Skip to main content
Log in

Lack of reproductive isolation between the Western and Eastern phylogroups of the tench

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The Eurasian range of the tench distribution is subdivided into deeply divergent Western and Eastern phylogroups evidenced by nuclear and mitochondrial DNA sequence markers. A broad zone of overlap exists in central and western Europe, suggesting post-glacial contact with limited hybridisation. We conducted a population genetic test of this indication that the two phylogroups may represent distinct species. We analysed variation at introns of nuclear genes, microsatellites, allozymes and mitochondrial DNA in populations from two postglacial lakes within the contact zone in Germany. The test is based on the expectation that in the presence of strong barriers to reproduction, a hybrid population will show genome-wide associations among alleles and genotypes from each phylogroup even after hundreds of generations of interbreeding. In contrast to this expectation, no consistent significant deviations from linkage and Hardy–Weinberg equilibria were found. Samples from both lakes did show significant disequilibria but they were limited to individual loci and were not concordant between populations, and were not robust to the method used. The single consistent association can be attributed to physical linkage between two microsatellite loci. Thus, results of our study support the hypothesis of free interbreeding between the two phylogroups of tench. Therefore, although the phylogroups may be considered as separate phylogenetic species, the present data suggest that they are a single species under the biological species concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebersold PB, Winans GA, Teel DJ, Millner GB, Utter FM (1987) Manual for starch gel electrophoresis: A method for the detection of genetic variation. NOAA Technical Report NMFS 61. U.S. Department of Commerce

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1299

    PubMed  CAS  Google Scholar 

  • Avise JC, Walker D, Johns GC (1998) Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc R Soc Lond B 265:1707–1712

    Article  CAS  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Bănărescu PM (1991) Zoogeography of fresh waters, 2: distribution and dispersal of fresh water animals in North America and Eurasia. AULA-Verlag, Wiesbaden

    Google Scholar 

  • Barton NH, Gale KS (1993) Genetic analysis of hybrid zones. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 13–45

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Genetix 4.05, Logiciel sous Windows pour la Génétique des Populations. Laboratoire Genome, Populations, Interactions, CNRS UMR. 5171. Université de Montpellier II, Montpellier

    Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of nearctic and palearctic freshwater fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Black WC IV, Krafsur ES (1985) A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet 70:491–496

    Article  Google Scholar 

  • Boecklen WJ, Howard DJ (1997) Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78:2611–2616

    Article  Google Scholar 

  • Buerkle CA, Lexer C (2008) Admixture as the basis for genetic mapping. Trends Ecol Evol 23:686–694

    Article  PubMed  Google Scholar 

  • Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo M, Sordino P (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci USA 104:9364–9369

    Article  PubMed  CAS  Google Scholar 

  • Carstens BC, Knowles LL (2007) Shifting distributions and speciation: species divergence during rapid climate change. Mol Ecol 16:619–627

    Article  PubMed  Google Scholar 

  • Chow S, Hazama K (1998) Universal primer for S7 ribosomal protein gene intron in fish. Mol Ecol 7:1255–1256

    PubMed  CAS  Google Scholar 

  • Clayton JW, Tretiak DN (1972) Amine-citrate buffers for pH control in starch gel electrophoresis. J Fish Res Board Can 29:1169–1172

    CAS  Google Scholar 

  • Cockerham CC, Weir BS (1977) Digenic descent measures for finite populations. Genet Res 30:121–147

    Article  Google Scholar 

  • Dallas JF, Dod B, Boursot P, Prager EM, Bonhomme F (1995) Population subdivision and gene flow in Danish house mice. Mol Ecol 4:311–320

    Article  PubMed  CAS  Google Scholar 

  • Durand JD, Persat H, Bouvet Y (1999) Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Mol Ecol 8:989–997

    Article  PubMed  CAS  Google Scholar 

  • Ehlers J, Eissmann L, Lippstreu L, Stephan H-J, Wansa S (2004) Pleistocene glaciations of Northern Germany. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology. Elsevier B.V., Amsterdam, pp 135–146

