CC (eds) Sockeye salmon (Oncorhynchus nerka): population biology and future management. Can Spec Pub Fish Aquat Sci 96:296–306

    Google Scholar 

  22. Bower SM, Margolis L (1985) Effects of temperature and salinity on the course of infection with the haemoflagellate Cryptobia salmositica in juvenile Pacific salmon, Oncorhynchus spp. J Fish Dis 8(1):25–33. doi:10.1111/j.1365-2761.1985.tb01184.x

    Article  Google Scholar 

  23. Bradford MJ, Lovy J, Patterson DA (2010a) Infection of gill and kidney of Fraser River sockeye salmon, Oncorhynchus nerka (Walbaum), by Parvicapsula minibicornis and its effect on host physiology. J Fish Dis 33(9):769–779. doi:10.1111/j.1365-2761.2010.01178.x

    PubMed  CAS  Article  Google Scholar 

  24. Bradford MJ, Lovy J, Patterson DA, Speare DJ, Bennett WR, Stobbart AR, Tovey CP (2010b) Parvicapsula minibicornis infections in gill and kidney and the premature mortality of adult sockeye salmon (Oncorhynchus nerka) from Cultus Lake, British Columbia. Can J Fish Aquat Sci 67(4):673–683. doi:10.1139/F10-017

    Article  Google Scholar 

  25. Brannon EL (1972) Mechanisms controlling migration of sockeye salmon fry. Bulletin, vol 21. International Pacific Salmon Fisheries Commission, New Westminster

  26. Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. Can Spec Publ Fish Aquat Sci 96:120–124

    Google Scholar 

  27. Brett JR (1951) A study of the Skeena river climatological conditions with particular reference to their significance in sockeye production. J Fish Res Board Can 8:178–187. doi:10.1139/f50-011

    Article  Google Scholar 

  28. Brett JR (1952) Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J Fish Res Board Can 9(6):265–323. doi:10.1139/f52-016

    Article  Google Scholar 

  29. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Amer Zool 11:99–113. doi:10.1093/icb/11.1.99

    Google Scholar 

  30. Brett JR (1976) Scope for metabolism and growth of sockeye salmon, Oncorhynchus nerka, and some related energetics. J Fish Res Board Can 33(2):307–313. doi:10.1139/f76-046

    Article  Google Scholar 

  31. Brett JR (1983) Life energetics of sockeye salmon. In: Aspey WP, Lustik SI (eds) Behavioral energetics: the cost of survival in vertebrates. Ohio State University Press, Columbus, pp 29–63

    Google Scholar 

  32. Brett JR, Shelbourn JE, Shoop CT (1969) Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J Fish Res Board Can 26(9):2363–2394. doi:10.1139/f69-230

    Article  Google Scholar 

  33. Bryant MD (2009) Global climate change and potential effects on Pacific salmonids in freshwater ecosystems of southeast Alaska. Clim Change 95(1–2):169–193. doi:10.1007/s10584-008-9530-x

    CAS  Article  Google Scholar 

  34. Burgner RL (1987) Factors influencing age and growth of juvenile sockeye salmon (Oncorhynchus nerka) in lakes. In: Smith HD, Margolis L, Wood CC (eds) Sockeye salmon (Oncorhynchus nerka): population biology and future management. Can Spec Pub Fish Aquat Sci 96:129–142

    Google Scholar 

  35. Burgner RL (1991) Life history of sockeye salmon (Oncorhynchus nerka). In: Groot C, Margolis L (eds) Pacific salmon life histories. University of British Columbia Press, Vancouver, pp 1–117

    Google Scholar 

  36. Burt JM, Hinch SG, Patterson DA (2011) The importance of parentage in assessing temperature effects on fish early life history: a review of the experimental literature. Rev Fish Biol Fisheries 21:377–406. doi:10.1007/s11160-010-9179-1

    Article  Google Scholar 

  37. Burt JM, Hinch SG, Patterson DA (2012) Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Onchorhynchus nerka. J Fish Biol 80:444–462. doi:10.1111/j.1095-8649.2011.03190.x

    PubMed  CAS  Article  Google Scholar 

  38. Carlson SM, Seamons TR (2008) A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evol Appl 1(2):222–238. doi:10.1111/j.1752-4571.2008.00025.x

    Article  Google Scholar 

  39. Clark CW, Levy DA (1988) Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am Nat 131:271–290. doi:10.1086/284789

    Article  Google Scholar 

  40. Clarke WC (1978) Growth of underyearling sockeye salmon (Oncorhynchus nerka) on diel temperature cycles. Fish Mar Serv Tech Rep 780. 19 pp

  41. Clarke WC, Shelbourn JE, Brett JR (1978) Growth and adaptation to sea water in ‘underyearling’ sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon subjected to regimes of constant or changing temperature and day length. Can J Zool 56:2413–2421. doi:10.1139/z78-326

    Article  Google Scholar 

  42. Clarke WC, Shelbourn JE, Brett JR (1981) Effect of artificial photoperiod cycles, temperature, and salinity on growth and smolting in underyearling coho (Oncorhynchus kisutch), chinook (O. tshawytscha), and sockeye (O. nerka) salmon. Aquaculture 22(1-2):105–116. doi:10.1016/0044-8486(81)90137-X

    Article  Google Scholar 

  43. Cohen BI (2010) Fraser River sockeye salmon. Past declines. Future sustainability? Interim report. Minister of Public Works and Government Services, Canada

  44. Cooke SJ, Hinch SG, Farrell AP, Lapointe MF, Jones SRM, Macdonald JS, Patterson DA, Healey MC, Van der Kraak G (2004a) Abnormal migration timing and high en route mortality of sockeye salmon in the Fraser River, British Columbia. Fisheries 29(2):22–33. doi:10.1577/1548-8446(2004)29[22:AMTAHE]2.0.CO;2

  45. Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004b) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19(6):334–343. doi:10.1016/j.tree.2004.04.003

