Reviews in Fish Biology and Fisheries

, Volume 21, Issue 3, pp 509–515 | Cite as

Chromosomal studies in Crenicichla lepidota and Australoheros facetus (Cichlidae, Perciformes) from extreme Southern Brazil

  • Giselle Perazzo
  • Rafael Bueno Noleto
  • Marcelo Ricardo Vicari
  • Patricia Coelho Machado
  • Adriana Gava
  • Marta Margarete Cestari
Research paper


Fishes of the family Cichlidae generally show low karyotype variability. Nevertheless, karyotype variants have been identified within some genera, providing information about their evolutionary history. In the present study, karyotype characteristics of Crenicichla lepidota and Australoheros facetus, two sympatric species found in the São Gonçalo-Mangueira basin, were studied. Besides conventional procedures, double fluorochromes staining chromomycin A3/DAPI and fluorescent in situ hybridization (FISH) with rDNA probes were also used. Both species presented 2n = 48 chromosomes, but karyotypes were differentiated by fundamental number, which was equal to 70 in A. facetus and 56 in C. lepidota. Similar heterochromatin distribution patterns were also observed on the pericentromeric region of most chromosomes, although C. lepidota presented an additional heterochromatic block in the first pair. The Ag-NORs, 18S rDNA probe and CMA3/DAPI were coincident in location on the first and second pairs of C. lepidota and A. facetus, respectively. The minor rDNA loci (5S rDNA) were found in four sites located on two distinct chromosomal pairs in C. lepidota. Although the data obtained here to C. lepidota and to A. facetus show chromosomal characteristics considered ancestral to the family, new data are presented to both species. Additionally, this study corroborates the hypothesis in which evolutionary processes like non-Robertsonian rearrangements are involved in the diversification of the major groups of Neotropical Cichlidae. Thus, the karyotype diversification observed in A. facetus have the high fundamental number pathway while C. lepidota has others evolutionary chromosomal mechanisms.


Cichlids Cytogenetics FISH Fluorochromes 



The authors are grateful to Instituto Brasileiro do Meio Ambiente and Recursos Naturais Renováveis (MMA/IBAMA) for authorizing the capture of the fishes. This study was financed by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and the Fundação Araucária (Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná). We also thank the team of Professor Luiz Malabarba, from Universidade Federal do Rio Grande do Sul, for identifying and cataloguing specimens.


  1. Artoni RF, Bertollo LAC (1999) Nature and distribution of constitutive heterochromatin in fishes, genus Hypostomus (Loricariidae). Genetica 106:209–214PubMedCrossRefGoogle Scholar
  2. Artoni RF, Vicari MR, Almeida MC, Moreira-Filho O, Bertollo LAC (2009) Karyotype diversity and fish conservation of southern field from South Brazil. Rev Fish Biol Fisheries 19:393–401. doi: 10.1007/s11160-009-9109-2 CrossRefGoogle Scholar
  3. Benzaquem DC, Feldberg E, Porto JIR, Gross MC, Zuanon JAS (2008) Cytotaxonomy and karyoevolution of the genus Crenicichla (Perciformes, Cichlidae). Genet Mol Biol 31:250–255CrossRefGoogle Scholar
  4. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomy considerations on Hoplis lacerdae (Pisces, Erythrinidae). Brazilian J Genet 1:103–120Google Scholar
  5. Blanco DR, Lui RL, Bertollo LAC, Diniz D, Moreira-Filho O (2010) Characterization of invasive fish species in a river transposition region: evolutionary chromosome studies in the genus Hoplias (Characiformes, Erythrinidae). Rev Fish Biol Fisheries 20:1–8. doi: 10.1007/s11160-009-9116-3 CrossRefGoogle Scholar
  6. Feldberg E, Bertollo LAC (1985a) Karyotypes of 10 species of Neotropical Cichlids (Pisces, Perciformes). Caryologia 38:257–268Google Scholar
  7. Feldberg E, Bertollo LAC (1985b) Nucleolar organising regions in some species of Neotropical Cichlid Fish (Pisces, Perciformes). Caryologia 38:319–324Google Scholar
  8. Feldberg E, Porto JIR, Bertollo LAC (2003) Chromosomal changes and adaptation of Cichlidae fishes during evolution. In: Val AL, Kapoor BG (eds) Fish Adaptation. Science Publishers, New Delhi and New York, pp 258–308Google Scholar
  9. Fenocchio AS, Pastori MC, Roncati HA, Moreira-Filho O, Bertollo LAC (2003) A cytogenetic survey of the fish fauna from Argentina. Caryologia 56:197–204Google Scholar
  10. Galetti PM Jr (1998) Chromosome diversity in Neotropical fishes: NOR studies. Italian J Zool 65:53–56CrossRefGoogle Scholar
  11. Hartz SM, Peret AC, Barbieri G (1999) Reproduction of Gymnogeophagus lacustris, a cichlid endemic to southern Brazil. Ichthyol Explor Freshwaters 10:247–253Google Scholar
  12. Hatanaka T, Galetti PM Jr (2004) Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122:239–244PubMedCrossRefGoogle Scholar
  13. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 3:1014–1015CrossRefGoogle Scholar
  14. Kasahara S (2009) Introdução à Pesquisa em Citogenética de Vertebrados. Sociedade Brasileira de Genética, Ribeirão PretoGoogle Scholar
  15. Keenleyside MHA (1991) Parental care. In: Keenleyside MHA (ed) Cichlid fishes: behaviour, ecology and evolution. Chapman and Hall, New Delhi, pp 191–208Google Scholar
  16. Kullander SO (1998) A Phylogeny and Classification of the South American Cichlidae (Teleostei: Perciformes). In: Malabarba LR, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. Edipucs, Porto Alegre, pp 461–498Google Scholar
  17. Kullander SO (2003) Family Cichlidae. In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of freshwater fishes of South and Central America. Edipucs, Porto Alegre, pp 605–655Google Scholar
  18. Levan A, Fredga KE, Sandberg HA (1964) Nomenclature for centromeric position on chromosomes. Heretidas 52:201–220Google Scholar
  19. Loureiro MA, Caetano LG, Dias AL (2000) Cytogenetic characterization of two species of the genus Crenicichla (Pisces, Cichlidae). Cytologia 65:57–63Google Scholar
  20. Martins C, Galetti JPM (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anastomidae, Characiformes). Chromosome Res 7:363–367PubMedCrossRefGoogle Scholar
  21. Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, New York, pp 335–364Google Scholar
  22. Martins C, Wasko AP, Oliveira C, Wright JM (2000) Nucleotide sequence of 5 s rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the Tilapiine cichlid fish, Oreochromis niloticus. Hereditas 133:39–46PubMedCrossRefGoogle Scholar
  23. Martins-Santos IC, Portella-Castro ALB, Julio HF Jr (1995) Chromosome analysis of 5 species of the Cichlidae Family (Pisces-Perciformes) from the Parana River. Cytologia 60:223–231Google Scholar
  24. Mesquita DR, Porto JIR, Feldberg E (2008) Chromosomal variability in wild ornamental species of Symphysodon (Perciformes: Cichlidae) from Amazon. Neotrop Ichthyol 6:181–190CrossRefGoogle Scholar
  25. Mizoguchi SMHK, Portela-Castro ALB, Martins-Santos IC (2007) Cytogenetic characterization of Crenicichla (Pisces, Perciformes) of the Iguaçu River. Genet Mol Res 6:650–656PubMedGoogle Scholar
  26. Molina WF, Galetti PM Jr (2002) Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5s rRNA genes. Genet Mol Biol 25:373–377CrossRefGoogle Scholar
  27. Nirchio M, Oliveira C (2006) Citogenetica de Peces. Gráficas Internacional, PorlamarGoogle Scholar
  28. Pendás AM, Morán P, Garcia-Vásquez E (1993) Ribosomal RNA genes are interspeced throughout a heterochromatin chromosome arm in Atlantic Salmon. Cytogenet Cell Genet 63:128–130PubMedCrossRefGoogle Scholar
  29. Pires LB, Giuliano CL, Dias AL (2008) Karyotype similarities among two populations of Geophagus brasiliensis (Perciformes, Cichlidae) from the Tibagi River basin/PR/Brazil. Caryologia 61:135–138Google Scholar
  30. Pires LB, Giuliano CL, Dias AL (2010) Cytogenetic characterization of Geophagus brasiliensis and two species of Gymnogeophagus (Cichlidae: Geophaginae) from Guaíba Lake, RS, Brazil. Folia Biol 58:29–34CrossRefGoogle Scholar
  31. Rícan O, Kullander SO (2006) Character- and tree- based delimitation of species in the ‘Cichlasoma’ facetum group (Teleostei, Cichlidae) with the description of a new genus. J Zool Syst Evolut Res 44:136–152CrossRefGoogle Scholar
  32. Roncati HA, Pastori MC, Fenocchio AS (2007) Cytogenetic studies and evolutive considerations on fishes of the family Cichlidae (Perciformes) from Parana River (Argentina). Cytologia 72:379–384CrossRefGoogle Scholar
  33. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324PubMedCrossRefGoogle Scholar
  34. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C bands patterns. Chromosom Today 9:61–74Google Scholar
  35. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–305PubMedCrossRefGoogle Scholar
  36. Thompson KW (1979) Cytotaxonomy of 41 species of Neotropical Cichlidae. Copeia 1979:304–691CrossRefGoogle Scholar
  37. Vicari MR, Artoni RF, Moreira-Filho O, Bertollo LAC (2006) Basic and molecular cytogenetics in freshwater Cichlidae (Osteichthyes, Perciformes). Karyotypic conservadorism and divergence. Caryologia 59:260–266Google Scholar
  38. Vicari MR, Artoni RF, Moreira-Filho O, Bertollo LAC (2008) Co-localization of repetitive DNAs and silencing of major rDNA genes. A case report in the fish Astyanax janeiroensis. Cytogenet Genome Res 122:67–72. doi: 10.1159/000151318 PubMedCrossRefGoogle Scholar
  39. Vicari MR, Nogaroto V, Noleto RB, Cestari MM, Cioffi MB, Almeida MC, Moreira-Filho O, Bertollo LAC, Artoni RF (2010) Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. J Fish Biol 76:1094–1116. doi: 10.1111/j.1095-8649.2010.02564.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Giselle Perazzo
    • 1
  • Rafael Bueno Noleto
    • 2
  • Marcelo Ricardo Vicari
    • 3
  • Patricia Coelho Machado
    • 4
  • Adriana Gava
    • 4
  • Marta Margarete Cestari
    • 1
  1. 1.Departamento de GenéticaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de BiologiaFaculdade Estadual de Filosofia, Ciências e Letras de União da VitóriaCentro, União da VitóriaBrazil
  3. 3.Departamento de Biologia Estrutural, Molecular e GenéticaUniversidade Estadual de Ponta GrossaUvaranas, Ponta GrossaBrazil
  4. 4.Instituto de BiociênciasUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations