International Review of Education

, Volume 61, Issue 1, pp 79–97 | Cite as

Pathways from adult education to well-being: The Tuijnman model revisited

Original Paper

Abstract

There is a growing interest among researchers and policy-makers in the influence of adult learning on a range of outcomes, notably health and well-being. Much of the research to date has tended to focus on younger adults and the immediate benefits of course participation. The longer-term outcomes, such as the potential of accumulated learning experience for enriching later life, have been neglected. The study presented in this article adopts a lifecourse approach to participation in learning and the potential benefits of learning. The authors concentrate on adult education in mid-life, that is between the ages of 33 and 50, as the measure of learning participation. Their research draws upon previous work conducted by Albert Tuijnman which used Swedish data and which was published a quarter of a century ago in the pages of the International Review of Education. The authors of this paper seek to replicate and extend his pioneering work, using data from the National Child Development Study (NCDS), a large-scale survey containing information on all those born in Britain in one week in 1958. Follow-up data were collected at various points in childhood and adulthood, most recently when the cohort reached the age of 50, thus enabling insights into long-term developments. The authors analyse well-being at age 50 as an outcome in structural equation models (SEM). This approach helps to understand the pathways through which adult education has an impact on well-being. The estimated models show how adult education in mid-life has an influence on the type and quality of jobs which are accessible to individuals, and how this in turn can contribute to higher well-being at age 50.

Keywords

Adult education Well-being Qualifications Mid-life Structural equation models 

Résumé

Parcours pour passer de l’éducation des adultes au bien-être : le modèle de Tuijnman revisité – Les chercheurs et décideurs montrent un intérêt croissant pour l’influence positive de l’apprentissage à l’âge adulte sur divers domaines, en particulier la santé et le bien-être. La recherche a en grande partie tendance à se concentrer sur les jeunes adultes et sur les bienfaits immédiats de leur participation. Les répercussions à long terme, telles que le potentiel de l’expérience éducative accumulée qui enrichit l’âge mûr, ont jusqu’alors été négligées. L’étude présentée ici adopte une approche axée sur les parcours de vie de la participation à l’apprentissage et de ses bienfaits potentiels. Les auteurs se penchent sur l’éducation des adultes en milieu de vie, à savoir entre 33 et 50 ans, qui constitue la mesure de la participation à l’apprentissage. Leur recherche s’appuie sur le travail d’Albert Tuijnman effectué à partir de données collectées en Suède et publié il y a 25 ans dans la Revue internationale de l’éducation. Ils tentent de reproduire et d’étendre ce travail de pionnier à partir des données de l’enquête nationale britannique sur le développement infantile réalisée à grande échelle, qui fournissent des renseignements sur toutes les personnes nées en Grande-Bretagne au cours d’une semaine de l’année 1958. Les données ultérieures ont été collectées à diverses étapes de l’enfance et de l’âge adulte, plus récemment lorsque la cohorte a atteint l’âge de 50 ans, livrant ainsi des éclaircissements sur l’évolution à long terme. Les auteurs analysent le critère du bien-être à l’âge de 50 ans, résultant de modèles d’équations structurelles. Cette méthode contribue à cerner les parcours favorisant l’impact de l’éducation des adultes sur le bien-être. Les modèles évalués signalent que l’éducation des adultes accomplie en milieu de vie exerce une influence sur le type et la qualité des activités professionnelles accessibles aux individus, et que ce critère peut contribuer à son tour à un bien-être accru à l’âge de 50 ans.

References

  1. Arbuckle, J. L. (1996). Full information estimation in presence of incomplete data. In G. A. Marcoulides & R. E. Schumaker (Eds.), Advanced structural equation modelling: Issues and techniques (pp. 243–277). Mahwah, NJ: Erlbaum.Google Scholar
  2. Blundell, R., Dearden, L., & Sianesi, B. (2005). Measuring the returns to education. In S. Machin & A. Vignoles (Eds.), What’s the good of education? The economics of education in the UK. Princeton, NJ: Princeton University Press.Google Scholar
  3. Bowling, N., Eschleman, K., & Wang, Q. (2010). A meta-analytic examination of the relationship between job satisfaction and subjective well-being. Journal of Occupational and Organizational Psychology, 83(4), 915–934.CrossRefGoogle Scholar
  4. Bynner, J. (2010). Lifelong learning, the life course and longitudinal study: Building the evidence base. In J. Derrick, et al. (Eds.), Remaking adult learning: Essays on adult education in honour of Alan Tuckett. London: Institute of Education, University of London.Google Scholar
  5. Byrne, M. B. (2012). Structural equation modelling with Mplus: Basic concepts, applications and programming., Multivariate applications series New York: Routledge.Google Scholar
  6. Carpenter, J., & Plewis, I. (2011). Analysing longitudinal studies with non-response: Issues and statistical methods. In M. Williams & W. P. Vogt (Eds.), The Sage handbook of innovation in social research methods (pp. 498–523). London: Sage.CrossRefGoogle Scholar
  7. Desjardins, R. (2008). Researching the links between education and well-being. European Journal of Education, 43(1), 23–35.CrossRefGoogle Scholar
  8. Ekström, E. (2003). Earning effects of adult secondary education in Sweden, Working paper 2003:16. Stockholm: Institute for Labour Market Policy Evaluation.Google Scholar
  9. Enders, C. (2010). Applied missing data analysis. London: Guilford Press.Google Scholar
  10. Feinstein, L., Budge, D., Vorhaus, J., & Duckworth, K. (2008). The social and personal benefits of learning: A summary of key research findings. London: Centre for Research on the Wider Benefits of Learning, Institute of Education, University of London.Google Scholar
  11. Feinstein, L., & Hammond, C. (2004). The contribution of adult learning to health and social capital. London: Institute of Education, University of London.Google Scholar
  12. Field, J. (2009). Good for your soul? Adult learning and mental well-being. International Journal of Lifelong Education, 28(2), 175–191.CrossRefGoogle Scholar
  13. Field, J. (2011). Researching the benefits of learning: The persuasive power of longitudinal studies. London Review of Education, 9(3), 283–292.CrossRefGoogle Scholar
  14. Green, F. (2006). Demanding work. The paradox of job quality in the affluent economy. Princeton: Princeton University Press.Google Scholar
  15. Green, F. (2008). Work effort and worker well-being in the age of affluence. In R. J. Burke & C. L. Cooper (Eds.), The long work hours culture: Causes, consequences and choices (pp. 115–136). Bingley: Emerald.Google Scholar
  16. Hammond, C., & Feinstein, L. (2006). Are those who flourished at school healthier adults? What role for adult education?. London: Centre for Research on the Wider Benefits of Learning, Institute of Education, University of London.Google Scholar
  17. Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications. Thousand Oaks, CA: Sage.Google Scholar
  18. Hyde, M., Wiggins, R. D., Blane, D., & Higgs, P. (2003). A measure of quality of life in early old age: The theory, development and properties of a needs satisfaction model (CASP-19). Aging and Mental Health, 7(3), 186–194.CrossRefGoogle Scholar
  19. Jenkins, A. (2011). Participation in learning and wellbeing among older adults. International Journal of Lifelong Education, 30(3), 403–420.CrossRefGoogle Scholar
  20. Jenkins, A., Greenwood, C. & Vignoles, A. (2007). The returns to qualifications in England (Report no. 89). London: Centre for the Economics of Education, LSE.Google Scholar
  21. Jenkins, A., & Wolf, A. (2005). Employers’ selection decisions: The role of qualifications and tests. In S. Machin, A. Vignoles, & A. Vignoles (Eds.), What’s the good of education? The economics of education in the UK. Princeton, NJ: Princeton University Press.Google Scholar
  22. Jessup, G. (1991). Outcomes: NVQs and the emerging model of education and training. London: Falmer.Google Scholar
  23. Jöreskog, K. G., & Sörbom, S. D. (1979). Advances in factor analysis and structural equation modelling. Cambridge, MA: Abt Books.Google Scholar
  24. Kaplan, D. (2009). Structural equation modeling: Foundations and extensions. London: Sage.Google Scholar
  25. Layard, R. (2011). Happiness: Lessons from a new science (2nd ed.). London: Penguin.Google Scholar
  26. Little, R., & Rubin, D. (1987). Statistical analysis with missing data. New York: Wiley.Google Scholar
  27. Michalos, A. C. (1986). Job satisfaction, marital satisfaction and the quality of life: A review and a preview. In E. M. Andrews (Ed.), Research on the quality of life (pp. 57–83). Ann Arbor, MI: Institute for Social Research, The University of Michigan.Google Scholar
  28. Muthén, L., & Muthén, B. (2010). Mplus statistical analysis with latent variables. User’s guid (6th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  29. Rice, R. W., Hunt, R. G., & Near, J. P. (1980). The job-satisfaction/life-satisfaction relationship: A review of empirical research. Basic and Applied Social Psychology, 1(1), 37–64.CrossRefGoogle Scholar
  30. Rubenson, K. (1997). Sweden: The impact of the politics of participation. In P. Bélanger & S. Valdivielso (Eds.), The emergence of learning societies: Who participates in adult learning? (pp. 91–93). Oxford: Pergamon.Google Scholar
  31. Schuller, T., Brassett-Grundy, A., Green, A., Hammond, C., & Preston, J. (2002). Learning, continuity and change in adult life. London: Institute of Education.Google Scholar
  32. Schuller, T., Preston, J., Hammond, C., Brassett-Grundy, A., & Bynner, J. (2004). The benefits of learning: The impact of education on health, family life and social capital. London: Routledge Falmer.Google Scholar
  33. Tuijnman, A. (1989). Recurrent education, earnings and well-being: A Fifty-year longitudinal study of a cohort of Swedish men. Stockholm studies in educational psychology Stockholm: Almqvist & Wiksell International.Google Scholar
  34. Tuijnman, A. (1990). Adult education and the quality of life. International Review of Education, 36(3), 283–298.CrossRefGoogle Scholar
  35. Westover, J. (2011). The relationship between job satisfaction and other important individual, organizational, and social outcomes. The International Journal of Science in Society, 2(1), 63–76.Google Scholar
  36. Wiggins, R. D., Higgs, P., Hyde, M., & Blane, D. (2004). Quality of life in the third age: Key predictors of the CASP-19 measure. Ageing & Society, 24(5), 693–708.CrossRefGoogle Scholar
  37. Wiggins, R. D., Netuveli, G., Hyde, M., Higgs, P., & Blane, D. (2008). The evaluation of a self-enumerated scale of quality of life (CASP-19) in the context of research on ageing: A combination of exploratory and confirmatory approaches. Social Indicators Research, 89(1), 61–77.CrossRefGoogle Scholar
  38. Wolf, A., Jenkins, A., & Vignoles, A. (2006). Certifying the workforce: Economic imperative or failed social policy? Journal of Education Policy, 21(5), 535–565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and UNESCO Institute for Lifelong Learning 2015

Authors and Affiliations

  1. 1.Department of Quantitative Social Science, UCL Institute of EducationUniversity College LondonLondonUK

Personalised recommendations