    PubMed  Article  Google Scholar 

  46. Cooke SJ, Hinch SG, Lucas MC, Lutcavage M (in press) Biotelemetry and biologging techniques for fishes. In: Zale A, Sutton T (eds) Fisheries techniques, 3rd edn. American Fisheries Society, Bethesda

  47. Cooke SJ, Hinch SG, Farrell AP, Patterson DA, Miller-Saunders K, Welch DW, Donaldson MR, Hanson KC, Crossin GT, Mathes MT, Lotto AG, Hruska KA, Olsson IC, Wagner GN, Thomson R, Hourston R, English KK, Larsson S, Shrimpton JM, Van der Kraak G (2008) Developing a mechanistic understanding of fish migrations by linking telemetry with physiology, behavior, genomics and experimental biology: an interdisciplinary case study on adult Fraser River sockeye salmon. Fisheries 33(7):321–338. doi:10.1577/1548-8446-33.7.321

    Google Scholar 

  48. Cooper AC (1982) Preliminary review of success of spawning of sockeye runs to the upper Fraser River in relation to water temperatures, timing and number of spawners. International Pacific Salmon Fisheries Commission, New Westminster

    Google Scholar 

  49. Cooperman MS, Hinch SG, Crossin GT, Olson I, Lotto A, Cooke SJ, Patterson DA, Farrell T, Welch DW (2009) Experimental test of the osmoregulation hypothesis for the abnormal migration timing of Fraser River Late-run sockeye. In: Hinch SG, Gardner J (eds) Conference on early migration and premature mortality in Fraser River late-run sockeye salmon: proceedings. Pacific Fisheries Resource Conservation Council, Vancouver. Available at: http://www.psc.org/pubs/LateRun/R-69_LateRunSockeyeConf_2009_final.pdf

  50. Cooperman MS, Hinch SG, Crossin GT, Cooke SJ, Patterson DA, Olsson I, Lotto AG, Welch DW, Shrimpton JM, Van der Kraak G, Farrell AP (2010) Effects of experimental manipulations of salinity and maturation status on the physiological condition and mortality of homing adult sockeye salmon held in a laboratory. Physiol Biochem Zool 83(3):459–472. doi:10.1086/650473

    PubMed  CAS  Article  Google Scholar 

  51. Cox SP, Hinch SG (1997) Changes in size at maturity of Fraser River sockeye salmon (Oncorhynchus nerka) (1952–1993) and associations with temperature. Can J Fish Aquat Sci 54(5):1159–1165. doi:10.1139/f97-009

    Google Scholar 

  52. Crossin GT, Hinch SG, Farrell AP, Higgs DA, Healey MC (2004) Somatic energy of sockeye salmon Oncorhynchus nerka at the onset of upriver migration: a comparison among ocean climate regimes. Fish Oceanogr 13(5):345–349. doi:10.1111/j.1365-2419.2004.00297.x

    Article  Google Scholar 

  53. Crossin GT, Hinch SG, Cooke SJ, Welch DW, Patterson DA, Jones SRM, Lotto AG, Leggatt RA, Mathes MT, Shrimpton JM, Van der Kraak G, Farrell AP (2008) Exposure to high temperature influences the behaviour, physiology, and survival of sockeye salmon during spawning migration. Can J Zool 86(2):127–140. doi:10.1139/Z07-122

    CAS  Article  Google Scholar 

  54. Crozier LG, Hendry AP, Lawson PW, Quinn TP, Mantua NJ, Battin J, Shaw RG, Huey RB (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol Appl 1(2):252–270. doi:0.1111/j.1752-4571.2008.00033.x

    Article  Google Scholar 

  55. Crozier LG, Scheuerell MD, Zabel RW (2011) Using time series analysis to characterize evolutionary and plastic responses to environmental change: a case study of a shift toward earlier migration date in sockeye salmon. Am Nat 178(6):755–773. doi:10.1086/662669

    PubMed  Article  Google Scholar 

  56. Davis MW (2002) Key principles for understanding fish bycatch discard mortality. Can J Fish Aquat Sci 59(11):1834–1843. doi:10.1139/f02-139

    Article  Google Scholar 

  57. Dempson JB, Furey G, Bloom M (2002) Effects of catch and release angling on Atlantic salmon, Salmo salar L., of the Conne River, Newfoundland. Fisheries Manag Ecol 9(3):139–147. doi:10.1046/j.1365-2400.2002.00288.x

    Article  Google Scholar 

  58. Donaldson LR, Foster FJ (1941) Experimental study of the effect of various water temperatures on the growth, food utilization, and mortality rates of fingerling sockeye salmon. Trans Am Fish Soc 70(1):339–346. doi:10.1577/1548-8659(1940)70[339:ESOTEO]2.0.CO;2

    Article  Google Scholar 

  59. Donaldson MR, Hinch SG, Patterson DA, Hills J, Thomas JO, Cooke SJ, Raby GD, Thompson LA, Robichaud D, English KK, Farrell AP (2011) The consequences of angling, beach seining, and confinement on the physiology, post-release behaviour and survival of adult sockeye salmon during upriver migration. Fish Res 108:133–141. doi:10.1016/j.fishres.2010.12.011

    Article  Google Scholar 

  60. Edmundson JA, Mazumder A (2001) Linking growth of juvenile sockeye salmon to habitat temperature in Alaskan lakes. Trans Am Fish Soc 130(4):644–662. doi:10.1577/1548-8659(2001)130<0644:LGOJSS>2.0.CO;2

    Article  Google Scholar 

  61. Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332(6025):109–112. doi:10.1126/science.1199158

    PubMed  CAS  Article  Google Scholar 

  62. Farley EV, Trudel M (2009) Growth rate potential of juvenile sockeye salmon in warmer and cooler years on the Eastern Bering Sea Shelf. J Mar Biol 2009:1–10. doi:10.1155/2009/640215

