Reviews in Fish Biology and Fisheries

, Volume 19, Issue 3, pp 313–327 | Cite as

On the stock estimation for some fishery systems

  • A. Guiro
  • A. IggidrEmail author
  • D. Ngom
  • H. Touré
Research Paper


In this work we address the stock estimation problem for two fishery models. We show that a tool from nonlinear control theory called “observer” can be helpful to deal with the resource stock estimation in the field of renewable resource management. It is often difficult or expensive to measure all the state variables characterising the evolution of a given population system, therefore the question arises whether from the observation of certain indicators of the considered system, the whole state of the population system can be recovered or at least estimated. The goal of this paper is to show how some techniques of control theory can be applied for the approximate estimation of the unmeasurable state variables using only the observed data together with the dynamical model describing the evolution of the system. More precisely we shall consider two fishery models and we shall show how to built for each model an auxiliary dynamical system (the observer) that uses the available data (the total of caught fish) and which produces a dynamical estimation \(\hat x(t)\) of the unmeasurable stock state x(t). Moreover the convergence speed of \(\hat x(t)\) towards x(t) can be chosen.


Fishery models Stage-structured population models Estimation Harvested fish population Observers 



We thank the anonymous referees for their valuable comments and suggestions that have helped us to improve the presentation of this article.


  1. Alamir M, Calvillo-Corona L (2002) Further results on nonlinear receding-horizon observers. IEEE Trans Autom Control 47(7):1184–1188CrossRefGoogle Scholar
  2. Alcaraz-Gonzalez V, Salazar-Pena R, Gonzalez-Alvarez V, Gouze J-L, Steyer J-P (2005) A tunable multivariable nonlinear robust observer for biological systems. Comptes Rendus Biol 328(4):317–325CrossRefGoogle Scholar
  3. Aniţa S (1998) Optimal harvesting for a nonlinear age-dependent population dynamics. J Math Anal Appl 226(1):6–22CrossRefGoogle Scholar
  4. Atassi A, Khalil H (2000) Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Syst Control Lett 39(3):183–191CrossRefGoogle Scholar
  5. Bernard O, Sallet G, Sciandra A (1998) Nonlinear observers for a class of biological systems: application to validation of a phytoplanktonic growth model. IEEE Trans Autom Control 43:1056–1065CrossRefGoogle Scholar
  6. Bestle D, Zeitz M (1983) Canonical form observer design for non-linear time-variable systems. Int J Control 38(2):419–431CrossRefGoogle Scholar
  7. Bornard G, Hammouri H (1991) A high gain observer for a class of uniformly observable systems. Proceedings of the 30th IEEE conference on decision and control, vol 2, pp 1494–1496, December 1991Google Scholar
  8. Clark CW (1990) Mathematical bioeconomics. The optimal management of renewable resources, 2nd edn. Wiley-Interscience Publication, New YorkGoogle Scholar
  9. Dubey B, Chandra P, Sinha P (2003) A model for fishery resource with reserve area. Nonlinear Anal Real World Appl 4(4):625–637CrossRefGoogle Scholar
  10. Farza M, Busawon K, Hammouri H (1998) Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors. Automatica 34:301–318CrossRefGoogle Scholar
  11. Gao S, Chen L, Sun L (2005) Optimal pulse fishing policy in stage-structured models with birth pulses. Chaos, Solitons & Fractals 25(5):1209–1219CrossRefGoogle Scholar
  12. Gauthier JP, Kupka I (1994) Observability and observers for nonlinear systems. SIAM J Control Optim 32(4):975–994CrossRefGoogle Scholar
  13. Gauthier JP, Kupka I (2001) Deterministic observation theory and applications. Cambridge University Press, CambridgeGoogle Scholar
  14. Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Autom Control 37:875–880CrossRefGoogle Scholar
  15. Guiro A, Iggidr A, Ngom D, Touré H (2008) A non linear observer for a fishery model. In: Proceedings of 17th Triennial IFAC World Congress, Seoul, Korea, July 6–11, 2008Google Scholar
  16. Gulland JA (1983) Fish stock assessment, a manual of basic methods. Wiley, ChichesterGoogle Scholar
  17. Horwood JW, Whittle P (1986) The optimal harvest from a multicohort stock. IMA J Math Appl Med Biol 3(2):143–155CrossRefGoogle Scholar
  18. Iggidr A (2004) Controllability, observability and stability of mathematical models, in Mathematical Models. In: Filar JA (ed) Encyclopedia of life support systems (EOLSS). Developed under the auspices of the UNESCO, Eolss Publishers, Oxford, UK. Retrieved 31 Jan 2006
  19. Iggidr A, Sallet G (1993) Exponential stabilization of nonlinear systems by an estimated state feedback. In: Proceedings of the 2nd European control conference ECC’93. Groningen, Pays-BasGoogle Scholar
  20. Isidori A (1995) Nonlinear control systems, 3rd edn. Communications and Control Engineering Series. Springer, BerlinGoogle Scholar
  21. Jacobs OLR, Ballance DJ, Horwood JW (1991) Fishery management as a problem in feedback-control. Automatica 27(4):627–639CrossRefGoogle Scholar
  22. Kang W (2006) Moving horizon numerical observers of nonlinear control systems. IEEE Trans Automat Control 51(2):344–350CrossRefGoogle Scholar
  23. Kar TK (2004) Management of a fishery based on continuous fishing effort. Nonlinear Anal: Real World Appl 5(4):629–644CrossRefGoogle Scholar
  24. Kreisselmeier G, Engel R (2003) Nonlinear observers for autonomous Lipschitz continuous systems. IEEE Trans Automat Control 48:451–464CrossRefGoogle Scholar
  25. Krener AJ, Respondek W (1985) Nonlinear observers with linearizable error dynamics. SIAM J Control Optim 23:197–216CrossRefGoogle Scholar
  26. Krener AJ, Xiao M (2002) Nonlinear observer design in the Siegel domain. SIAM J Control Optim 41:932–953CrossRefGoogle Scholar
  27. López I, Gámez M, Garay J, Varga Z (2007) Monitoring in a lotka-volterra model. Biosystems 87(1):68–74PubMedCrossRefGoogle Scholar
  28. Luenberger DG (1971) An introduction to observers. IEEE Trans Automat Control 16:596–602CrossRefGoogle Scholar
  29. Marutani T (2008) On the optimal path in the dynamic pool model for a fishery. Rev Fish Biol Fish 18(2):133–141CrossRefGoogle Scholar
  30. Mchich R, Charouki N, Auger P, Raissi N, Ettahiri O (2006) Optimal spatial distribution of the fishing effort in a multi fishing zone model. Ecol Model 197(3-4):274–280CrossRefGoogle Scholar
  31. Michalska H, Mayne D (1995) Moving horizon observers and observer-based control. IEEE Trans Autom Control 40(6):995–1006CrossRefGoogle Scholar
  32. Moraal P, Grizzle J (1995) Observer design for nonlinear systems with discrete-time measurements. IEEE Trans Autom Control 40(3):395–404CrossRefGoogle Scholar
  33. Ngom D, Iggidr A, Guiro A, Ouahbi A (2008) An observer for a nonlinear age-structured model of a harvested fish population. Math Biosci Eng 5(2):337–354PubMedGoogle Scholar
  34. Ouahbi A, Iggidr A, El Bagdouri M (2003) Stabilization of an exploited fish population. Syst Anal Model Simulation 43:513–524CrossRefGoogle Scholar
  35. Rapaport A, Maloum A (2004) Design of exponential observers for nonlinear systems by embedding. Int J Robust Nonlinear Control 14(3):273–288CrossRefGoogle Scholar
  36. Sontag ED (1998) Mathematical control theory. Deterministic finite-dimensional systems, volume 6 of Texts in applied mathematics. Springer-Verlag, New YorkGoogle Scholar
  37. Tornambe A (1989) Use of asymptotic observers having-high-gains in the state and parameter estimation. Proceedings of the 28th IEEE conference on decision and control, vol 2, pp 1791–1794, December 1989Google Scholar
  38. Torres LA, Ibarra-Junquera V, Escalante-Minakata P, Rosu HC (2007) High-gain nonlinear observer for simple genetic regulation process. Phys A Stat Mech Appl 380:235–240CrossRefGoogle Scholar
  39. Touzeau S (1997) Modèles de contrôle en gestion des pêches. Thesis, University of Nice-Sophia Antipolis, FranceGoogle Scholar
  40. Touzeau S, Gouzé J-L (1998) On the stock–recruitment relationships in fish population models. Environ Model Assess 3:87–93CrossRefGoogle Scholar
  41. White C, Kendall BE (2007) A reassessment of equivalence in yield from marine reserves and traditional fisheries managament. Oikos 116(12):2039–2043CrossRefGoogle Scholar
  42. Zeitz M (1987) The extended Luenberger observer for nonlinear systems. Syst Control Lett 9:149–156CrossRefGoogle Scholar
  43. Zimmer G (1994) State observation by on-line minimization. Int J Control 60:595–606CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Mathématique des Equations (LAME), Faculté des Sciences et TechniquesUniversité de OuagadougouOuagadougouBurkina Faso
  2. 2.INRIA Nancy – Grand Est and University Paul Verlaine-MetzMetz Cedex 01France
  3. 3.Laboratoire d’Analyse Numérique et d’Informatique (LANI), UFR de Sciences Appliquées et de TechnologieUniversité Gaston BergerSaint-LouisSenegal

Personalised recommendations