Skip to main content
Log in

Recent advancement in enhanced soil flushing for remediation of petroleum hydrocarbon-contaminated soil: a state-of-the-art review

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2023

This article has been updated

Abstract

Remediation of persistent organic pollutants in soil especially total petroleum hydrocarbon (TPH) is of global concern due to its toxicity and health implications. Soil flushing has been considered a promising technique among in-situ technologies for treating non-volatile TPH-contaminated soils because it weakens the interaction between hydrocarbons and soil particles to enhance pollutant mobilization efficiency. It is still challenging to optimize the soil flushing treatment because the overall efficacy significantly depends on the environmental characteristics of the subsurface. Advanced soil flushing strategies (e.g., integrating with oxidation, air sparging, and nanoparticles) and novel flushing solutions are discussed to overcome the limitations of the existing process during the remediation of soil systems contaminated with recalcitrant TPH. The flushed-out toxic chemicals comprise a large amount of waste solution, creating another pollutant. The present review summarizes the enhanced soil flushing techniques, and critically discusses their advantages and disadvantages, and addresses follow-up remediation of the generated wash solution containing toxic substances for its safe discharge. Fundamental information on soil flushing is discussed to overcome the challenges encountered during field application such as poor efficiency, high operating cost, and a large amount of generated secondary wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

AOPs:

Advanced oxidation processes

BTEX:

Benzene, toluene, ethylbenzene, and xylenes

CDs:

Cyclodextrins

CMC:

Critical micelle concentration

EKSF:

Electro-kinetic soil flushing

HP-γ-CD:

Hydroxypropyl-γ-cyclodextrin

ISCO:

In-situ chemical oxidation

MEUF:

Micellar-enhanced ultrafiltration

MWCNT:

Multi-walled carbon nanotubes

NAPLs:

Non-aqueous phase liquids

NPs:

Nanoparticles

nZVI:

Nano zero-valent iron

PCB:

Polychlorinated biphenyl

RAMEB:

Randomly methylated-β-cyclodextrin

ROI:

Radius of the influence

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

SEAS:

Surfactant-enhanced air sparging

S-ISCO:

Surfactant-enhanced in-situ chemical oxidation

TPHs:

Total petroleum hydrocarbons

VOCs:

Volatile organic compounds

References

  • Abdulsalam S, Bugaje IM, Adefila SS, Ibrahim S (2011) Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int J Environ Sci Technol 8(1):187–194. https://doi.org/10.1007/BF03326208

    Article  CAS  Google Scholar 

  • Ahn CK, Kim YM, Woo SH, Park JM (2008) Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154(1–3):153–160. https://doi.org/10.1016/j.jhazmat.2007.10.006

    Article  CAS  Google Scholar 

  • Ahn CK, Kim YM, Woo SH, Park JM (2007) Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon. Chemosphere 69(11):1681–1688. https://doi.org/10.1016/j.chemosphere.2007.06.018

    Article  CAS  Google Scholar 

  • Akhlaghi N, Riahi S (2019) Salinity effect on the surfactant critical micelle concentration through surface tension measurement. Iran J Oil Gas Sci Technol 8(4):50–63

    Google Scholar 

  • Alavi N, Parseh I, Ahmadi M, Jafarzadeh N, Yari AR, Chehrazi M, Chorom M (2017) Phytoremediation of total petroleum hydrocarbons from highly saline and clay soil using Sorghum halepense (L.) Pers. and Aeluropus littoralis (Guna) Parl. Soil Sediment Contam Int J 26(1):127–140

    Article  CAS  Google Scholar 

  • Alazaiza MY, Copty NK, Abunada Z (2020) Experimental investigation of cosolvent flushing of DNAPL in double-porosity soil using light transmission visualization. J Hydrol 584:124659

    Article  CAS  Google Scholar 

  • Ali N, Bilal M, Khan A, Ali F, Iqbal HM (2020) Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci Total Environ 704:135391

    Article  CAS  Google Scholar 

  • Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez F H, Franzetti A, Vaccari M (2022) Remediation of soil polluted with petroleum hydrocarbons, and their reuse for agriculture: recent progress, challenges, and perspectives. Chemosphere 133572

  • Amirianshoja T, Junin R, Idris AK, Rahmani O (2013) A comparative study of surfactant adsorption by clay minerals. J Petrol Sci Eng 101:21–27

    Article  CAS  Google Scholar 

  • Ang CC, Abdul AS (1994) Evaluation of an ultrafiltration method for surfactant recovery and reuse during in situ washing of contaminated sites: laboratory and field studies. Groundw Monit Remediat 14(3):160–171

    Article  CAS  Google Scholar 

  • Atteia O, Del Campo Estrada E, Bertin H (2013) Soil flushing: a review of the origin of efficiency variability. Rev Environ Sci Bio/technol 12(4):379–389

    Article  CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572. https://doi.org/10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  • Balba M, Al-Daher R, Al-Awadhi N, Chino H, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24(1–2):163–173

    Article  CAS  Google Scholar 

  • Bandala ER, Velasco Y, Torres LG (2008) Decontamination of soil washing wastewater using solar driven advanced oxidation processes. J Hazard Mater 160(2–3):402–407

    Article  CAS  Google Scholar 

  • Baran JRJ, Pope GA, Wade WH, Weerasooriya V (1994) Phase behavior of water/perchloroethylene/anionic surfactant systems. Langmuir 10(4):1146–1150

    Article  CAS  Google Scholar 

  • Barbosa Ferreira M, Sales Solano AM, Vieira dos Santos E, Martínez-Huitle CA, Ganiyu SO (2020) Coupling of anodic oxidation and soil remediation processes: a review. Materials 13(19):4309

    Article  Google Scholar 

  • Befkadu AA, Quanyuan C (2018) Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review. Pedosphere 28(3):383–410

    Article  CAS  Google Scholar 

  • Bello MM, Abdul Raman AA, Asghar A (2019) A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf Environ Prot 126:119–140. https://doi.org/10.1016/j.psep.2019.03.028

    Article  CAS  Google Scholar 

  • Berg JC (2017) The effect of surface-active agents in distillation processes. In: surfactants in chemical/process engineering. Routledge, pp 29–76

  • Besha AT, Bekele DN, Naidu R, Chadalavada S (2018) Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environ Technol Innov 9:303–322. https://doi.org/10.1016/j.eti.2017.08.004

    Article  Google Scholar 

  • Bettahar M, Ducreux J, Schafer G, Van Dorpe F (1999) Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site. Transp Porous Media 37(3):255–276. https://doi.org/10.1023/A:1006634728321

    Article  CAS  Google Scholar 

  • Binks BP (2017) Colloidal particles at a range of fluid-fluid interfaces. Langmuir 33(28):6947–6963. https://doi.org/10.1021/acs.langmuir.7b00860

    Article  CAS  Google Scholar 

  • Bjorlykke K (2010) Petroleum geoscience: from sedimentary environments to rock physics. Springer, Heidelberg

    Book  Google Scholar 

  • Bonal NS, Paramkusam BR, Basudhar PK (2018) Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes. J Hazard Mater 351:54–62. https://doi.org/10.1016/j.jhazmat.2018.02.036

    Article  CAS  Google Scholar 

  • Bor Jier Ben Shiau DAS, Jeffrey HH (2003) Recent development of low concentration surfactant flushing for NAPL-impacted site remediation and pollution prevention.

  • Boulakradeche MO, Akretche DE, Cameselle C, Hamidi N (2015) Enhanced electrokinetic remediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants. Electrochim Acta 174:1057–1066. https://doi.org/10.1016/j.electacta.2015.06.091

    Article  CAS  Google Scholar 

  • Boulding JR (1996) EPA environmental assessment sourcebook. CRC Press

  • Brusseau ML, Wood AL, Rao PSC (1991) Influence of organic cosolvents on the sorption kinetics of hydrophobic organic chemicals. Environ Sci Technol 25(5):903–910

    Article  CAS  Google Scholar 

  • Burns SE, Zhang M (2001) Effects of system parameters on the physical characteristics of bubbles produce through air sparging [Article]. Environ Sci Technol 35(1):204–208. https://doi.org/10.1021/es001157u

    Article  CAS  Google Scholar 

  • Cao Y, Yang B, Song Z, Wang H, He F, Han X (2016) Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Ecotoxicol Environ Saf 130:248–255

    Article  CAS  Google Scholar 

  • Carlon C (2007) Derivation methods of soil screening values in Europe: a review of national procedures towards harmonisation: a report of the ENSURE Action. EUR-OP

  • Ceschia E, Harjani JR, Liang C, Ghoshouni Z, Andrea T, Brown RS, Jessop PG (2014) Switchable anionic surfactants for the remediation of oil-contaminated sand by soil washing. RSC Adv 4(9):4638–4645

    Article  CAS  Google Scholar 

  • Chaprão MJ, Ferreira IN, Correa PF, Rufino RD, Luna JM, Silva EJ, Sarubbo LA (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron J Biotechnol 18(6):471–479

    Article  Google Scholar 

  • Chatterjee S, Kumari S, Rath S, Das S (2022) Chapter 1 - Prospects and scope of microbial bioremediation for the restoration of the contaminated sites. In: Das S, Dash HR (Eds) Microbial biodegradation and bioremediation (Second Edition). Elsevier, pp 3–31

  • Chen D, Xing B, Xie W (2007) Sorption of phenanthrene, naphthalene and o-xylene by soil organic matter fractions. Geoderma 139(3–4):329–335

    Article  CAS  Google Scholar 

  • Cheng M, Zeng GM, Huang DL, Yang CP, Lai C, Zhang C, Liu Y (2017) Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem Eng J 314:98–113. https://doi.org/10.1016/j.cej.2016.12.135

    Article  CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y (2018) Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 38(1):17–30

    Article  CAS  Google Scholar 

  • Chevalier Y, Melis F, Dalbiez JP (1992) Structure of zwitterionic surfactant micelles: micellar size and intermicellar interactions. J Phys Chem 96(21):8614–8619

    Article  CAS  Google Scholar 

  • Chuan-yu Q, Yong-sheng Z, Wei Z (2014) The influence zone of surfactant-enhanced air sparging in different media. Environ Technol 35(10):1190–1198. https://doi.org/10.1080/09593330.2013.865060

    Article  CAS  Google Scholar 

  • Dahal G, Holcomb J, Socci D (2016) Surfactant-oxidant co-application for soil and groundwater remediation. Remediat J 26(2):101–108. https://doi.org/10.1002/rem.21461

    Article  Google Scholar 

  • de Melo Henrique JM, de Andrade DC, Barros Neto EL, da Silva DR, dos Santos EV (2019) Solar-powered BDD-electrolysis remediation of soil washing fluid spiked with diesel. J Chem Technol Biotechnol 94(9):2999–3006

    Article  Google Scholar 

  • Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Article  Google Scholar 

  • dos Santos EV, Sáez C, Cañizares P, da Silva DR, Martínez-Huitle CA, Rodrigo MA (2017) Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chem Eng J 310:581–588. https://doi.org/10.1016/j.cej.2016.05.015

    Article  CAS  Google Scholar 

  • Ebuehi O, Abibo I, Shekwolo P, Sigismund K, Adoki A, Okoro I (2005) Remediation of crude oil contaminated soil by enhanced natural attenuation technique. J Appl Sci Environ Manag 9(1):103–106

    Google Scholar 

  • Effendi AJ, Ramadan BS, Helmy Q (2022a) Enhanced remediation of hydrocarbons contaminated soil using electrokinetic soil flushing–landfarming processes. Bioresour Technol Rep 17:100959

    Article  CAS  Google Scholar 

  • Effendi AJ, Ramadan BS, Helmy Q (2022b) Enhanced remediation of hydrocarbons contaminated soil using electrokinetic soil flushing—landfarming processes. Bioresour Technol Rep 17:100959. https://doi.org/10.1016/j.biteb.2022.100959

    Article  CAS  Google Scholar 

  • Fabbri D, Crime A, Davezza M, Medana C, Baiocchi C, Prevot AB, Pramauro E (2009) Surfactant-assisted removal of swep residues from soil and photocatalytic treatment of the washing wastes. Appl Catal B 92(3–4):318–325. https://doi.org/10.1016/j.apcatb.2009.08.010

    Article  CAS  Google Scholar 

  • Fanaei F, Moussavi G, Shekoohiyan S (2020) Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H2O2-stimulated biotreatment of the effluent. J Environ Manage 271:110941

    Article  CAS  Google Scholar 

  • Farn RJ (2008) Chemistry and technology of surfactants. John Wiley & Sons

  • Garcia-Cervilla R, Santos A, Romero A, Lorenzo D (2022) Simultaneous addition of surfactant and oxidant to remediate a polluted soil with chlorinated organic compounds: slurry and column experiments. J Environ Chem Eng 10(3):107625

    Article  CAS  Google Scholar 

  • Gharibzadeh F, Kalantary RR, Nasseri S, Esrafili A, Azari A (2016) Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Sep Purif Technol 168:248–256

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Pérez RA, Alonso J, Miguel E, Diez-Pascual S, Lobo MC (2022) Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Sci Rep 12(1):3541. https://doi.org/10.1038/s41598-022-07558-w

    Article  CAS  Google Scholar 

  • Gitipour S, Hedayati M, Madadian E (2015) Soil washing for reduction of aromatic and aliphatic contaminants in soil. CLEAN-Soil Air Water 43(10):1419–1425

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260

    Article  Google Scholar 

  • Gomez J, Alcantara MT, Pazos M, Sanroman MA (2010) Soil washing using cyclodextrins and their recovery by application of electrochemical technology. Chem Eng J 159(1–3):53–57. https://doi.org/10.1016/j.cej.2010.02.025

    Article  CAS  Google Scholar 

  • Gong Z, Wilke B-M, Alef K, Li P (2005) Influence of soil moisture on sunflower oil extraction of polycyclic aromatic hydrocarbons from a manufactured gas plant soil. Sci Total Environ 343(1–3):51–59

    Article  CAS  Google Scholar 

  • Gong Z, Wilke B-M, Alef K, Li P, Zhou Q (2006) Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: Laboratory column experiments. Chemosphere 62(5):780–787

    Article  CAS  Google Scholar 

  • Guan Z, Tang X-Y, Nishimura T, Katou H, Liu H-Y, Qing J (2018) Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil. J Environ Sci 64:197–206

    Article  CAS  Google Scholar 

  • Guo H, Liu Z, Yang S, Sun C (2009) The feasibility of enhanced soil washing of p-nitrochlorobenzene (pNCB) with SDBS/Tween80 mixed surfactants. J Hazard Mater 170(2–3):1236–1241

    Article  CAS  Google Scholar 

  • Guo J, Wen X (2021) Performance and kinetics of benzo(a)pyrene biodegradation in contaminated water and soil and improvement of soil properties by biosurfactant amendment. Ecotoxicol Environ Saf 207:111292. https://doi.org/10.1016/j.ecoenv.2020.111292

    Article  CAS  Google Scholar 

  • Han M, Ji G, Ni J (2009) Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside. Chemosphere 76(5):579–586

    Article  CAS  Google Scholar 

  • Hanafiah SA, Mohamed MA, Caradec S, Fatin-Rouge N (2018) Treatment of heavy petroleum hydrocarbons polluted soil leachates by ultrafiltration and oxidation for surfactant recovery. J Environ Chem Eng 6(2):2568–2576. https://doi.org/10.1016/j.jece.2018.03.055

    Article  CAS  Google Scholar 

  • Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39(12):2763–2773

    Article  CAS  Google Scholar 

  • Helmy Q, Laksmono R, Kardena E (2015) Bioremediation of aged petroleum oil contaminated soil: from laboratory scale to full scale application. Proc Chem 14:326–333

    Article  CAS  Google Scholar 

  • Hernández-Espriú A, Sánchez-León E, Martínez-Santos P, Torres LG (2013) Remediation of a diesel-contaminated soil from a pipeline accidental spill: enhanced biodegradation and soil washing processes using natural gums and surfactants. J Soils Sediments 13(1):152–165

    Article  Google Scholar 

  • Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, Liyanage C, Kolivabandara PA, Rinklebe J, Lam SS, Vinu A, Wang H, Kirkham MB, Bolan NS (2021) Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. J Hazard Mater 416:125702. https://doi.org/10.1016/j.jhazmat.2021.125702

    Article  CAS  Google Scholar 

  • Huang Z, Chen Q, Yao Y, Chen Z, Zhou J (2021) Micro-bubbles enhanced removal of diesel oil from the contaminated soil in washing/flushing with surfactant and additives. J Environ Manag 290:112570. https://doi.org/10.1016/j.jenvman.2021.112570

    Article  CAS  Google Scholar 

  • Huo L, Liu G, Yang X, Ahmad Z, Zhong H (2020) Surfactant-enhanced aquifer remediation: mechanisms, influences, limitations and the countermeasures. Chemosphere 252:126620. https://doi.org/10.1016/j.chemosphere.2020.126620

    Article  CAS  Google Scholar 

  • Hurtado Y, Beltrán C, Zabala RD, Lopera SH, Franco CA, Nassar NN, Cortés FB (2018) Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs. Energy Fuels 32(5):5824–5833. https://doi.org/10.1021/acs.energyfuels.8b00665

    Article  CAS  Google Scholar 

  • Ikrema H, Eltayeb M, Ernest Y, Win BM (2018) Enhanced electrokinetic bioremediation by pH stabilisation. Environ Geotech 5(4):222–233. https://doi.org/10.1680/jenge.16.00001

    Article  Google Scholar 

  • Ishiguro M, Koopal LK (2016) Surfactant adsorption to soil components and soils. Adv Coll Interface Sci 231:59–102. https://doi.org/10.1016/j.cis.2016.01.006

    Article  CAS  Google Scholar 

  • Iturbe R, Flores C, Chavez C, Bautista G, Torres LG (2004) Remediation of contaminated soil using soil washing and biopile methodologies at a field level. J Soils Sediments 4(2):115

    Article  CAS  Google Scholar 

  • Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C (2016) Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater 312:8–17

    Article  CAS  Google Scholar 

  • Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2020) Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Coll Interface Sci 275:102061

    Article  CAS  Google Scholar 

  • Jeong S-W, Ju B-K, Lee B-J (2009) Effects of alcohol-partitioning type and airflow on cosolvent flooding to benzene-LNAPL saturated porous media. J Hazard Mater 166(2–3):603–611

    Article  CAS  Google Scholar 

  • Jiang D, Zeng G, Huang D, Chen M, Zhang C, Huang C, Wan J (2018) Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ Res 163:217–227. https://doi.org/10.1016/j.envres.2018.01.030

    Article  CAS  Google Scholar 

  • Jousse F, Atteia O, Hohener P, Cohen G (2017) Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment. Chemosphere 188:182–189. https://doi.org/10.1016/j.chemosphere.2017.08.163

    Article  CAS  Google Scholar 

  • Karamalidis AK, Voudrias EA (2007) Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs. J Hazard Mater 148(1):122–135. https://doi.org/10.1016/j.jhazmat.2007.02.032

    Article  CAS  Google Scholar 

  • Karthick A, Roy B, Chattopadhyay P (2019a) Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. J Environ Manage 240:93–107

    Article  CAS  Google Scholar 

  • Karthick A, Roy B, Chattopadhyay P (2019b) A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. J Environ Manag 243:187–205. https://doi.org/10.1016/j.jenvman.2019.04.092

    Article  CAS  Google Scholar 

  • Khalladi R, Benhabiles O, Bentahar F, Moulai-Mostefa N (2009) Surfactant remediation of diesel fuel polluted soil. J Hazard Mater 164(2–3):1179–1184. https://doi.org/10.1016/j.jhazmat.2008.09.024

    Article  CAS  Google Scholar 

  • Kibbey TC, Pennell KD, Hayes KF (2001) Application of sieve-tray air strippers to the treatment of surfactant-containing wastewaters. AIChE J 47(6):1461–1470

    Article  CAS  Google Scholar 

  • Kim H, Choi K-M, Moon J-W, Annable MD (2006) Changes in air saturation and air–water interfacial area during surfactant-enhanced air sparging in saturated sand. J Contam Hydrol 88(1):23–35. https://doi.org/10.1016/j.jconhyd.2006.05.009

    Article  CAS  Google Scholar 

  • Kim I, Lee M (2012) Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site. J Hazard Mater 241–242:173–181. https://doi.org/10.1016/j.jhazmat.2012.09.022

