Advertisement

Reviews in Fish Biology and Fisheries

, Volume 22, Issue 2, pp 519–526 | Cite as

Invasion, dispersion and hybridization of fish associated to river transposition: karyotypic evidence in Astyanaxbimaculatus group” (Characiformes: Characidae)

  • Wellington Adriano Moreira Peres
  • Luiz Antonio Carlos Bertollo
  • Paulo Andreas Buckup
  • Daniel Rodrigues Blanco
  • Daniel Luis Zanella Kantek
  • Orlando Moreira-Filho
Research Paper

Abstract

The Astyanax species of the bimaculatus group include morphologically similar representatives that share the same color pattern, corresponding to at least 20 species. Specimens from the São Francisco River basin and from the Grande River (Upper Paraná basin) are included in this group. In the early 1960’s, the Piumhi River, an original tributary of the Grande River, was transposed to the São Francisco River basin due to the construction of the Furnas Hydroelectric Power, in the state of Minas Gerais, Brazil. In this context, we characterized representatives of the bimaculatus group from both basins and from the transposition region of the Piumhi River, using chromosome characteristics obtained by conventional analyzes and fluorescence in situ hybridization with rDNA probes. All the analyzed specimens presented 2n = 50 chromosomes and similar localization of the nucleolus organizer regions (Ag-NORs), 18S rDNA and 5S rDNA sites. However, diagnostic chromosome differences were detected concerning the number of submetacentric and acrocentric chromosomes in the karyotypes, making possible the characterization of five distinct karyotypes (Cytotypes A–E), where the specimens from the São Francisco and from the Grande River correspond to Cytotypes A and B, respectively. In addition, these two Cytotypes were sympatrically found in the Piumhi River with specimens carrying a clear intermediate karyotype (Cytotype C), as well as with others harboring different karyotypes (Cytotypes D and E). Our data indicate that Cytotypes A and B probably diverged from each other during the prior geographic isolation. However, despite their chromosomal differentiations, they still maintain a close relationship which allows interbreeding and the formation of a secondary hybrid zone, due to the breakdown of the geographic isolation.

Keywords

Fish Chromosome polymorphism Isolation breakdown Hybrid zone 

Notes

Acknowledgments

The authors thank to Luis Henrique da Silva and Pedro Luis Gallo for the help in the fish collections; to the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA—License number 10538-1) and Instituto Estadual de Florestas (IEF/MG) for the collection’ authorizations. This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Proc. 05/58630-3) and by Conselho Nacional de Desenvolvimento Científico e Tenoclógico—CNPq, through research projects granted to OMF, LACB and PAB.

References

  1. Alberdi AJ, Fenocchio AS (1997) Karyotypes of five Tetragonopterinae species (Pisces, Characidae) from Argentina. Cytologia 62:171–176CrossRefGoogle Scholar
  2. Almeida-Toledo LF, Ozouf-Costaz C, Foresti F, Bonillo C, Porto-Foresti F, Daniel-Silva MFZ (2002) Conservation of the 5S bearing chromosome pair and co-localization with major rDNA clusters in five species of Astyanax (Pisces, Characidae). Cytogenet Genome Res 97:229–233PubMedCrossRefGoogle Scholar
  3. Bellafronte E, Moreira-Filho O, Vicari MR, Artoni RF, Bertollo LAC, Margarido VP (2010) Cytogenetic identification of invasive fish species following connections between hydrographic basins. Hydrobiologia 649:347–354CrossRefGoogle Scholar
  4. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Braz J Genet 1:103–120Google Scholar
  5. Blanco DR, Lui RL, Bertollo LAC, Diniz D, Moreira-Filho O (2010) Characterization of invasive fish species in a river transposition region: evolutionary chromosome studies in the genus Hoplias (Characiformes, Erythrinidae). Rev Fish Biol Fish 20:1–8CrossRefGoogle Scholar
  6. Buckup PA (2011) The Eastern Brazilian shield. In: Albert JS, Reis RE (eds) Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, pp 203–210Google Scholar
  7. Daniel-Silva MFZ (2001) Análises citogenéticas comparativas em Characidae (Pisces, Characiformes). PhD Thesis, Instituto de Biociências, Universidade de São PauloGoogle Scholar
  8. Domingues MS, Vicari MR, Abilhoa V, Wamser JP, Cestari MM, Bertollo LAC, Almeida MC, Artoni RF (2007) Cytogenetic and comparative morphology of two allopatric populations of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei: Characidae) from upper Paraná basin. Neotrop Ichthyol 5:37–44CrossRefGoogle Scholar
  9. Eigenmann CH (1921) The American Characidae. Mem Mus Comp Zool 43(3):209–310; pl., 30–32, 40–55, 61, 62, 64, 66, 69, 85, 87, 89, 92Google Scholar
  10. Fernandes CA, Martins-Santos IC (2004) Cytogenetic studies in two populations of the Astyanax altiparanae (Pisces, Characiformes). Hereditas 141:328–332PubMedCrossRefGoogle Scholar
  11. Fernandes CA, Martins-Santos IC (2006) Mapping of the 18S and 5S ribosomal RNA genes in Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae) from the Upper Paraná River basin, Brazil. Genet Mol Biol 29:464–468CrossRefGoogle Scholar
  12. Froese R, Pauly D (eds) (2011) FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2011)
  13. Garutti V, Britski HA (2000) Descrição de uma espécie nova de Astyanax (Teleostei, Characidae) da bacia do alto rio Paraná e considerações sobre as demais espécies do gênero na bacia. Comun Mus Ciênc PUCRS. Série Zoologia 13:65–88Google Scholar
  14. Hatanaka T, Galetti PM Jr (2004) Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus, Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122:239–244PubMedCrossRefGoogle Scholar
  15. Howell WM, Black DA (1980) Controlled silver staining of Nucleolus Organizer Regions with protective colloidal developer: a one-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  16. Jin SM, Toledo V (1975) Citogenética de Astyanax fasciatus e Astyanax bimaculatus (Characidae, Tetragonopterinae). Ciênc Cult 27:1122–1124Google Scholar
  17. Jorge LC, Moreira-Filho O (2001) Estudios citogenéticos en Astyanax bimaculatus (Pisces, Characidae) del río Paraná, Argentina. Ictiologia 9(1/2):21–24Google Scholar
  18. Kantec DLZ, Peres WAM, Buckup PA, Moreira-Filho O (2009) Cytogenetic of Imparfinis schubarti (Siluriformes; Heptapteridae) from the Piumhi drainage, a diverted river in Minas Gerais State, Brazil. Zoologia 26:733–738Google Scholar
  19. Levan A, Fredga KE, Sandberg HA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  20. Mallet J (2007) Hybrid speciation. Nature 446:279–283PubMedCrossRefGoogle Scholar
  21. Martins C, Galetti PM Jr (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44:903–910PubMedGoogle Scholar
  22. Melo FAG (2001) Revisão taxonômica das espécies do gênero Astyanax Baird e Girard 1854 (Teleostei, Characiformes, Characidae) da região da Serra dos Órgãos. Arq Mus Nac Rio de Janeiro 59:1–46Google Scholar
  23. Moreira-Filho O, Buckup PA (2005) A poorly known case of watershed transposition between the São Francisco and Upper Paraná River basins. Neotrop Ichthyol 3:445–448CrossRefGoogle Scholar
  24. Morelli S, Bertollo LAC, Foresti F, Moreira-Filho O, Toledo-Filho SA (1983) Cytogenetic considerations on the genus Astyanax (Pisces, Characidae). I. Karyotypic variability. Caryologia 36:235–244Google Scholar
  25. Pacheco RB, Giuliano-Caetano L, Dias AL (2001) Cytotypes and multiples NORs in an Astyanax altiparanae population (Pisces, Tetragonopterinae). Chromosome Sci 5:109–114Google Scholar
  26. Paganelli HH (1990) Diversidade cromossômica no gênero Astyanax, com especial referência a A. bimaculatus (Linnaeus 1758): Considerações citotaxonômicas e evolutivas. Master Thesis, Universidade Federal de São CarlosGoogle Scholar
  27. Peres WAM, Buckup PA, Kantek DLZ, Bertollo LAC, Moreira-Filho O (2009) Chromosomal evidence of downstream dispersal of Astyanax fasciatus (Characiformes, Characidae) associated with river shed interconnection. Genetica 137:305–311PubMedCrossRefGoogle Scholar
  28. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938PubMedCrossRefGoogle Scholar
  29. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Wellington Adriano Moreira Peres
    • 1
  • Luiz Antonio Carlos Bertollo
    • 4
  • Paulo Andreas Buckup
    • 2
  • Daniel Rodrigues Blanco
    • 4
  • Daniel Luis Zanella Kantek
    • 3
  • Orlando Moreira-Filho
    • 4
  1. 1.Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis-IBAMACanaranaBrazil
  2. 2.Departamento de Vertebrados, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto Chico Mendes de Conservação da Biodiversidade—ICMBioEstação Ecológica de TaiamãCáceresBrazil
  4. 4.Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations