Skip to main content
Log in

A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali)

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The chimaeroid fishes (Chondrichthyes: Holocephali) are a small, ancient and poorly studied group of cartilaginous fishes that have puzzled and intrigued taxonomists, ichthyologists and evolutionary biologists for over 100 years. Like their close relatives, the elasmobranchs (sharks, skates and rays), chimaeroids possess an extensive battery of sense organs that allow them to detect information about the external environment in order to find mates, locate food and preferred habitats and avoid predators. In recent years the sensory systems of elasmobranchs have received an up-swell of attention from biologists, which has resulted in a greater understanding of the sensory capabilities and behaviour of these fishes. However, very little recent work has been done on the chimaeroids. The aim of this review is to provide a survey of the existing literature on the major senses (vision, smell, taste, mechanoreception, hearing and electroreception) in chimaeroids, in order to stimulate and identify areas for future research. In chimaeroids information on sensory systems is largely restricted to one or two species (with the exception of some aspects of the visual system) and for some sensory systems essentially nothing is known. Most studies are anatomical in nature and so there is a demand for a greater degree of neurophysiological and behavioural assessment of sensory capability in these fishes. The majority of chimaeroids occupy deep-sea habitats and are becoming increasingly threatened by the expansion of deep-sea fisheries, so an understanding of the sensory biology and behaviour of chimaeroids may be important for the protection and management of these fascinating fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey DM, Wagner H-J, Jamieson AJ, Ross MF, Priede IG (2007) A taste of the deep-sea: the roles of gustatory and tactile searching behaviour in the grenadier fish Coryphaenoides armatus. Deep-Sea Res 54(1):99–108

    Article  Google Scholar 

  • Banner A (1967) Evidence of sensitivity to acoustic displacements in the lemon shark, Negaprion brevirostris (Poey). In: Cahn P (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 265–273

    Google Scholar 

  • Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol (Lond) 119:69–88

    CAS  Google Scholar 

  • Barnett LAK, Dagit DD, Long DJ, Ebert DA (2006) Hydrolagus mccoskeri sp. nov. a new species of chimaeroid fish from the Galápagos Islands (Holocephali: Chimaeriformes: Chimaeridae). Zootaxa 1328:27–38

    Google Scholar 

  • Beatty DD (1969) Visual pigments of three species of cartilaginous fishes. Nature 222:285

    Article  CAS  PubMed  Google Scholar 

  • Bell MS (1993) Convergent evolution of nasal structure in sedentary elasmobranchs. Copeia 1993:144–158

    Article  Google Scholar 

  • Bigelow HB, Schroder WC (1954) Deep water elasmobranchs and chimaeroids of the Northwestern Atlantic slope. Bull Mus Comp Zool 112:34–87

    Google Scholar 

  • Bleckmann H, Hofmann MH (1999) Special senses. In: Hamlett WC (ed) Sharks, skates and rays: the biology of elasmobranch fishes. Johns Hopkins University Press, Baltimore, pp 300–328

    Google Scholar 

  • Bodznick D (1991) Elasmobranch vision: multimodal integration in the brain. J Exp Zool 256(Suppl 5):108–116

    Google Scholar 

  • Bozzano A (2004) Retinal specialisations in the dogfish Centroscymnus coelolepis from the Mediterranean deep-sea. Sci Mar 68(Suppl 3):185–195

    Google Scholar 

  • Bozzano A, Collin SP (2000) Retinal ganglion cell topography in elasmobranchs. Brain Behav Evol 55:191–208

    Article  CAS  PubMed  Google Scholar 

  • Bozzano A, Murgia R, Vallerga S, Hirano J, Archer S (2001) The photoreceptor system in the retinae of two dogfishes, Scyliorhinus canicula and Galeus melastomus: possible relationship with depth distribution and predatory lifestyle. J Fish Biol 59:1258–1278

    Article  Google Scholar 

  • Breschet G (1838) Recherches anatomiques et physiologiques sur l’organe de l’ouïe des poisons. Extr d Mem de l’Académie des Sciences, Tom V d Sav étr Paris

    Google Scholar 

  • Bullock TH, Hofmann MH, New JG, Nahm FK (1991) Dynamic properties of visual evoked potentials in the tectum of cartilaginous and bony fishes, with neuroethological implications. J Exp Zool (Suppl 5):142–155

  • Cailliet GM, Goldman KJ (2004) Age determination and validation in chondrichthyan fishes. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 399–448

