Skip to main content
Log in

Microflora in fish digestive tract plays significant role in digestion and metabolism

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Microflora of the environment plays an important role in the formation of the microflora of the digestive tract of fishes (Strom and Olafsen Microbiology of poecilotherms Elsevier, Amsterdam, pp 181–185 1990; Hansen et al. Appl Environ Microbiol 58:461–470 1992). Compared to water, digestive tract is an ecosystem far richer in nutrients and therefore more favorable for the growth of the majority of bacteria. Definitely, not all bacteria in food which gain entry in the digestive tract of fishes establish themselves there (Yan-Bo Wang et al. Aquaculture 281(1–4): 1–4 2008). Part of them adapts themselves in the digestive tract, whereas the others are digested by the enzymes produced by the host organism. Microorganisms present in the digestive tract feed on the food of the host organism which is digested by the enzymes produced by them and by the latter. ‘Chymous’ gets formed which decides the abundance and qualitative composition of microorganisms present in digestive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bairagi A, Ghosh KS, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquac Int 10:109–121

    Article  CAS  Google Scholar 

  • Barr B, Hsieh YL, Ganem BW (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592

    Article  PubMed  CAS  Google Scholar 

  • Cahill MM (1990) Bacterial flora of fishes: a review. Microbiol Ecol 19:21–41

    Article  Google Scholar 

  • Davies ME (1965) Cellulolytic bacteria in some ruminants and herbivores as shown by fluorescent antibody. J Gen Microbiol 39:139–141

    PubMed  CAS  Google Scholar 

  • Finegold GM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentgens DJ (ed) Human intestinal microflora in health and disease. NewYork, Academic Press, pp 3–31

    Google Scholar 

  • Furuichi M, Yone Y (1982) Availability of carbohydrate in nutrition of carp and red sea bream. Bull Jpn Soc Sci Fisheries 48:945–948

    Article  CAS  Google Scholar 

  • Ganguly S, Paul I, Mukhopadhayay SK (2010). Immunostimulant, probiotic and prebiotic—their applications and effectiveness in aquaculture. Israeli J. Aquacult—Bamidgeh. 62(3): 130–138

    Google Scholar 

  • Ghosh K, Sen SK, Ray AK (2002) Characterization of Bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquac 12:33–42

    Article  Google Scholar 

  • Ghosh K, Roy M, Kar N, Ringo E (2010) Gastrointestinal bacteria in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): scanning electron microscopy and bacteriological study. Acta Ichthyol. Piscat 40(2):129–135

    Article  Google Scholar 

  • Gildberg A, Mikkelsen H, Sandaker E, Ringo D (1997) Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua). Hydrobiologia 352:279–285

    Article  Google Scholar 

  • Hansen GH, Strom E, Olafsen JA (1992) Effect of different holding regimes on the intestinal microflora of herring (Clupea harengus) larvae. Appl Environ Microbiol 58:461–470

    PubMed  CAS  Google Scholar 

  • Kristensen JH (1972) Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of carbohydrates studied. Marine Biol 14:130–142

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    PubMed  CAS  Google Scholar 

  • Lesel R (1991) Does a digestive active bacterial flora exist in fish? In: Fish Nutrition in Practice. Biarritz, France, pp 655–664

    Google Scholar 

  • Lesel R, Fromageot C, Lesel M (1986) Cellulose digestibility in grass carp and goldfish. Aquaculture 54:11–17

    Article  CAS  Google Scholar 

  • Lindsay GJH, Harris JE (1980) Carboxymethylcellulase activity in the digestive tracts of fish. J Fish Biol 16:219–233

    Article  CAS  Google Scholar 

  • Meisner A, Burns J (1997) Viviparity in the Halfbeak Genera Dermogenys and Nomorhamphus (Teleostei: Hemiramphidae). J Morphol 234:295–317

    Article  Google Scholar 

  • Mondal S, Roy T, Sen SK, Ray AK (2008) Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyologica et Piscatoria 38(1):1–8

    Article  Google Scholar 

  • Pucci OH, Bak MA, Peressutti SR, Klein I, Hartig C, Alvarez HM, Wünsche L (2004) Influence of crude oil contamination on the bacterial community of semiarid soils of Patagonia (Argentina). Acta Biotechnol 20(2):129–146

    Article  Google Scholar 

  • Ray AK, Roy T, Mondal S, Ringo E (2009) Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res 41(10):1462–1469

    Google Scholar 

  • Ringo E, Birkbeck TH (1999) Intestinal microflora of fish and fry: a review. Aquac Res 30(2):73–93

    Article  Google Scholar 

  • Ringo E, Olsen RE (1999) The effect of diet on aerobic bacterial flora associated with intestine of Arctic charr (Salvelinus alpinus). J Appl Microbiol 86:22–28

    Article  PubMed  CAS  Google Scholar 

  • Ringo E, Strom E (1994) Microflora of Arctic charr Salvelinus alpinus gastrointestinal microflora of freeliving fish and effect of diet and salinity on the intestinal microflora. Aquac Fish Mgt 25:623–629

    Google Scholar 

  • Saha AK, Ray AK (1998) Cellulase activity in rohu fingerlings. Aquac Int 6:281–291

    Article  CAS  Google Scholar 

  • Saha S, Roy RN, Sen SK, Roy AK (2006) Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valencinnes). Aquac Res 37:380–388

    Article  CAS  Google Scholar 

  • Sakata T (1990) Microflora in the digestive tract of fish and shellfish. In: Lesel R (ed) Microbiology of Poekilotherms. Elsevier, Amsterdam, pp 217–223

    Google Scholar 

  • Sakata T, Yuki T (1992) Diagnostic media for differentiation of Plesiomonas from intestinal microflora of freshwater fish. Bull Jpn Soc Sci Fish 58(5):977–979

    Google Scholar 

  • Savas S, Kubilay A, Basmaz N (2005) Effect of bacterial load in feeds on intestinal microflora of seabream (Sparus aurata) larvae and juveniles Israeli. J Aquac—Bamidgeh 57(1):3–9

    Google Scholar 

  • Scott P (1997). Livebearing Fishes. pp. 13. Tetra Press

  • Shiau Shi Yen (1997) Utilization of carbohydrates in warmwater fish—with particular reference to tilapia, Oreochromis niloticus X O. aureus. Fish Nutrition and Feeding Proceedings of the Sixth International Symposium on Feeding and Nutrition in Fish. Aquaculture 151(1–4):79–96

    Article  Google Scholar 

  • Shiau Shi-Yen, Hao-Ling Yu, Hwa Sophy, Chen Shih-Yang, Hsu Song-Ing (1988) The influence of carboxymethylcellulose on growth, digestion, gastric emptying time and body composition of tilapia. Aquaculture 70(4):345–354

    Article  CAS  Google Scholar 

  • Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763

    PubMed  CAS  Google Scholar 

  • Smith LS (1989) Digestive functions in teleost fishes. In: Halver JE (ed) Fish Nutririon, 2nd edn. Academic Press, San Diego, pp 331–421

    Google Scholar 

  • Spano L, Medeiros J, Mandels M (1975) Enzymatic hydrolysis of cellulosic waste to glucose. Pollution Abatement Division, Food Services Laboratories, US Army, Natick. Massachusetts, USA

    Google Scholar 

  • Stavric S, Kornegay T (1995) Microbial probiotics for pigs and poultry. In: Wallace RJ, Chesson A (eds) Biotechnlogy in animal feeds and animal feeding. Weinheim, NewYork, pp 205–231

    Chapter  Google Scholar 

  • Strom E, Olafsen JA (1990) The indigenous microflora of wild-captured juvenile cod in net-pen rearing. In: Lesel R (ed) Microbiology of poecilotherms. Elsevier, Amsterdam, pp 181–185

    Google Scholar 

  • Sugita H, Tsunohara M, Ohkashi T, Deguchi Y (1988) The establishment of an intestinal microflora in developing goldfish Carassius auratus ponds. Microbiol Ecol 15:333–344

    Article  Google Scholar 

  • Sugita H, Kawasahi J, Deguchi Y (1997) Production of amylase by the intestinal microflora in cultured freshwater fish. Lett Appl Microbiol 24:105–108

    Article  PubMed  CAS  Google Scholar 

  • Syvokieni J (1989) Symbiotic digestion in hydrobionts and insects. Mokslas, Vilnius

    Google Scholar 

  • Takeuchi T (1991) Digestion and Nutririon of Fish. In: Itazawa Y, Hanyu S, Tokyo I (ed) Fish Physiology: Koseisha Koseikaku Japan (in Japanese). pp. 67–101

  • Trust TJ, Sparrow RAH (1974) The bacterial flora in the alimentary tract of freshwater salmonid fishes. Can J Microbiol 20:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Vesta Skrodenyte-Arbaeiauskiene (2000) Proteolytic activity of the roach (Rutilus rutilus L.) intestinal microflora. Acta Zool Lituanica. 10: 3

    Google Scholar 

  • Voveriene G, Mickeniene L, Ðyvokiene J (2002) Hydrocarbon-degrading bacteria in the digestive tract of fish, their abundance, species composition, and activity. Acta Zool Lituanica. 12: 3

    Google Scholar 

  • Wang Yan-Bo, Rong-Li Jian, Lin Junda (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281(1–4):1–4

    Google Scholar 

  • Westerdahl A, Olsen JC, Kjelleberg S, Comway P (1991) Isolation and characterization of turbot (Scophthalmus maimus) associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol 57:2223–2228

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ganguly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Prasad, A. Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev Fish Biol Fisheries 22, 11–16 (2012). https://doi.org/10.1007/s11160-011-9214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-011-9214-x

Keywords

Navigation