    Chapter  Google Scholar 

  • Epifanio JM, Philipp DP (1997) Sources for misclassifying genealogical origins in mixed hybrid populations. J Hered 88:62–65

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Garnier-Géré P, Dillmann C (1992) A computer program for testing pairwise linkage disequilibria in subdivided populations. J Hered 83:239

    PubMed  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1954) An exact test for randomness of mating. J Genet 52:631–635

    Google Scholar 

  • Hendry AP, Vamosi SM, Latham SJ, Heilbuth JC, Day T (2000a) Questioning species realities. Conserv Genet 1:67–76

    Article  CAS  Google Scholar 

  • Hendry AP, Wenburg JK, Bentzen P, Volk EC, Quinn TP (2000b) Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290:516–518

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic changes in the Quaternary. Phil Trans R Soc Lon B 359:183–195

    Google Scholar 

  • Hofreiter M, Serre D, Rohland N, Rabeder G, Nagel D, Conard N, Münzel S, Pääbo S (2004) Lack of phylogeography in European mammals before the last glaciation. Proc Natl Acad Sci USA 101:12963–12968

    Article  PubMed  CAS  Google Scholar 

  • Jahns S (2000) Late-glacial and Holocene woodland dynamics and land-use history of the Lower Oder valley, north-eastern Germany, based on two, AMS 14C dated, pollen profiles. Veg Hist Archaeobot 9:111–123

    Article  Google Scholar 

  • Knowles LL (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Mol Ecol 10:691–701

    Article  PubMed  CAS  Google Scholar 

  • Kohlmann K, Kersten P (1998) Enzyme variability in a wild population of tench (Tinca tinca). Pol Arch Hydrobiol 45:303–310

    CAS  Google Scholar 

  • Kohlmann K, Kersten P (2006) Microsatellite loci in tench: isolation and variability in a test population. Aquac Int 14:3–7

    Article  CAS  Google Scholar 

  • Kohlmann K, Kersten P, Flajšhans M (2007) Comparison of microsatellite variability in wild and cultured tench (Tinca tinca). Aquaculture 272S1:S147–S151

    Article  Google Scholar 

  • Kohlmann K, Kersten P, Panicz P, Memiş D, Flajšhans M (2009) Genetic variability and differentiation of wild and cultured tench populations inferred from microsatellite loci. Rev Fish Biol Fisher. doi:10.1007/s11160-009-9138-x

  • Kotlík P, Berrebi P (2001) Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Mol Ecol 10:2177–2185

    Article  PubMed  Google Scholar 

  • Kotlík P, Bogutskaya NG, Ekmekçi FG (2004) Circum Black Sea phylogeography of Barbus freshwater fishes: divergence in the Pontic glacial refugium. Mol Ecol 13:87–95

    Article  PubMed  CAS  Google Scholar 

  • Lajbner Z, Linhart O, Kotlik P (2007) Molecular phylogeography of the tench Tinca tinca (Linnaeus, 1758). In: Buj I, Zanella L, Mrakovcic M (eds) The 12th European congress of ichthyology, book of abstracts, Cavtat, 2007, p 35

  • Lajbner Z, Šlechtová V, Šlechta V, Švátora M, Berrebi P, Kotlík P (2009) Rare and asymmetrical hybridization of the endemic Barbus carpathicus with its widespread congener B. barbus. J Fish Biol 74:418–436

    Article  CAS  Google Scholar 

  • Machordom A, Doadrio I (2001) Evidence of a cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol Phylogenet Evol 18:252–263

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • McCune A, Lovejoy NR (1998) The relative rate of sympatric and allopatric speciation in fishes. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 172–185

    Google Scholar 

  • Mishler BD, Theriot EC (2000) The phylogenetic species concept (sensu Mishler and Theriot): monophyly, apomorphy, and phylogenetic species concepts. In: Wheeler QD, Meier R (eds) Species concepts and phylogenetic theory. A debate. Columbia University Press, NY, pp 44–54

    Google Scholar 

  • Muscheler R, Kromer B, Björck S, Svensson A, Friedrich M, Kaiser KF, Southon J (2008) Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nat Geosci 1:263–267

    Article  CAS  Google Scholar 

  • Nagylaki T (1976) The evolution of one- and two-locus systems. Genetics 83:583–600

    PubMed  CAS  Google Scholar 

  • Nagylaki T (1977) The evolution of one- and two-locus systems II. Genetics 85:347–354

    PubMed  CAS  Google Scholar 

  • Near TJ, Benard MF (2004) Rapid allopatric speciation in logperch darters (Percidae: Percina). Evolution 58:2798–2808

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nesbø CL, Fossheim T, Vøllestad LA, Jakobsen KS (1999) Genetic divergence and phylogeographic relationship among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonisation. Mol Ecol 8:1387–1404

    Article  PubMed  Google Scholar 

  • Nikinmaa M, Waser W (2007) Molecular and cellular studies in evolutionary physiology of natural vertebrate populations: influences of individual variation and genetic components on sampling and measurements. J Exp Biol 210:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Page RD, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell, Oxford

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1283–1286

    Article  Google Scholar 

  • Ridgway GJ, Sherburne SW, Lewis RD (1970) Polymorphism in the esterases of Atlantic herring. Trans Am Fish Soc 99:147–151

    Article  CAS  Google Scholar 

  • Rieseberg LH, Linder RC (1999) Hybrid classification: insights from genetic map-based studies of experimental hybrids. Ecology 80:361–370

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140:1413–1419

    PubMed  CAS  Google Scholar 

  • Shaklee JB, Allendorf FW, Morizot DC, Whitt GS (1990) Gene nomenclature for the protein-coding loci in fish. Trans Am Fish Soc 119:2–15

    Article  CAS  Google Scholar 

  • Shaw CR, Prasad R (1970) Starch gel electrophoresis of enzymes–a compilation of recipes. Biochem Genet 4:297–320

    Article  PubMed  CAS  Google Scholar 

  • Šlechtová V, Šlechta V, Valenta M (1995) Genetic protein variability in tench (Tinca tinca L.) stocks in Czech republic. Pol Arch Hydrobiol 42:133–140

    Google Scholar 

  • Städler T, Arunyawat U, Stephan W (2008) Population genetics of speciation in two closely related wild tomatoes (Solanum section Lycopersicon). Genetics 178:339–350

    Article  PubMed  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, Hoboken

    Book  Google Scholar 

  • Touriya A, Rami M, Cattaneo-Berrebi G, Ibanez C, Augros S, Boissin E, Dakkak A, Berrebi P (2003) Primers for EPIC amplification of intron sequences for fish and other vertebrate population genetic studies. BioTechniques 35:676–678, 680, 682

    PubMed  CAS  Google Scholar 

  • Vuorinen J (1984) Electrophoretic expression of genetic variation and duplicate gene activity in vandace, Coregonus albula (Salmonidae). Hereditas 101:85–96

    Article  CAS  Google Scholar 

  • Waters JM, Rowe DL, Apte S, King TM, Wallis GP, Anderson L, Norris RJ, Craw D, Burridge CP (2007) Geological dates and molecular rates: rapid divergence of rivers and their biotas. Syst Biol 56:271–282

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wheeler QD, Platnick NI (2000) The phylogenetic species concept (sensu Wheeler and Platnick). In: Wheeler QD, Meier R (eds) Species concepts and phylogenetic theory. A debate. Columbia University Press, NY, pp 55–69

    Google Scholar 

  • Zaykin D, Zhivotovsky LA, Weir BS (1995) Exact test for association between alleles at arbitrary number of loci. Genetica 96:169–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Petra Kersten for laboratory assistance and Silvia Marková and Petr Ráb for advice. The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (LC06073, MSM6007665809), and by the Academy of Sciences of the Czech Republic (IRP IAPG AV0Z50450515, IGA UZFG/05/22 and IGA UZFG/08/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Lajbner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lajbner, Z., Kohlmann, K., Linhart, O. et al. Lack of reproductive isolation between the Western and Eastern phylogroups of the tench. Rev Fish Biol Fisheries 20, 289–300 (2010). https://doi.org/10.1007/s11160-009-9137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-009-9137-y

Keywords

Navigation