Skip to main content
Log in

First global approach: morphological and biological variability in a genetically homogeneous population of the European pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic coast

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The European pilchard Sardina pilchardus represents the most commercially relevant fisheries resource in many countries bordering north Atlantic coasts and the Mediterranean Sea, being especially significant along the coast of Morocco. The continuous exploitation of this pelagic species for several decades places Morocco as the leader in sardine production. However, the conditions of exploitation of this resource underwent a great change during the last recent years. In order to identify the populations of the European pilchard sardine (Sardina pilchardus, Walbaum, 1792) in the Atlantic coast of Morocco and Spain, we have combined the truss network data to conduct multivariate analysis with biologic parameters and genetic analysis based on Microsatellite and mitochondrial control region data. Sardine morphometrics data truss variables from 10 samples spanning the Atlantic coast of Morocco were analysed by multivariate analysis. Thirteen morphometric measurements and some biological parameters such as the sex and the age of fishes were made for each individual. Discriminant analysis on size-corrected truss variables and cluster analysis of mean fishes shape using landmark data indicate, that the shape of north Moroccan sardines is distinct from the shape of sardines from south Morocco. However the analysis of the mitochondrial region and four microsatellites loci (Sp2, Sp7, Sp8 and SpI5) demonstrated an homogeneity population in the Moroccan Atlantic coast, with a low but significant genetic differentiation, which followed an isolation-by-distance pattern according to Mantel test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad R, Giraldez A (1993) Reproduccion, factor de condicion y talla de primer madurez de la sardina, Sardina pilchardus (Walb.), del litoral de Malaga, mar de Alboran (1989 a 1992). Bol Inst Esp Oceano 9(1):145–155

    Google Scholar 

  • Allendorf FW, Ryman N, Utter F (1987) Genetics and fishery management: past, present and future in population genetics and fisheries management. In: Ryman N, Utter F (eds) University of Washington Press, Seattle and London, pp 1–20

  • Amenzoui K, Ferhan-Tachinante F, Yahyaoui A, Kifani S, Mesfioui AH (2006) Analysis of the cycle of reproduction of Sardina pilchardus (Walbaum, 1792) off the Moroccan Atlantic coast. C R Biol 329(11):892–901

    Article  PubMed  Google Scholar 

  • Andreu B (1969) Las branquiespinas en la caracterización de las poblaciones de Sardina pilchardus. Invest Pesq Bar 33:425–607

    Google Scholar 

  • Atarhouch T, Rüber L, Gonzalez EG, Albert EM, Rami M, Dakkak A, Zardoya R (2006) Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus). Mol Phylogenet Evol 39:373–383

    Article  PubMed  CAS  Google Scholar 

  • Atarhouch T, Rami M, Naciri M, Dakkak A (2007) Genetic population structure of sardine (Sardina pilchardus) off Morocco detected with intron polymorphism (EPIC-PCR). Mar Biol 150:521–528

    Article  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bandelt H-J, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Barkova NA, Chukhgalter OA, Scherbitch LV (2001) Problèmes structuraux des populations de sardines (Sardina pilcardus, Walbaum, 1792) habitant au large des côtes de l’Afrique du Nord-Ouest. In: Groupe de Travail de la FAO sur l’évaluation des petits pélagiques au large de l’Afrique Nord-Occidentale Nouadhibou, Mauritanie, 24–31 mars 2001 (657):120–133

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F, Genetix version 4.02. (2000) un logiciel pour l’analyse des données en génétique des populations, université Montpellier-2, France, 2000, http://www.univmontp2.fr/∼genetix/genetix.htm

  • Belveze H (1984) Biologie et dynamique des populations de la sardine (Sardina pilchardus Walb.) peuplant les côtes atlantiques marocaines et proposition pour un aménagement des pêcheries pour un aménagement des pêcheries. Thèse. Doct. Univ. Bret. Occident

  • Belveze H, Erzini K (1983) The influence of hyroclimatic factors on the availability of the sardine (Sardina pilchardus, Walbaum) in the Moroccan Atlantic fishery. FAO Fish Rep 291:285–328

    Google Scholar 

  • Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10:1179–1196

    Article  PubMed  CAS  Google Scholar 

  • Carreras-Carbonell J, Macpherson E, Pascual M (2006) Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. Mol Ecol 15:3527–3539

    Article  PubMed  CAS  Google Scholar 

  • Cheng QT, Zheng BS (1987) Systematic searches of fishes in China. Science Press, Beijing

    Google Scholar 

  • Chlaida M, Kifani S, Lenfant P, Ouragh L (2006) First approach for the identification of sardine populations Sardina pilchardus (Walbaum 1792) in the Moroccan Atlantic by allozymes. Marine Biol 149(2):169–175