    Google Scholar 

  63. Farley EV, Murphy JM, Adkison M, Eisner L (2007) Juvenile sockeye salmon distribution, size, condition and diet during years with warm and cool spring sea temperatures along the eastern Bering Sea shelf. J Fish Biol 71:1145–1158. doi:10.1111/j.1095-8649.2007.01587.x

    Article  Google Scholar 

  64. Farley EV, Starovoytov A, Naydenko S, Heintz R, Trudel M, Guthrie C, Eisner L, Guyon JR (2011) Implications of a warming eastern Bering Sea for Bristol Bay sockeye salmon. ICES J Mar Sci 68(6):1138–1146. doi:10.1093/icesjms/fsr021

    Article  Google Scholar 

  65. Farrell AP, Hinch SG, Cooke SJ, Patterson DA, Crossin GT, Lapointe M, Mathes MT (2008) Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations. Physiol Biochem Zool 81(6):697–708. doi:10.1086/592057

    PubMed  CAS  Article  Google Scholar 

  66. Ferrari MR, Miller JR, Russell GL (2007) Modeling changes in summer temperature of the Fraser River during the next century. J Hydrol 342(3–4):336–346. doi:10.1016/j.jhydrol.2007.06.002

    Article  Google Scholar 

  67. Field DR, Reynolds JD (2011) Sea to sky: impacts of residual salmon-derived nutrients on estuarine breeding bird communities. Proc R Soc B 278:3081–3088. doi:10.1098/rspb.2010.2731

    PubMed  Article  Google Scholar 

  68. Finney BP, Gregory-Eaves I, Sweetman J, Dougas MSV, Smol JP (2000) Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290(5492):795–799. doi:10.1126/science.290.5492.795

    PubMed  CAS  Article  Google Scholar 

  69. Finney BP, Gregory-Eaves I, Douglas MSV, Smol JP (2002) Fisheries productivity in the northeastern Pacific Ocean over the past 2,200 years. Nature 416(6882):729–733. doi:10.1038/416729a

    PubMed  CAS  Article  Google Scholar 

  70. Fleming IA, Jensen AJ (2002) Fisheries: effects of climate change on the life cycles of salmon. In: Douglas I, Munn T (eds) Encyclopedia of global environmental change: causes and consequences of global environmental change, vol 3. Wiley, Chichester, pp 309–312

    Google Scholar 

  71. Foerster RE (1937) The relation of temperature to the seaward migration of young sockeye salmon (Oncorhynchus nerka). J Biol Board Can 3(5):421–438. doi:10.1139/f37-025

    Article  Google Scholar 

  72. Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404–420. doi:10.1038/hdy.2010.167

    PubMed  CAS  Article  Google Scholar 

  73. Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, New York, pp 1–98. doi:10.1016/S1546-5098(08)60146-6

    Google Scholar 

  74. Gale MK, Hinch SG, Eliason EJ, Cooke SJ, Patterson DA (2011) Physiological impairment of adult sockeye salmon in fresh water after simulated capture-and-release across a range of temperatures. Fish Res 112:85–95. doi:10.1016/j.fishres.2011.08.014

    Article  Google Scholar 

  75. Gilhousen P (1990) Prespawning mortalities of sockeye salmon in the Fraser River system and possible causal factors. Bulletin, vol 26. International Pacific Salmon Fisheries Commission, New Westminster

  76. Ginetz RM, Larkin PA (1976) Factors affecting rainbow trout (Salmo gairdneri) predation on migrant fry of sockeye salmon (Oncorhynchus nerka). J Fish Res Board Can 33(1):19–24. doi:10.1139/f76-003

    Article  Google Scholar 

  77. Gingerich AJ, Cooke SJ, Hanson KC, Donaldson MR, Hasler CT, Suski CD, Arlinghaus R (2007) Evaluation of the interactive effects of air exposure duration and water temperature on the condition and survival of angled and released fish. Fish Res 86:169–178. doi:10.1016/j.fishres.2007.06.002

    Article  Google Scholar 

  78. Goodlad JC, Gjernes TW, Brannon EL (1974) Factors affecting sockeye salmon (Oncorhynchus nerka) growth in four lakes of the Fraser River system. J Fish Res Board Can 31(5):871–892. doi:10.1139/f74-106

    Article  Google Scholar 

  79. Griswold RG, Koehler AE, Taki D (2011) Survival of endangered Snake River sockeye salmon smolts from three Idaho Lakes: relationships with parr size at release, parr growth rate, smolt size, discharge, and travel time. North Am J Fish Manage 31(5):813–825. doi:10(1080/02755947).2011.611421

    Article  Google Scholar 

  80. Hague MJ, Ferrari MR, Miller JR, Patterson DA, Russell GL, Farrell AP, Hinch SG (2011) Modelling the future hydroclimatology of the lower Fraser River and its impacts on the spawning migration survival of sockeye salmon. Global Change Biol 17:87–98. doi:10.1111/j.1365-2486.2010.02225.x

    Article  Google Scholar 

  81. Hampton SE, Romare P, Seiler DE (2006) Environmentally controlled daphnia spring increase with implications for sockeye salmon fry in Lake Washington. USA. J Plankton Res 28(4):399–406. doi:10.1093/plankt/fbi125

    Article  Google Scholar 

  82. Harrison XA, Blount JD, Inger R, Norris DR, Bearshop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80(1):4–18. doi:10.1111/j.1365-2656.2010.01740.x

    PubMed  Article  Google Scholar 

  83. Hartman WL, Heard WR, Drucker B (1967) Migratory behavior of sockeye salmon fry and smolts. J Fish Res Board Can 24(10):2069–2099. doi:10.1139/f67-171

    Article  Google Scholar 

  84. Healey M (2011) The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can J Fish Aquat Sci 68:718–737. doi:10.1139/F2011-010

    Article  Google Scholar 

  85. Helfield JM, Naiman RJ (2001) Effects of salmon-derived nutrients on riparian forest growth and implications for stream productivity. Ecology 82(9):2403–2409. doi:10.1890/0012-9658(2001)082[2403:EOSDNO]2.0.CO;2

    Article  Google Scholar 

  86. Henderson MA, Levy DA, Stockner JS (1992) Probable consequences of climate change on freshwater production of Adams River sockeye salmon (Oncorhynchus nerka). Geo J 28(1):51–59. doi:10.1007/BF00216406

    Google Scholar 

  87. Hendry AP, Hensleigh JE, Reisenbichler RR (1998) Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington. Can J Fish Aquat Sci 55(6):1387–1394. doi:10.1139/f98-020

    Article  Google Scholar 

  88. Hill AC, Stanford JA, Leavitt PR (2009) Recent sedimentary legacy of sockeye salmon (Oncorhynchus nerka) and climate change in an ultraoligotrophic, glacially turbid British Columbia nursery lake. Can J Fish Aquat Sci 66(7):1141–1152. doi:10.1139/F09-067

    CAS  Article  Google Scholar 

  89. Hinch SG, Gardner J (2009) Conference on early migration and premature mortality in Fraser River late-run sockeye salmon: proceedings. Pacific Fisheries Resource Conservation Council, Vancouver. Available at: http://www.psc.org/pubs/LateRun/R-69_LateRunSockeyeConf_2009_final.pdf

  90. Hinch SG, Healey MC, Diewert RE, Thomson KA, Hourston R, Henderson MA, Juanes F (1995) Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can J Fish Aquat Sci 52(12):2651–2659. doi:10.1139/f95-854

    Article  Google Scholar 

  91. Hodgson S, Quinn TP (2002) The timing of adult sockeye salmon migration into fresh water: adaptations by populations to prevailing thermal regimes. Can J Zool 80(3):542–555. doi:10.1139/Z02-030

    Article  Google Scholar 

  92. Hodgson S, Quinn TP, Hilborn R, Francis RC, Rogers DE (2006) Marine and freshwater climatic factors affecting interannual variation in the timing of return migration to fresh water of sockeye salmon (Oncorhynchus nerka). Fish Oceanogr 15(1):1–24. doi:10.1111/j.1365-2419.2005.00354.x

    Article  Google Scholar 

  93. Holland KN, Meyer CG, Dagorn LC (2009) Inter-animal telemetry: results from first deployment of acoustic ‘business card’ tags. Endang Species Res 10:287–293. doi:10.3354/esr00226

    Article  Google Scholar 

  94. Hruska KA, Hinch SG, Healey MC, Patterson DA, Larsson S, Farrell AP (2010) Influences of sex and activity level on physiological changes in individual adult sockeye salmon during rapid senescence. Physiol Biochem Zool 83(4):663–676. doi:10.1086/652411

    PubMed  CAS  Article  Google Scholar 

  95. Hsieh WW, Lee WG, Mysak LA (1991) Using a numerical model of the Northeast Pacific Ocean to study the interannual variability of the Fraser River sockeye salmon (Oncorhynchus Nerka). Can J Fish Aquat Sci 48(4):623–630. doi:10.1139/f91-080

    Article  Google Scholar 

  96. Hyatt KD, Stockwell MM, Rankin DP (2003) Impact and adaptation responses of Okanagan River sockeye salmon (Oncorhynchus nerka) to climate variation and change effects during freshwater migration: stock restoration and fisheries management implications. Can Water Resour J 28(4):689–713. doi:10.4296/cwrj2804689

    Article  Google Scholar 

  97. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Available at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm

  98. Irvine JR, Fukuwaka M (2011) Pacific salmon abundance trends and climate change. ICES J Mar Sci 68(6):1122–1130. doi:10.1093/icesjms/fsq199

    Article  Google Scholar 

  99. Ishida Y, Azumaya T, Fukuwaka M, Davis N (2002) Interannual variability in stock abundance and body size of Pacific salmon in the central Bering Sea. Prog Oceanogr 55(1–2):223–234. doi:0.1016/S0079-6611(02)00080-0

    Article  Google Scholar 

  100. Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2, acidified oceans. Mar Ecol Prog Ser 373:295–302. doi:10.3354/meps07823

    CAS  Article  Google Scholar 

  101. Jacob C, McDaniels T, Hinch S (2010) Indigenous culture and adaptation to climate change: sockeye salmon and the St’át’imc people. Mitig Adapt Strateg Glob Change 15:859–876. doi:10.1007/s11027-010-9244-z

    Article  Google Scholar 

  102. Jeffries KM, Hinch SG, Martins EG, Clark TD, Lotto AG, Patterson DA, Cooke SJ, Farrell AP, Miller KM (2012) Sex and proximity to reproductive maturity influence survival, final maturation, and blood physiology of Pacific salmon when exposed to high temperature during a simulated migration. Physiol Biochem Zool 85(1):62–73. doi:10.1086/663770

    PubMed  CAS  Article  Google Scholar 

  103. Keefer ML, Peery CA, Heinrich MJ (2008) Temperature-mediated en route migration mortality and travel rates of endangered Snake River sockeye salmon. Ecol Freshw Fish 17(1):136–145. doi:10.1111/j.1600-0633.2007.00267.x

    Article  Google Scholar 

  104. Kristianson G, Strongitharm D (2006) The evolution of recreational salmon fisheries in British Columbia. Pacific Fisheries Resource Conservation Council, Vancouver

    Google Scholar 

  105. Lee CG, Farrell AP, Lotto A, MacNutt MJ, Hinch SG, Healey MC (2003) The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J Exp Biol 206(18):3239–3251. doi:10.1242/jeb.00547

    PubMed  CAS  Article  Google Scholar 

  106. Levy DA (1992) Potential impacts of global warming on salmon production in the Fraser River watershed. Can Tech Rep Fish Aquat Sci 1889:1–96

    Google Scholar 

  107. Macdonald JS, Scrivener JC, Patterson DA, Dixon-Warren A (1998) Temperatures in aquatic habitats: the impacts of forest harvesting and the biological consequences to sockeye salmon incubation habitats in the interior of B.C. In: Brewin MK, Monita DMA (eds) Forest-fish conference: land management practices affecting aquatic ecosystems. Natural Resources Canada, Calgary, pp 313–324

    Google Scholar 

  108. Macdonald JS, Foreman MGG, Farrell T, Williams IV, Grout J, Cass A, Woodey JC, Enzenhofer H, Clarke WC, Houtman R, Donaldson EM, Barnes D (2000a) The influence of extreme water temperatures on migrating Fraser River sockeye salmon (Oncorhynchus nerka) during the 1998 spawning season. Can Tech Rep Fish Aquat Sci 2326:1–117

    Google Scholar 

  109. Macdonald JS, Wiliams IV, Woodey JC (2000b) The effects of in-river conditions on migrating sockeye salmon (Oncorhynchus nerka). Can Tech Rep Fish Aquat Sci 2315:39–45

    Google Scholar 

  110. Macdonald J, Patterson DA, Hague MJ, Guthrie IC (2010) Modeling the influence of environmental factors on spawning migration mortality for sockeye salmon fisheries management in the Fraser River, British Columbia. Trans Am Fish Soc 139(3):768–782. doi:10.1577/t08-223.1

    Article  Google Scholar 

  111. Mackas DL, Batten S, Trudel M (2007) Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Prog Oceanogr 75:223–252. doi:10.1016/j.pocean.2007.08.010

    Article  Google Scholar 

  112. Major RJ, Mighell JL (1967) Influence of Rocky Reach Dam and the temperature of the Okanagan River on the upstream migration of sockeye salmon. Fish Bull 66(1):131–147

    Google Scholar 

  113. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

    Article  Google Scholar 

  114. Markevich NB, Bilenskaya NI (1991) Viability and weight growth of sockeye salmon young (Oncorhynchus nerka) completing the early stages of embryogenesis at various temperatures. J Ichthyol 32(1):105–118

    Google Scholar 

  115. Martins EG, Hinch SG, Patterson DA, Hague MJ, Cooke SJ, Miller KM, Lapointe MF, English KK, Farrell AP (2011) Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser River sockeye salmon (Oncorhynchus nerka). Global Change Biol 17:99–114. doi:10.1111/j.1365-2486.2010.02241.x

    Article  Google Scholar 

  116. Martins EG, Hinch SG, Patterson DA, Hague MJ, Cooke SJ, Miller KM, Robichaud D, English KK, Farrell AP (2012) High river temperature reduces survival of sockeye salmon (Oncorhynchus nerka) approaching spawning grounds and exacerbates female mortality. Can J Fish Aquat Sci 69(2):330–342. doi:10.1139/F2011-154

    Article  Google Scholar 

  117. Martinson EC, Helle JH, Scarnecchia DL, Stokes HH (2008) Density-dependent growth of Alaska sockeye salmon in relation to climate-oceanic regimes, population abundance, and body size, 1925 to 1998. Mar Ecol Prog Ser 370:1–18. doi:10.3354/meps07665

    Article  Google Scholar 

  118. Martinson EC, Helle JH, Scarnecchia DL, Stokes HH (2009) Growth and survival of sockeye salmon (Oncorhynchus nerka) from Karluk Lake and River, Alaska, in relation to climatic and oceanic regimes and indices, 1922–2000. Fish Bull 107(4):488–500

    Google Scholar 

  119. Mathes MT, Hinch SG, Cooke SJ, Crossin GT, Patterson DA, Lotto AG, Farrell AP (2010) Effect of water temperature, timing, physiological condition, and lake thermal refugia on migrating adult Weaver Creek sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci 67(1):70–84. doi:10.1139/F09-158

    Article  Google Scholar 

  120. McDaniels T, Wilmot S, Healey M, Hinch S (2010) Vulnerability of Fraser River sockeye salmon to climate change: a life-cycle perspective using expert judgments. J Environ Manage 91:2771–2780. doi:0.1016/j.jenvman.2010.08.004

    PubMed  Article  Google Scholar 

  121. McKinnell S (1997) An unusual ocean climate in the Gulf of Alaska during the spring of 1997 and its effect on coastal migration of Fraser River sockeye. North Pacific Anadromous Fish Commission Documents, vol 282. North Pacific Anadromous Fish Commision, Nanaimo

  122. McKinnell S (2008) Fraser River sockeye salmon productivity and climate: a re-analysis that avoids an undesirable property of Ricker’s curve. Prog Oceanogr 77(2–3):146–154. doi:10.1016/j.pocean.2008.03.014

    Article  Google Scholar 

  123. McKinnell SM, Wood CC, Rutherford DT, Hyatt KD, Welch DW (2001) The demise of Owikeno Lake sockeye salmon. North Am J Fish Manage 21(4):774–791. doi:10.1577/1548-8675(2001)021<0774:TDOOLS>2.0.CO;2

    Article  Google Scholar 

  124. Melzner F, Gutowska MA, Lagenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6(10):2313–2331. doi:10.5194/bg-6-2313-2009

    CAS  Article  Google Scholar 

  125. Miller KA (2000) Pacific salmon fisheries: climate, information and adaptation in a conflict-ridden context. Clim Change 45:37–61. doi:10.1023/A:1005684815698

    Article  Google Scholar 

  126. Morrison J, Quick MC, Foreman MGG (2002) Climate change in the Fraser River watershed: flow and temperature projections. J Hydrol 263(1–4):230–244. doi:10.1016/S0022-1694(02)00065-3

    Article  Google Scholar 

  127. Mote PW, Salathé EP (2010) Future climate in the Pacific Northwest. Clim Change 102(1–2):29–50. doi:10.1007/s10584-010-9848-z

    Article  Google Scholar 

  128. Mueter FJ, Peterman RM, Pyper BJ (2002a) Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Can J Fish Aquat Sci 59(3):456–463. doi:10.1139/F02-020

    Article  Google Scholar 

  129. Mueter FJ, Ware DM, Peterman RM (2002b) Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north-east Pacific Ocean. Fish Oceanogr 11(4):205–218. doi:10.1046/j.1365-2419.2002.00192.x

    Article  Google Scholar 

  130. Mueter FJ, Pyper BJ, Peterman RM (2005) Relationships between coastal ocean conditions and survival rates of northeast Pacific salmon at multiple lags. Trans Am Fish Soc 134(1):105–119. doi:10.1577/T-04-033.1

    Article  Google Scholar 

  131. Murray CB, McPhail JD (1988) Effect of incubation temperature on the development of five species of Pacific salmon (Oncorhynchus) embryos and alevins. Can J Zool 66(1):266–273. doi:10.1139/z88-038

    Article  Google Scholar 

  132. Nadeau PS, Hinch SG, Hruska KA, Pon LB, Patterson DA (2010) The effects of experimental energy depletion on the physiological condition and survival of adult sockeye salmon (Oncorhynchus nerka) during spawning migration. Environ Biol Fishes 88(3):241–251. doi:10.1007/s10641-010-9635-8

    Article  Google Scholar 

  133. Naiman RJ, Bilby RE, Schindler DE, Helfield JM (2002) Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417. doi:10.1007/s10021-001-0083-3

    Article  Google Scholar 

  134. Naughton GP, Caudill CC, Keefer ML, Bjornn TC, Stuehrenberg LC, Peery CA (2005) Late-season mortality during migration of radio-tagged adult sockeye salmon (Oncorhynchus nerka) in the Columbia River. Can J Fish Aquat Sci 62(1):30–47. doi:10.1139/F04-147

    Article  Google Scholar 

  135. Newell JC, Fresh KL, Quinn TP (2007) Arrival patterns and movements of adult sockeye salmon in lake washington: Implications for management of an urban fishery. North Am J Fish Manage 27(3):908–917. doi:10.1577/M06-058.1

    Article  Google Scholar 

  136. Ostrovskii VI, Semenchenko NN (2002) Interannual variations of the body length in sockeye salmon Oncorhynchus nerka smolts of the Lake Kuril’skoe in relation to external factors. Russ J Mar Biol 28(1):40–46

    Article  Google Scholar 

  137. Parensky VA, Shevlyakov EA, Kovalev M (2002) Overcrowding of spawning areas with spawners of sockeye salmon Oncorhynchus nerka as a factor determining the discrete dates of larvae hatching and differentiation of juveniles by body size. J Ichthyol. 42(9):739–742

    Google Scholar 

  138. Patterson DA (2004) Relating the sockeye salmon (Oncorhynchus nerka) spawning migration experience with offspring fitness: a study of intergenerational effects. Master Thesis, Simon Fraser University, Burnaby

  139. Patterson DA, Macdonald JS, Hinch SG, Healey MC, Farrell AP (2004) The effect of exercise and captivity on energy partitioning, reproductive maturation and fertilization success in adult sockeye salmon. J Fish Biol 64(4):1039–1059. doi:10.1111/j.1095-8649.2004.0370.x

    Article  Google Scholar 

  140. Patterson DA, Macdonald JS, Skibo KM, Barnes DP, Guthrie I, Hills J (2007) Reconstructing the summer thermal history for the lower Fraser River, 1941 to 2006, and implications for adult sockeye salmon (Oncorhynchus nerka) spawning migration. Can Tech Rep Fish Aquat Sci 2724:1–43

    Google Scholar 

  141. Peterman RM, Dorner B (2011) Fraser River sockeye production dynamics. Cohen Comm Tech Rep 10:1–133

    Google Scholar 

  142. Peterman RM, Pyper BJ, Lapointe MF, Adkison MD, Walters CJ (1998) Patterns of covariation in survival rates of British Columbian and Alaskan sockeye salmon (Oncorhynchus nerka) stocks. Can J Fish Aquat Sci 55(11):2503–2517. doi:10.1139/f98-179

    Article  Google Scholar 

  143. Peterman RM, Marmorek D, Beckman B, Bradford M, Mantua N, Riddell BE, Scheuerell M, Staley K, Wieckowski JR, Winton JR, Wood CC (2010) Synthesis of evidence from a workshop on the decline of Fraser River sockeye. June 15–17, 2010. A report to the Pacific Salmon Commission, Vancouver

  144. Petersen JH, Kitchell JF (2001) Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon. Can J Fish Aquat Sci 58(9):1831–1841. doi:10.1139/cjfas-58-8-1831

    Article  Google Scholar 

  145. Pike RG, Spittlehouse DL, Bennett KE, Egginton VN, Tschaplinski PJ, Murdock TQ, Werner AT (2008) Climate change and watershed hydrology: part I—recent and projected changes in British Columbia. Streaml Wat Manag Bull 11(2):1–7

    Google Scholar 

  146. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77(8):1745–1779. doi:10.1111/j.1095-8649.2010.02783.x

    PubMed  Article  Google Scholar 

  147. Pyper BJ, Peterman RM (1999) Relationship among adult body length, abundance, and ocean temperature for British Columbia and Alaska sockeye salmon (Oncorhynchus nerka), 1967–1997. Can J Fish Aquat Sci 56(10):1716–1720. doi:10.1139/f99-167

    Google Scholar 

  148. Pyper BJ, Peterman RM, Lapointe MF, Walters CJ (1999) Patterns of covariation in length and age at maturity of British Columbia and Alaska sockeye salmon (Oncorhynchus nerka) stocks. Can J Fish Aquat Sci 56(6):1046–1057. doi:10.1139/f99-038

    Article  Google Scholar 

  149. Quinn TP, Adams DJ (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77(4):1151–1162. doi:10.2307/2265584

    Article  Google Scholar 

  150. Quinn TP, Hodgson S, Peven C (1997) Temperature, flow, and the migration of adult sockeye salmon (Oncorhynchus nerka) in the Columbia River. Can J Fish Aquat Sci 54(6):1349–1360. doi:10.1139/f97-038