    Google Scholar 

  • Cailliet GM, Musick JA, Simpfendorfer CA, Stevens JD (2005) Ecology and life history characteristics of chondrichthyan fish. In: Fowler SL, Cavanagh RD, Camhi M, Burgess GH, Cailliet GM, Fordham SV, Simpefendorfer CA, Musick JA (eds) Sharks, rays and chimaeras: the status of the chondrichthyan fishes. IUCN Shark Specialist Group. IUCN, Gland, pp 12–18

    Google Scholar 

  • Calis E, Jackson EH, Nolan CP, Jeal F (2005) Preliminary age and growth estimates of the rabbitfsh, Chimaera monstrosa, with implications for future resource management. J Northw Atl Fish Sci 35:15–26

    Article  Google Scholar 

  • Casper BM, Mann DA (2006) Evoked potential audiograms of the nurse sahrk (Ginglymostoma cirratum) and the yellow stingray (Urobatis jamaicensis). Environ Biol Fishes 76:101–108

    Article  Google Scholar 

  • Casper BM, Mann DA (2007a) Dipole hearing measurements in elasmobranch fishes. J Exp Biol 210:75–81

    Article  PubMed  Google Scholar 

  • Casper BM, Mann DA (2007b) The directional hearing abilities of two species of bamboo sharks. J Exp Biol 210:505–511

    Article  PubMed  Google Scholar 

  • Casper BM, Mann DA (2009) Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae. J Fish Biol 75:2768–2776

    Article  CAS  PubMed  Google Scholar 

  • Casper BM, Lobel PS, Yan YH (2003) The hearing sensitivity of the little skate, Raja erinacea: a comparison of two methods. Environ Biol Fishes 68:371–379

    Article  Google Scholar 

  • Cavanagh RD, Kyne PM (2005) The conservation status of deep-sea chondrichthyan fishes. In: Shotton R (ed) Deep sea 2003: conference on the governance and management of deep-sea fisheries. Part 2: conference poster papers and workshop papers, Queenstown, 1–5 Dec 2003 and 27–29 Nov 2003, Dunedin. FAO Fisheries Proceedings No. 3/2. FAO, Rome, pp 366–380

  • Chu YT, Wen MC (1979) A study of the lateral-line canals system and that of Lorenzini ampullae and tubules of elasmboranchiate fishes of China. Academic Press, Shanghai

    Google Scholar 

  • Collin SP (1988) The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations. Exp Biol 47:195–207

    CAS  PubMed  Google Scholar 

  • Collin SP (1999) Behavioural ecology and retinal cell topography. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 509–535

    Google Scholar 

  • Collin SP, Whitehead D (2004) The functional roles of passive electroreception in non-electric fishes. Anim Biol 54:1–25

    Article  Google Scholar 

  • Compagno LJV (1990) Alternative life-history styles of cartilaginous fishes in time and space. Environ Biol Fishes 28:33–75

    Article  Google Scholar 

  • Compagno LJV (1999) Systematics and body form. In: Hamlett WC (ed) Sharks, skates and rays: the biology of elasmobranch fishes. Johns Hopkins University Press, Baltimore, pp 1–42

    Google Scholar 

  • Compagno LJV, Musick JA (2005) Deepwater species. In: Fowler SL, Cavanagh RD, Camhi M, Burgess GH, Cailliet GM, Fordham SV, Simpefendorfer CA, Musick JA (eds) Sharks, rays and chimaeras: the status of the chondrichthyan fishes. IUCN Shark Specialist Group, IUCN, Gland, pp 216–217

    Google Scholar 

  • Compagno LJV, Didier DA, Burgess GH (2005) Classification of chondrichthyan fish. In: Fowler SL, Cavanagh RD, Camhi M, Burgess GH, Cailliet GM, Fordham SV, Simpefendorfer CA, Musick JA (eds) Sharks, rays and chimaeras: the status of the chondrichthyan fishes. IUCN Shark Specialist Group, IUCN, Gland, pp 4–11

    Google Scholar 

  • Condit R, Le Boeuf BJ (1984) Feeding habits and feeding grounds of the northern elephant seal. J Mamm 65:281–290

    Article  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, Berlin, pp 319–362

    Google Scholar 

  • Corwin JT (1978) The relation of inner ear structure to feeding behavior in sharks and rays. In: Johari O (ed) Scanning electron microscopy. S.E.M. Inc., Chicago, pp 1105–1112

    Google Scholar 

  • Corwin JT (1989) Functional anatomy of the auditory system in sharks and rays. J Exp Zool 252(Suppl 2):62–74