    Article  CAS  Google Scholar 

  • Clayton JW (1986) The stock concept and the uncoupling of organismal and molecular evolution. Can J Fish Aquat Sci 38:1515–1522

    Article  Google Scholar 

  • Donaldson KA, Wilson RR (1999) Amphi-panamaic geminates of snook (Percoidei-Centropomidae) provide a calibration of divergence rates in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213

    Article  PubMed  CAS  Google Scholar 

  • Durand JD, Collet A, Chow S, Guinand B, Borsa P (2005) Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol 147:313–322

    Article  CAS  Google Scholar 

  • Elliott NG, Haskard K, Koslow JA (1995) Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J Fish Biol 46:202–220

    Article  Google Scholar 

  • Ettahiri O, Berraho A, Vidy G, Ramdani M, Do Chi T (2003) Observation on the spawning of Sardina and Sardinella off the south Moroccan Atlantic coast (21–26°N). Fish Res 60:207–222

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fage L (1920) Engraulidaee Clupeidae. Report on the Danish oceanographic expeditions 1908 and 1910 to Mediterranean and Adjacent Seas. 2. Biology

  • FAO (2001) Report of the FAO working group on the assessment of small pelagic fish off North-west Africa. FAO Fisheries Report, 657

  • Freon P, Stequert B (1982) Note sur la présence de Sardina pilchardus (Walb.) au Sénégal: étude de la biométrie et interprétation. Rapports et Procès-verbaux des Réunions du Conseil Internationale de l’Exploration de la Mer. 180:345–349

  • Fu Y-X (1997) Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Furnestin J (1945) Contribution à l’étude biologique de la Sardine atlantique (Sardina pilchardus WALB). Rev Trav Off Pêches Marit 13(1–4):221–386

    Google Scholar 

  • Gaggiotti OE, Vetter RD (1999) Effect of life history strategy, environmental variability, and over-exploitation on the genetic diversity of pelagic fish populations. Can J Fish Aquat Sci 56:1376–1388

    Google Scholar 

  • Goldstein DB, Roemer GW, Smith DA, Reich DE, Bergman A, Wayne R (1999) The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics 151:797–801

    PubMed  CAS  Google Scholar 

  • Gonzalez EG, Zardoya R (2007) Isolation and characterization of polymorphic microsatellites for the sardine, Sardina pilchardus (Clupleidae). Mol Ecol Notes 7:519–521

    Article  CAS  Google Scholar 

  • Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hauser L, Turan C, Carvalho GR (2001) Haplotype frequency distribution and discriminatory power of two mtDNA fragments in a marine pelagic teleost (Atlantic herring, Clupea harengus). Heredity 87:1–10

    Article  Google Scholar 

  • Hey J, Won YJ, Sivasundar A, Nielsen R, Markert JA (2004) Using nuclear haplotypes with microsatellites to study gene flow between recently separated Cichlid species. Mol Ecol 13:909–919

    Article  PubMed  CAS  Google Scholar 

  • ICES (1997) Report of the workshop on Sardine Otolith age reading. ICES C.M. 1997/H: 7

  • ICES (2000) Report of the working group on the assessment of Mackerel, Horse Mackerel, Sardine, and Anchovy. ICES C.M./ACFM

  • Kifani S (1995) Approche spatio-temporelle des relations hydroclimat- dynamique des espéces pélagiques en région d’upwelling: cas de la sardine du stock central marocain. Université de Bretagne Occidentale, France

    Google Scholar 

  • Kifani S (1998) Climate dependent fluctuations of the Moroccan sardine and their impact on fisheries. In: Durand Marie-Hélène, Cury Philippe, Mendelssohn R, Roy Claude, Bakun A, Pauly D (eds) Global versus local changes in upwelling system. ORSTOM, Paris, pp 235–248 (Colloques et Séminaires). ISBN 2-7099-1389-5

  • Knutsen H, Jorde PE, André C, Stenseth NC (2003) Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385–394

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci 86(16):6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Lee W-J, Conroy W, Howell H, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  PubMed  CAS  Google Scholar 

  • Lluch-Belda D, Lluch-Cota DB, Hernandez-Vaskez arid S, Salinas-Zavala CA (1992) Sardine population expansion in eastern boundary systems of the Pacific Ocean as related to sea surface temperature. 1n: Payne AIL, Brink KH, Mann KH, Hilboni R (eds) Benguela trophic fuiictioning. S. gfi: J. Mar. Sci, vol 12, pp 147–155

  • McMillan WO, Palumbi SR (1997) Rapid rate of control-region evolution in Pacific butterfly fishes (Chaetodontidae). J Mol Evol 45:473–484

    Article  PubMed  CAS  Google Scholar 

  • Naciri M, Lemaire C, Borsa P, Bonhomme F (1999) Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J Hered 90:591–596

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Norusis MJ (1997) SPSS Base7.5 for windows user’s guide. SPSS Inc., Chicago, p 463

    Google Scholar 

  • Olivar MP, Salat J, Palomera I (2001) Comparative study of spatial distribution patterns of the early stages of anchovy and pilchard in the NW Mediterranean Sea. Mar Ecol Prog Ser 217:111–120

    Article  Google Scholar 

  • O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13:1799–1814

    Article  PubMed  Google Scholar 

  • Parrish RH, Serra R, Grant WS (1989) The monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeography. Can J Fish Aquat Sci 41:414–422

    Google Scholar 

  • Ramon MM, Castro JA (1997) Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea. Heredity 78:520–528

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reist J (1985) An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can J Zool 63:1429–1439

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic diverences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Ruzzante DE, Mariani S, Bekkevold D, Andre C, Mosegaard H, Clausen LAW, Dahlgren TG, Hutchinson WF, Hatfield EMC, Torstensen E, Brigham J, Simmonds EJ, Laikre L, Larsson LC, Stet RJM, Ryman N, Carvalho GR (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc Natl Acad Sci USA 273:1459–1464

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory. University of Geneva, Geneva

    Google Scholar 

  • Schwartzlose R, Alheit J, Bakun A, Baumgartner T, Cloete R, Crawford R, Fletcher W, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota S, MacCall A, Matsuura Y, Nevarez-Martínez M, Parrish R, Roy C, Serra R, Shust K, Ward M, Zuzunaga J (1999) Worldwide large-scale fluctuations of sardine and anchovy populations. S Afr J Mar Sci 21:289–347

    Article  Google Scholar 

  • Silva A (2003) Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES J Mar Sci 60:1352–1360

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    PubMed  CAS  Google Scholar 

  • Smith PJ, Jamieson A (1986) Stock discreteness in herrings: a conceptual revolution. Fish Res 4:223–234

    Article  Google Scholar 

  • Spanakis E, Tsimenides N, Zouros E (1989) Genetic differences between populations of sardine, Sardina pilchardus, and the anchovy, Engraulis encrasicolus, in the Aegean and Ionian Seas. J Fish Biol 35:417–437

    Article  Google Scholar 

  • Strauss RE, Bookstein FL (1982) The truss: body form reconstructions in morphometrics. Syst Zool 31:113–135

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in Wnite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tajima F (1993) Measurement of DNA polymorphism. In: Takahata M, Clark AG (eds) Mechanisms of molecular evolution. Sinauer Associates, Sunderland, MA, pp 37–59

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin J, Higgins DG (1997) The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tinti F, di Nunno C, Guarniero I, Talenti M, Tommasini S, Fabbri E, Piccinetti C (2002) Mitochondrial DNA sequence variation suggests the lack of genetic heterogeneity in the Adriatic and Ionian stocks of Sardina pilchardus. Mar Biotechnol 4:163–172

    Article  PubMed  CAS  Google Scholar 

  • Tudela S (1999) Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fisheries Research (42):229–243

  • Turan C, Erguden D, Gurlek M, Basusta N, Turan F (2004a) Morphometric structuring of Anchovy (Engraulis encrasicolus L.) in the Black, Aegean and Northeastern Mediterranean Seas. Turk J Vet Anim Sci 28:865–871

    Google Scholar 

  • Turan C, Erguden D, Turan F, Gurlek M (2004b) Genetic and morphologic structure of Liza abu (Heckel, 1843) populations from the rivers Orontes, Euphrates and Tigris. Turk J Vet Anim Sci (28):729–734

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P, MICRO-CHECKER (2004) Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004(4):535–538

    Article  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 41(2):1358–1370

    Article  Google Scholar 

  • Whitehead PJ, FAO (1985) species catalogue. Clupeoid fishes of the world (suborder Clupeioidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1—Chirocentridae, Clupeidae and. Pristigasteridae 125:1–303

    Google Scholar 

  • Wimberger PH (1992) Plasticity of fish body shape-the effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linn Soc 45:197–218

    Article  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. 2: the theory of gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92(4):371–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tarik Baibai or Abdelaziz soukri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baibai, T., Oukhattar, L., Quinteiro, J.V. et al. First global approach: morphological and biological variability in a genetically homogeneous population of the European pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic coast. Rev Fish Biol Fisheries 22, 63–80 (2012). https://doi.org/10.1007/s11160-011-9223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-011-9223-9

Keywords

Navigation