    Article  Google Scholar 

  151. Quinn TP, Eggers DM, Clark JH, Rich HB (2007a) Density, climate, and the processes of prespawning mortality and egg retention in Pacific salmon (Oncorhynchus spp.). Can J Fish Aquat Sci 64(3):574–582. doi:10.1139/F07-035

    Article  Google Scholar 

  152. Quinn TP, Hodgson S, Flynn L, Hilborn R, Rogers DE (2007b) Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations. Ecol Appl 17(3):731–739. doi:10.1890/06-0771

    PubMed  Article  Google Scholar 

  153. Quinn TP, Doctor K, Kendall N, Rich HB Jr (2009) Diadromy and the life history of sockeye salmon: nature, nurture, and the hand of man. In: Haro A, Smith KL, Rulifson RA, Moffitt CM, Klauda RJ, Dadswell MJ, Cunjak RA, Cooper JE, Beal KL, Avery TS (eds) Challenges for diadromous fishes in a dynamic global environment. Am Fish Soc Symp 69:23–42

  154. Rand PS (2002) Modeling feeding and growth in Gulf of Alaska sockeye salmon: implications for high-seas distribution and migration. Mar Ecol Prog Ser 234:265–280. doi:10.3354/meps234265

    Article  Google Scholar 

  155. Rand PS (2011) Oncorhynchus nerka. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. Available at http://www.iucnredlist.org

  156. Rand PS, Hinch SG, Morrison J, Foreman MGG, MacNutt MJ, Macdonald JS, Healey MC, Farrell AP, Higgs DA (2006) Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser River sockeye salmon. Trans Am Fish Soc 135(3):655–667. doi:10.1577/T05-023.1

    Article  Google Scholar 

  157. Reddin DG, Downton P, Fleming IA, Hansen LP, Mahon A (2011) Behavioural ecology at sea of Atlantic salmon (Salmo salar L.) kelts from a Newfoundland (Canada) river. Fish Oceanogr 20:174–191. doi:10.1111/j.1365-2419.2011.00576.x

    Google Scholar 

  158. Reed TE, Martinek G, Quinn TP (2010) Lake-specific variation in growth, migration timing and survival of juvenile sockeye salmon Oncorhynchus nerka: separating environmental from genetic influences. J Fish Biol 77:692–705. doi:10.1111/j.1095-8649.2010.02711.x

    PubMed  CAS  Google Scholar 

  159. Reed TE, Schindler DE, Hague MJ, Patterson DA, Meir E, Waples RS, Hinch SG (2011) Time to evolve? Potential evolutionary responses of Fraser River sockeye salmon to climate change and effects on persistence. PLoS ONE 6(6):e20380. doi:10.1371/journal.pone.0020380

    PubMed  CAS  Article  Google Scholar 

  160. Reichardt MR (2005) The effects of climate variability on early marine growth and age at maturity of Fraser River sockeye salmon (Oncorhynchus nerka). Master Thesis, Royal Roads University, Colwood

  161. Rich HB, Quinn TP, Scheuerell MD, Schindler DE (2009) Climate and intraspecific competition control the growth and life history of juvenile sockeye salmon (Oncorhynchus nerka) in Iliamna Lake. Alaska. Can J Fish Aquat Sci 66(2):238–246. doi:10.1139/F08-210

    Article  Google Scholar 

  162. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. doi:10.1093/icesjms/fsn028

    Article  Google Scholar 

  163. Ricker WE (1981) Changes in the average size and average age of Pacific salmon. Can J Fish Aquat Sci 38(12):1636–1656. doi:10.1139/f81-213

    Article  Google Scholar 

  164. Rogers DE (1973) Abundance and size of juvenile sockeye salmon, Oncorhynchus nerka, and associated species in Lake Aleknagik, Alaska, in relation to their environment. Fish Bull 71(4):1061–1075

    Google Scholar 

  165. Rogers DE, Ruggerone GT (1993) Factors affecting marine growth of Bristol Bay sockeye salmon. Fish Res 18(1–2):89–103. doi:10.1016/0165-7836(93)90042-6

    Article  Google Scholar 

  166. Rogers LA, Schindler DE (2011) Scale and the detection of climatic influences on the productivity of salmon populations. Global Change Biol 17:2546–2558. doi:10.1111/j.1365-2486.2011.02415.x

    Article  Google Scholar 

  167. Rogers RA, Stewart C (1997) Prisoners of their histories: Canada-U.S. conflicts in the Pacific salmon fishery. Am Rev Can Stud 27(2):253–269. doi:10.1080/02722019709481499

    Article  Google Scholar 

  168. Roscoe DW, Hinch SG, Cooke SJ, Patterson DA (2011) Fishway passage and post-passage mortality of up-river migrating sockeye salmon in the Seton River, British Columbia. River Res Appl 27(6):693–705. doi:10.1002/rra.1384

    Article  Google Scholar 

  169. Ruggerone GT, Farley E, Nielsen J, Hagen P (2005) Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscha) and the 1977 ocean regime shift. Fish Bull 103(2):355–370

    Google Scholar 

  170. Ruggerone GT, Nielsen JL, Bumgarner J (2007) Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955–2002. Deep Sea Res Part II 54(23–26):2776–2793. doi:10.1016/j.dsr2.2007.08.016

    Article  Google Scholar 

  171. Sandblom E, Clark TD, Hinch SG, Farrell AP (2009) Sex-specific differences in cardiac control and hematology of sockeye salmon (Oncorhynchus nerka) approaching their spawning grounds. Am J Physiol 297:R1136–R1143. doi:10.1152/ajpregu.00363.2009

    CAS  Article  Google Scholar 

  172. Scheuerell MD, Schindler DE (2003) Diel vertical migration by juvenile sockeye salmon: empirical evidence for the antipredation window. Ecology 84(7):1713–1720. doi:10.1890/0012-9658(2003)084[1713:DVMBJS]2.0.CO;2

    Article  Google Scholar 

  173. Schindler DE, Rogers DE, Scheuerell MD, Abrey CA (2005) Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86(1):198–209. doi:10.1890/03-0408]

    Article  Google Scholar 

  174. Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited population. Nature 465:609–613. doi:10.1038/nature09060

    PubMed  CAS  Article  Google Scholar 

  175. Shelbourn JE, Brett JR, Shirahata S (1973) Effect of temperature and feeding regime on the specific growth rate of sockeye salmon fry (Oncorhynchus nerka), with a consideration of size effect. J Fish Res Board Can 30(8):1191–1194. doi:10.1139/f73-189

    Article  Google Scholar 

  176. Steen RP, Quinn TP (1999) Egg burial depth by sockeye salmon (Oncorhynchus nerka): implications for survival of embryos and natural selection on female body size. Can J Zool 77(5):836–841. doi:10.1139/z99-020

    Google Scholar 

  177. Sylvester JR (1972) Effect of thermal stress on predator avoidance in sockeye salmon. J Fish Res Board Can 29(5):601–603. doi:10.1139/f72-103

    Article  Google Scholar 

  178. Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98(1–3):185–207. doi:10.1016/0044-8486(91)90383-I

    Article  Google Scholar 

  179. Taylor SG (2008) Climate warming causes phenological shift in pink salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Global Change Biol 14:229–235. doi:10.1111/j.1365-2486.2007.01494.x

    Article  Google Scholar 

  180. Thomson RE, Hourston RAS (2011) A matter of timing: the role of ocean conditions in the initiation of spawning migration by late-run Fraser River sockeye salmon (Oncorhynchus nerka). Fish Oceanogr 20(1):47–65. doi:10.1111/j.1365-2419.2010.00565.x

    Article  Google Scholar 

  181. Thorne RE, Ames JJ (1987) A note on variability of marine survival of sockeye salmon (Oncorhynchus nerka) and effects of flooding on spawning success. Can J Fish Aquat Sci 44(10):1791–1795. doi:10.1139/f87-222

    Article  Google Scholar 

  182. Tierney KB, Farrell AP (2004) The relationships between fish health, metabolic rate, swimming performance and recovery in return-run sockeye salmon, Oncorhynchus nerka (Walbaum). J Fish Dis 27(11):663–671. doi:10.1111/j.1365-2761.2004.00590.x

    PubMed  CAS  Article  Google Scholar 

  183. Tully JP, Dodimead AJ, Tabata S (1960) An anomalous increase of temperature in the ocean off the Pacific Coast of Canada through 1957 and 1958. J Fish Res Board Can 17(1):61–80. doi:10.1139/f60-005

    Google Scholar 

  184. Wagner GN, Hinch SG, Kuchel LJ, Lotto A, Jones SRM, Patterson DA, Macdonald JS, Van der Kraak G, Shrimpton M, English KK, Larsson S, Cooke SJ, Healey MC, Farrell AP (2005) Metabolic rates and swimming performance of adult Fraser River sockeye salmon (Oncorhynchus nerka) after a controlled infection with Parvicapsula minibicornis. Can J Fish Aquat Sci 62(9):2124–2133. doi:10.1139/F05-126

    Article  Google Scholar 

  185. Welch DW, Chigirinsky AI, Ishida Y (1995) Upper thermal limits on the oceanic distribution of Pacific salmon (Oncorhynchus spp.) in the spring. Can J Fish Aquat Sci 52(3):489–503. doi:10.1139/f95-050

    Article  Google Scholar 

  186. Welch DW, Ishida Y, Nagasawa K (1998) Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): long-term consequences of global warming. Can J Fish Aquat Sci 55(4):937–948. doi:10.1139/f98-023

    Article  Google Scholar 

  187. Welch DW, Melnychuk MC, Payne JC, Rechisky EL, Porter AD, Jackson GD, Ward BR, Vincent SP, Wood CC, Semmens J (2011) In situ measurement of coastal ocean movements and survival of juvenile Pacifi salmon. Proc Natl Acad Sci 108(21):8708–8713. doi:10.1073/pnas.1014044108

    PubMed  CAS  Article  Google Scholar 

  188. Wilkie MP, Davidson K, Brobbel MA, Kieffer JD, Booth RJ, Bielak AT, Tufts BL (1996) Physiology and survival of wild Atlantic salmon following angling in warm summer waters. Trans Am Fish Soc 125(4):572–580. doi:10.1577/1548-8659(1996)125<0572:PASOWA>2.3.CO;2

    CAS  Article  Google Scholar 

  189. Winder M, Schindler DE (2004a) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85(8):2100–2106. doi:10.1890/04-0151

    Article  Google Scholar 

  190. Winder M, Schindler DE (2004b) Climate effects on the phenology of lake processes. Global Change Biol 10:1844–1856. doi:10.1111/j.1365-2486.2004.00849.x

    Article  Google Scholar 

  191. Wood CC, Welch DW, Godbout L, Cameron J (2012) Marine migratory behavior of hatchery-reared anadromous and wild non-anadromous sockeye salmon revealed by acoustic tags. Am Fish Soc Symp 76:289–311

    Google Scholar 

Download references

Acknowledgments

We thank Ken Ashley, Eric Taylor and two anonymous reviewers for comments. Financial support for this work was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to SGH, a NSERC Strategic Grant to SGH and SJC, a Pacific Salmon Commission Southern Endowment Fund Grant to SGH and DAP, and a grant through the Centre of Excellence for Aquatic Habitat Research to DAP. SJC is supported by the Canada Research Chairs Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo G. Martins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martins, E.G., Hinch, S.G., Cooke, S.J. et al. Climate effects on growth, phenology, and survival of sockeye salmon (Oncorhynchus nerka): a synthesis of the current state of knowledge and future research directions. Rev Fish Biol Fisheries 22, 887–914 (2012). https://doi.org/10.1007/s11160-012-9271-9

Download citation

Keywords

  • Anadromous salmon
  • Climate warming
  • Cumulative impacts
  • Global warming
  • Salmonids
  • Thermal effects