    Article  Google Scholar 

  • Crescitelli F (1969) The visual pigment of a chimaeroid fish. Vis Res 9:1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Crescitelli F (1991) Adaptations of visual pigments to the photic environment of the deep-sea. J Exp Zool 256(Suppl 5):66–75

    Google Scholar 

  • Crescitelli F, McFall-Ngai M, Horwitz J (1985) The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J Comp Physiol A 157:323–333

    Article  CAS  PubMed  Google Scholar 

  • Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84:51–74

    Article  PubMed  Google Scholar 

  • Davies WL, Carvalho LS, Tay B-H, Brenner S, Hunt DM, Venkatesh B (2009) Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Res 19:415–426

    Article  CAS  PubMed  Google Scholar 

  • Dean B (1906) Chimaeroid fishes and their development. Carnegie Institute Publication, Washington DC

    Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin, pp 595–617

    Google Scholar 

  • Denton EJ, Nicol JAC (1964) The choroidal tapeta of some cartilaginous fishes. J Mar Biol Assoc UK 44:219–258

    Article  Google Scholar 

  • Di Giácomo E, Perier M (1996) Feeding habits of cockfish, Callorhinchus callorhynchus (Holocephali: Callorhynchidae), in Patagonian waters (Argentina). Mar Freshw Res 47:801–808

    Article  Google Scholar 

  • Didier DA (1995) Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). Am Mus Nat Hist Novit 3119:1–86

    Google Scholar 

  • Didier DA (2002) Two new species of chimaeroid fishes from the southwestern Pacific Ocean (Holocephali, Chimaeridae). Ichthyol Res 459:299–306

    Article  Google Scholar 

  • Didier DA (2004) Phylogeny and classification of extant Holocephali. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 115–136

    Google Scholar 

  • Didier DA (2008) Two new species of the genus Hydrolagus Gill (Holocephali: Chimaeridae) from Australia. In: Last PR, White WT, Pogonoski JJ (eds) Descriptions of new Australian chondrichthyans. CSIRO Marine and Atmospheric Research Paper No. 022, pp 349–356

  • Didier DA, Séret B (2002) Chimaeroid fishes of New Caledonia with description of a new species of Hydrolagus (Chondrichthyes, Holocephali). Cybium 26:225–233

    Google Scholar 

  • Didier DA, Leclair EE, Vanbuskirk DR (1998) Embryonic staging and external features of development of the chimaeroid fish, Callorhinchus milli (Holocephali, Callorhinchidae). J Morphol 236:25–47

    Article  Google Scholar 

  • Didier DA, Last PR, White WT (2008) Three new species of the genus Chimaera Linneaus (Chimaeriformes: Chimaeridae) from Australia. In: Last PR, White WT, Pogonoski JJ (eds) Descriptions of new Australian chondrichthyans. CSIRO Marine and Atmospheric Research Paper No. 022, pp 327–339

  • Dijkgraaf S (1962) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105

    Article  Google Scholar 

  • Douglas RH, Partridge JC, Hope AJ (1995) Visual and lenticular pigments in the eyes of demersal deep-sea fishes. J Comp Physiol A 177:111–122

    Article  Google Scholar 

  • Douglas RH, Partridge JC, Marshall NJ (1998) The eyes of deep-sea fish I: lens pigmentation, tapeta and visual pigments. Prog Ret Eye Res 17:597–636

    Article  CAS  Google Scholar 

  • Ekström von Lubitz DK (1981) Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell Tissue Res 215:651–665

    PubMed  Google Scholar 

  • Evangelista C, Mills M, Siebeck UE, Collin SP (2010) A comparison of the external morphology of the membranous inner ear in elasmobranchs. J Morphol. doi:10.1002/jmor.10812

    PubMed  Google Scholar 

  • Fänge R (1982) Exogenous otoliths in elasmobranchs. J Mar Biol Assoc UK 62:225

    Article  Google Scholar 

  • Faucette JR (1969) The olfactory bulb and medial hemisphere wall of the rat-fish, Chimaera. J Comp Neurol 137:377–406

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol 47A:1235–1240

    Article  Google Scholar 

  • Fernald RD (1990) The optical system of fishes. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 45–61

    Google Scholar 

  • Fields RD, Lange GD (1980) Electroreception in the ratfish (Hydrolagus colliei). Science 207:547–548

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Bullock TH, Lange GD (1993) Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav Evol 41:269–289

    Article  CAS  PubMed  Google Scholar 

  • Franz V (1905) Zur anatomie, Histologie und Funktionellen Gestaltung des Selachierauges. Jena Z Naturw 40:697–840

    Google Scholar 

  • Fröhlich E, Negishi K, Wagner H-J (1995) Patterns of rod proliferation in deep-sea fish retinae. Vis Res 35:1799–1811

    Article  PubMed  Google Scholar 

  • Gačić Z, Damjanović I, Mićković B, Hegedis A, Nikčević M (2007) Spectral sensitivity of the dogfish shark (Scyliorhinus canicula). Fish Physiol Biochem 33:21–27

    Article  CAS  Google Scholar 

  • Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    Article  PubMed  Google Scholar 

  • Garman S (1904) The chimaeroids especially Rhinochimaera and its allies. Bull Mus Comp Zool 41:243–271

    Google Scholar 

  • Gordon JDM (1999) Management considerations of deep-water shark fisheries. In: Shotton R (ed) Case studies of the management of elasmobranch fisheries. FAO Fisheries Technical Paper, No. 378, pp 774–818

  • Grogan ED, Lund R (2004) The origin and relationships of early Chondrichthyes. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 3–32

    Google Scholar 

  • Haine OS, Ridd PV, Rowe RJ (2001) Range of electrosensory detection of prey by Carcharhinus melanopterus and Himantura granulata. Mar Freshw Res 52:291–296

    Article  Google Scholar 

  • Hara TJ (1975) Olfaction in fish. Prog Neurobiol 5:271–335

    Article  CAS  PubMed  Google Scholar 

  • Harahush BK, Hart NS, Green K, Collin SP (2009) Retinal neurogenesis and ontogenetic changes in the visual system of the brown banded bamboo shark, Chiloscyllium punctatum (Hemiscyllidae, Elasmobranchii). J Comp Neurol 513:83–97

    Article  PubMed  Google Scholar 

  • Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004) Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol 207:4587–4594

    Article  PubMed  Google Scholar 

  • Hart NS, Lisney TJ, Collin SP (2006) Visual communication in elasmobranchs. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers Inc., Enfield, pp 337–392

    Google Scholar 

  • Helfman GS (2007) Fish conservation: a guide to understanding and restoring global aquatic biodiversity and fishery resources. Island Press, Washington DC

    Google Scholar 

  • Hodgson ES, Mathewson RF (1978) Electrophysiological studies of chemoreception in elasmobranchs. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Arlington, pp 227–267

    Google Scholar 

  • Holl A (1973a) Funktionsmorphologie der Nase von Chimaera monstrosa (Holocephali). Z Morph Tiere 74:271–296

    Article  Google Scholar 

  • Holl A (1973b) Feinstruktur des Riechepithels von Chimaera monstrosa (Holocephali). Mar Biol 23:59–72

    Article  Google Scholar 

  • Hueter RE (1991) Adaptations for spatial vision in sharks. J Exp Zool 256(Suppl 5):130–141

    Google Scholar 

  • Hueter RE, Murphy CJ, Howland M, Sivak JG, Paul-Murphy JR, Howland HC (2001) Refractive state and accommodation in the eyes of free-swimming versus restrained juvenile lemon sharks (Negaprion brevirostris). Vis Res 41:1885–1889

    Article  CAS  PubMed  Google Scholar 

  • Hueter RE, Mann DA, Maruska KP, Sisneros JA, Demski LS (2004) Sensory biology of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 325–368

    Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting lifestyles: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VIII/5. Springer, Berlin, pp 613–756

    Google Scholar 

  • James KC, Ebert DA, Long DJ, Didier DA (2009) A new species of chimaera, Hydrolagus melanophasma sp. nov. (Chondrichthyes: Chimaeriformes: Chimaeridae), from the eastern North Pacific. Zootaxa 2218:59–68

    Google Scholar 

  • Johnson RH, Nelson DR (1978) Copulation and possible olfaction-mediated pair formation in two species of carcharhinid sharks. Copeia 1978:76–84

    Google Scholar 

  • Jollie M (1962) Chordate morphology. Reinhold, New York

    Google Scholar 

  • Jordan LK (2008) Comparative morphology of stingray lateral line canal and electrosensory systems. J Morphol 269:1325–1339

    Article  PubMed  Google Scholar 

  • Jordan LK, Kajiura SM, Gordon MS (2009a) Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals. J Exp Biol 212:3037–3043

    Article  PubMed  Google Scholar 

  • Jordan LK, Kajiura SM, Gordon MS (2009b) Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system. J Exp Biol 212:3044–3050

    Article  PubMed  Google Scholar 

  • Kajiura SM (2001) Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks. Environ Biol Fishes 61:125–133

    Article  Google Scholar 

  • Kajiura SM (2003) Electroreception in neonatal bonnethead sharks, Sphyrna tiburo. Mar Biol 143:603–611

    Article  Google Scholar 

  • Kajiura SM, Fitzgerald TP (2009) Response of juvenile scalloped hammerhead sharks to electric stimuli. Zoology 112:241–250

    Article  PubMed  Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205:3609–3621

    PubMed  Google Scholar 

  • Kajiura SM, Forni JB, Summers AP (2005) Olfactory morphology of carcharhinid and sphyrnid sharks: does the cephalofoil confer a sensory advantage? J Morphol 264:253–263

    Article  PubMed  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383

    CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (2003) Physical principles of electric, magnetic, and near-field acoustic orientation in early orientation in early aquatic vertebrates. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, Berlin, pp 77–91

    Chapter  Google Scholar 

  • Kelly JC, Nelson DR (1975) Hearing thresholds of the horn shark, Heterodontus francisci. J Acoust Soc Am 58:905–909

    Article  CAS  PubMed  Google Scholar 

  • Kimber JA, Sims DW, Bellamy PH, Gill AB (2009) Male–female interactions affect foraging behaviour within groups of small-spotted catshark, Scyliorhinus canicula. Anim Behav 77:1435–1440

    Article  Google Scholar 

  • Kleerekoper H (1978) Chemoreception and the role of its interaction with flow and light perception in the locomotion and orientation of some elasmobranchs. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Arlington, pp 269–329

    Google Scholar 

  • Kokuho T, Nakaya K, Kitagawa D (2003) Distribution and reproductive biology of the nine-spot ratfish Hydrolagus barbouri (Holocephali; Chimaeridae). Mem Grad Sci Fish Sci Hokkaido Univ 50:63–87

    Google Scholar 

  • Kotrschal K, van Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408

    Article  Google Scholar 

  • Kretz R, Ishida AT, Stell WK (1982) Ratfish retina-intercellular recordings and HRP injections in an isolated, superfused all-rod retina. Vis Res 22:857–861

    Article  CAS  PubMed  Google Scholar 

  • Kritzler H, Wood L (1961) Provisional audiogram for the shark, Carcharhinus leucas. Science 133:1402–1482

    Article  Google Scholar 

  • Kuchnow KP (1971) The elasmobranch pupillary response. Vis Res 11:1395–1406

    Article  CAS  PubMed  Google Scholar 

  • Kuhlenbeck H, Niimi K (1969) Further observations on the morphology of the brain in the holocephalian elasmobranchs Chimaera and Callorhynchus. J Hirnforsch 11:267–314

    CAS  PubMed  Google Scholar 

  • Ladlich F (2000) Acoustic communication and the evolution of hearing in fishes. Philos Trans R Soc Lond B 355:1285–1288

    Article  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Last PR, Stevens JD (2009) Sharks and rays of Australia, 2nd edn. CSIRO Marine and Atmospheric Research, Melbourne

    Google Scholar 

  • Last PR, White WT, Pogonoski JJ (2008) Chimaera argiloba sp. nov. a new species of chimaeroid (Chimaeriformes: Chimaeridae) from northwestern Australia. In: Last PR, White WT, Pogonoski JJ (eds) Descriptions of new Australian chondrichthyans. CSIRO Marine and Atmospheric Research Paper No. 022, pp 341–348

  • Lisney TJ, Collin SP (2006) Brain morphology in large pelagic fishes: a comparison between sharks and teleosts. J Fish Biol 68:532–554

    Article  Google Scholar 

  • Lisney TJ, Collin SP (2007) Relative eye size in elasmobranchs. Brain Behav Evol 67:266–279

    Article  Google Scholar 

  • Lisney TJ, Collin SP (2008) Retinal ganglion cell distribution and spatial resolving power in elasmobranchs. Brain Behav Evol 72:59–77

    Article  PubMed  Google Scholar 

  • Lisney TJ, Bennett MB, Collin SP (2007) Volumetric analysis of sensory brain areas indicates ontogenetic shifts in the relative importance of sensory systems in elasmobranchs. Raff Bull Zool (Suppl 14):7–15

  • Litherland L, Collin SP (2008) Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions. Vis Neurosci 25:549–561

    Article  PubMed  Google Scholar 

  • Litherland L, Collin SP, Fritsches KA (2009a) Visual optics and ecomorphology of the growing shark eye: a comparison between deep and shallow water species. J Exp Biol 212:3583–3594

    Article  PubMed  Google Scholar 

  • Litherland L, Collin SP, Fritsches KA (2009b) Eye growth in sharks: ecological implications for changes in retinal topography and visual resolution. Vis Neurosci 26:397–409

    Article  PubMed  Google Scholar 

  • Liu Z (2001) Phylogenetic relationships of the living chimaeroid fishes based on characters of the brain and cranial nerves. New Mexico J Sci 41:1–24

    Google Scholar 

  • López HL, San Román NA, Di Di Giácomo EE (2000) On the south Atlantic distribution of Callorhinchus callorhynchus (Holocephali: Callorhynchidae). J Appl Ichthyol 16:39

    Article  Google Scholar 

  • Lowenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of hearing in vertebrates. J Physiol (Lond) 114:471–489

    CAS  Google Scholar 

  • Lychakov DV, Boyadzhieva-Mikhailova A, Christov I, Evdokimov II (2000) Otolithic apparatus in Black Sea elasmobranchs. Fish Res 46:27–38

    Article  Google Scholar 

  • Maddock RG, Nicol JAC (1978) Studies on the eyes of Hydrolagus (Pisces: Chimaeridae). Contrib Mar Sci 21:77–87

    Google Scholar 

  • Maisey JG (2001) Remarks on the inner ear of elasmobranchs and its interpretation from skeletal labyrinth morphology. J Morphol 250:236–264

    Article  CAS  PubMed  Google Scholar 

  • Maruska KR (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Environ Biol Fishes 60:47–75

    Article  Google Scholar 

  • Maruska KR, Tricas TC (2004) Test of the mechanotactile hypothesis: neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray. J Exp Biol 207:3463–3476

    Article  PubMed  Google Scholar 

  • Mauchline J, Gordon JDM (1983) Diets of sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar Biol 75:269–278

    Article  Google Scholar 

  • McComb DM, Kajiura SM (2008) Visual fields of four batoid fishes: a comparative study. J Exp Biol 211:482–490

    Article  PubMed  Google Scholar 

  • McComb DM, Tricas TC, Kajiura SM (2009) Enhanced visual fields in hammerhead sharks. J Exp Biol 212:4010–4018

    Article  CAS  PubMed  Google Scholar 

  • McComb DM, Frank TM, Hueter RE, Kajiura SM (2010) Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments. Physiol Biochem Zool 83:299–307

    PubMed  Google Scholar 

  • McFarland WN (1970) Visual pigments of Callorhinchus callorynchus, a southern hemisphere chimaeroid fish. Vis Res 10:939–942

    Article  CAS  PubMed  Google Scholar 

  • McGowan DW, Kajiura SM (2009) Electroreception in the euryhaline stingray, Dasyatis sabina. J Exp Biol 212:1544–1552

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Yin M (1981a) A study on the olfactory organ of skates, rays and chimaeras. J Fish China 5:209–228

    Google Scholar 

  • Meng Q, Yin M (1981b) A study on the olfactory organ of sharks. Trans Chinese Ichthyol Soc 2:1–24

    Google Scholar 

  • Montgomery JC, Skipworth E (1997) Detection of weak water jets by the short-tailed stingray Dasyatis brevicaudata (Pisces: Dasyatidae). Copiea 1997:881–883

    Article  Google Scholar 

  • Moura T, Figueiredo I, Bordalo-Machado P, Almeida C, Gordo LS (2005) A new deep-water chimaerid species, Hydrolagus lusitanicus n. sp. from off mainland Portugal with a proposal of a new identification key for the genus Hydrolagus (Holocephali: Chimaeridae) in the north-east Atlantic. J Fish Biol 67:742–751

    Article  Google Scholar 

  • Myrberg AA (2001) The acoustical biology of elasmobranchs. Environ Biol Fishes 60:31–45

    Article  Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Arlington, pp 117–193

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin, pp 17–78

    Google Scholar 

  • Parker GH (1909) The influence of the eyes, ears and other allied sense organs on the movements of the dogfish Mustelus canis (Mitchill). Bull US Bur Fish 29:43–57

    Google Scholar 

  • Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groiningen-Luyben WAHM (1989) Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A 164:513–529

    Article  CAS  PubMed  Google Scholar 

  • Patterson C (1965) The phylogeny of chimaeroids. Philos Trans Roy Soc Lond B 249:101–219

    Article  Google Scholar 

  • Paulin MG (1995) Electroreception and the compass sense of sharks. J Theor Biol 174:325–339

    Article  Google Scholar 

  • Peach MB (2001) The dorso-lateral pit organs of the Port Jackson shark contribute sensory information for rheotaxis. J Fish Biol 59:696–704

    Article  Google Scholar 

  • Peach MB (2003) Inter-and intraspecific variation in the distribution and number of pit organs (free neuromasts) of sharks and rays. J Morphol 256:89–102

    Article  PubMed  Google Scholar 

  • Peach MB, Marshall NJ (2000) The pit organs of elasmobranchs: a review. Philos Trans R Soc Lond B 355:1131–1134

    Article  CAS  Google Scholar 

  • Peach MB, Marshall NJ (2009) The comparative morphology of pit organs in elasmobranchs. J Morphol 270:688–701

    Article  CAS  PubMed  Google Scholar 

  • Peach MB, Rouse GW (2000) The morphology of the pit organs and lateral line canal neuromasts of Mustelus antarcticus (Chondrichthyes: Triakidae). J Mar Biol Assoc UK 80:155–162

    Article  Google Scholar 

  • Peach MB, Rouse GW (2004) Phylogenetic trends in the abundance and distribution of pit organs of elasmobranchs. Acta Zool (Stockh) 85:233–244

    Article  Google Scholar 

  • Peterson EH, Rowe MH (1980) Different regional specializations of neurons in the ganglion cell layer and inner plexiform layer of the California horned shark, Heterodontus francisci. Brain Res 201:195–201

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56:497–504

    Article  Google Scholar 

  • Quaranta KL, Didier DA, Long DJ, Ebert DA (2006) A new species of chimaeroid, Hydrolagus alphus sp. nov. (Chimaeriformes: Chimaeridae) from the Galapagos Islands. Zootaxa 1377:33–45

    Google Scholar 

  • Quinn TP, Miller BS, Wingert RC (1980) Depth distribution and seasonal and diel movements of ratfish, Hydrolagus colliei, in Puget Sound, Washington. Fish Bull 78:816–821

    Google Scholar 

  • Raschi W (1986) A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J Morphol 189:225–247

    Article  Google Scholar 

  • Raschi W, Aadlond C, Keithar ED (2001) A morphological and functional analysis of the ampullae of Lorenzini in selected galeoid sharks. In: Kapoor BG, Hara TJ (eds) Sensory biology of jawed fishes—new insights. Science Publishers Inc., Enfield, pp 297–316

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere, vol 1. Samson and Wallin, Stockholm

    Google Scholar 

  • Roberts BL, Ryan KP (1971) The fine structure of the lateral-line sense organs of dogfish. Proc R Soc Lond B 179:157–169

    Article  Google Scholar 

  • Schluessel V, Bennett MB, Bleckmann H, Blomberg S, Collin SP (2008) Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure–function relationships based on phylogeny and ecology. J Morphol 269:1365–1386

    Article  PubMed  Google Scholar 

  • Schluessel V, Bennett MB, Bleckmann H, Collin SP (2010) The role of olfaction throughout development: functional adaptations in elasmobranchs. J Morphol. doi:10.1002/jmor.10809

    PubMed  Google Scholar 

  • Sedberry GR, Musick JA (1978) Feeding strategies of some demersal fishes of the continental slope and rise off the Mid-Atlantic Coast of the USA. Mar Biol 44:357–375

    Article  Google Scholar 

  • Sisneros JA, Tricas TC (2002) Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina). Brain Behav Evol 59:130–140

    Article  PubMed  Google Scholar 

  • Sivak JG (1978) Optical characteristics of the eye of the spiny dogfish (Squalus acanthias). Rev Can Biol 37:209–217

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Springer, Berlin

    Google Scholar 

  • Soto JMR, Vooren CM (2004) Hydrolagus matallanasi sp. nov. (Holocephali, Chimaeridae) a new species of rabbitfish from southern Brazil. Zootaxa 687:1–10

    Google Scholar 

  • Southwood A, Fritsches K, Brill R, Swimmer Y (2008) Sound, chemical and light detection in sea turtles and pelagic fishes: sensory-based approaches to bycatch reduction in longline fisheries. Endanger Species Res 5:225–238

    Article  Google Scholar 

  • Tester AL (1963a) Olfaction, gustation and the common chemical sense in sharks. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. John Hopkins University Press, Baltimore, pp 503–531

    Google Scholar 

  • Tester AL (1963b) The role of olfaction in shark predation. Pac Sci 17:145–170

    Google Scholar 

  • Tester AL, Kendall JI, Milisen WB (1972) Morphology of the ear of the genus Carcharhinus, with particular reference to the macula neglecta. Pac Sci 26:264–274

    Google Scholar 

  • Theisen B, Zeiske E, Breucker H (1986) Functional morphology of the olfactory organs in the spiny dogfish (Squalus acanthias L.) and the small-spotted catshark (Scyliorhinus canicula (L.)). Acta Zool (Stockh) 67:73–86

    Article  Google Scholar 

  • Theiss SM, Lisney TJ, Collin SP, Nart NS (2007) Colour vision and visual ecology of the blue-spotted maskray Dasyatis kuhlii Müller & Henle, 1814. J Comp Physiol A 193:67–79

    Article  Google Scholar 

  • Theiss SM, Hart NS, Collin SP (2009) Morphological indicators of olfactory capability in wobbegong sharks (Orectolobidae, Elasmobranchii). Brain Behav Evol 73:91–101

    Article  PubMed  Google Scholar 

  • Tozer H, Dagit DD (2004) Husbandry of spotted ratfish, Hydrolagus colliei. In: Smith M, Warmolts D, Thoney D, Hueter R (eds) The elasmobranch husbandry manual: captive care of sharks, rays and their relatives. Special Publication of the Ohio Biological Survey, Columbus, pp 488–491

    Google Scholar 

  • Tricas TC (1982) Bioelectric-mediated predation by swell sharks Cephaloscyllium ventriosum. Copeia 1982:948–952

    Article  Google Scholar 

  • Tricas TC (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Environ Biol Fishes 60:77–92

    Article  Google Scholar 

  • Tricas TC, Gruber SH (eds) (2001) The behavior and sensory biology of elasmobranch fishes: an anthology in memory of Donald Richard Nelson. Kluwer, Dordrecht

    Google Scholar 

  • Tricas TC, Sisneros JA (2004) Ecological functions and adaptations of the elasmobranch electrosense. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish: adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi, pp 308–329

    Google Scholar 

  • Tricas TC, Kajiura SM, Summers AP (2009) Response of the hammerhead shark olfactory epithelium to amino acid stimuli. J Comp Physiol A 195:947–954

    Article  CAS  Google Scholar 

  • Turner JR, White EM, Collins MA, Partridge JC, Douglas RH (2009) Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Res 56(1):1003–1017

    CAS  Google Scholar 

  • Vigh-Teichmann I, Szel A, Rohlich P, Vigh B (1990) A comparison of the ultrastructure and opsin immunocytochemisyty of the pineal organ and retina of the deep-sea fish Chimaera monstrosa. Exp Biol 48:361–371

    CAS  PubMed  Google Scholar 

  • Wagner H-J (2001) Brain areas in abyssal demersal fishes. Brain Behav Evol 57:301–316

    Article  CAS  PubMed  Google Scholar 

  • Wagner H-J, Fröhlich E, Negishi K, Collin SP (1998) The eyes of deep-sea fish. II. Functional morphology of the retina. Prog Retin Eye Res 17:637–685

    Article  CAS  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Google Scholar 

  • Waltman B (1966) Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta Physiol Scand 66(Suppl 262):1–60

    Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    Article  PubMed  Google Scholar 

  • Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53

    Article  CAS  PubMed  Google Scholar 

  • Whitear M, Moate RM (1994) Microanatomy of the taste buds in the dogfish, Scyliorhinus canicula. J Submicrosc Cytol Pathol 29:357–367

    Google Scholar 

  • Whitehead DL (2002) Ampullary organs and electroreception in freshwater Carcharhinus leucas. J Physiol (Paris) 96:391–395

    Article  Google Scholar 

  • Wueringer BE, Tibbetts IR (2008) Comparison of the lateral line and ampullary system of two species of shovelnose ray. Rev Fish Biol Fish 18:47–64

    Article  Google Scholar 

  • Yopak KE, Frank LR (2009) Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging. Brain Behav Evol 74:121–142

    Article  PubMed  Google Scholar 

  • Yopak KE, Montgomery JC (2008) Brain organization and specialization in deep-sea chondrichthyans. Brain Behav Evol 71:287–304

    Article  PubMed  Google Scholar 

  • Zeiske E, Theisen B, Gruber SH (1987) Functional morphology of the olfactory organ of two carcharhinid shark species. Can J Zool 65:2406–2412

    Article  Google Scholar 

Download references

Acknowledgments

The author was supported by a post-doctoral stipend from the Carl Tryggers Foundation for Scientific Research while writing this review. The comments from two anonymous reviewers greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Lisney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisney, T.J. A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Rev Fish Biol Fisheries 20, 571–590 (2010). https://doi.org/10.1007/s11160-010-9162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-010-9162-x

Keywords

Navigation