    Article  CAS  Google Scholar 

  • Klimek B, Sitarz A, Choczyński M, Niklińska M (2016) The effects of heavy metals and total petroleum hydrocarbons on soil bacterial activity and functional diversity in the upper Silesia industrial region (Poland). Water Air Soil Pollut 227(8):265. https://doi.org/10.1007/s11270-016-2966-0

    Article  CAS  Google Scholar 

  • Kobayashi T, Kaminaga H, Navarro RR, Iimura Y (2012) Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. J Environ Sci Health Part A 47(8):1138–1145

    Article  CAS  Google Scholar 

  • Kulik N, Trapido M, Veressinina Y, Munter R (2007) Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation. Environ Technol 28(12):1345–1355. https://doi.org/10.1080/09593332808618896

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2013a) A membrane-integrated advanced scheme for treatment of industrial wastewater: dynamic modeling towards scale up. Chemosphere 92(10):1375–1382. https://doi.org/10.1016/j.chemosphere.2013.05.006

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2013b) Membrane-integrated hybrid bioremediation of industrial wastewater: a continuous treatment and recycling approach. J Water Reuse Desalin 3(1):26–38. https://doi.org/10.2166/wrd.2013.157

    Article  CAS  Google Scholar 

  • Kumar R, Ghosh AK, Pal P (2020) Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: a review of membrane-integrated green approach. Sci Total Environ 698:134169. https://doi.org/10.1016/j.scitotenv.2019.134169

    Article  CAS  Google Scholar 

  • Kumar R, Liu C, Ha G-S, Park Y-K, Ali Khan M, Jang M, Kim S-H, Amin MA, Gacem A, Jeon B-H (2022) Downstream recovery of Li and value-added metals (Ni Co, and Mn) from leach liquor of spent lithium-ion batteries using a membrane-integrated hybrid system. Chem Eng J 447:137507. https://doi.org/10.1016/j.cej.2022.137507

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31(2):155–161

    Article  CAS  Google Scholar 

  • Lai C-C, Huang Y-C, Wei Y-H, Chang J-S (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167(1–3):609–614

    Article  CAS  Google Scholar 

  • Lamont K, Marangoni AG, Pensini E (2020) ‘Emulsion locks’ for the containment of hydrocarbons during surfactant flushing. J Environ Sci 90:98–109. https://doi.org/10.1016/j.jes.2019.11.021

    Article  CAS  Google Scholar 

  • Lee M, Kim J, Kim I (2011) In-situ biosurfactant flushing, coupled with a highly pressurized air injection, to remediate the bunker oil contaminated site. Geosci J 15(3):313–321. https://doi.org/10.1007/s12303-011-0029-5

    Article  CAS  Google Scholar 

  • Lee G-S, Kim Y-B, Jang J-S, Um J-Y, Song S-H, Kim E-Y (2012) A field study of surfactant enhanced in-situ remediation using injection wells and recovery trench at a jet oil contaminated site. J Soil Groundw Environ 17(1):13–21

    Article  Google Scholar 

  • Lee H, Lee Y, Kim J, Kim C (2014) Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea. Int J Environ Res Public Health 11(9):8806–8824. https://doi.org/10.3390/ijerph110908806

    Article  CAS  Google Scholar 

  • Lee H, Suk H, Chen J-S, Park E (2022) Application of a developed numerical model for surfactant flushing combined with intermittent air injection at field scale. Water 14(3):316

    Article  Google Scholar 

  • Li H, Qu R, Li C, Guo W, Han X, He F, Ma Y, Xing B (2014) Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Biores Technol 163:193–198

    Article  CAS  Google Scholar 

  • Li G, Guo S, Hu J (2016a) The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil. Chem Eng J 286:191–197

    Article  CAS  Google Scholar 

  • Li S, Sun Y, Hu X, Zhang H, Luo Y, Wu X (2016b) Elution effects of surfactants on petroleum contaminants in soil. Soils 48:516–522

    Google Scholar 

  • Li D-C, Xu W-F, Mu Y, Yu H-Q, Jiang H, Crittenden JC (2018) Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis. Environ Sci Technol 52(9):5330–5338. https://doi.org/10.1021/acs.est.7b03899

    Article  CAS  Google Scholar 

  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam Int J 28(4):380–394

    Article  Google Scholar 

  • Liang C, Yang S-Y (2021) Foam flushing with soil vapor extraction for enhanced treatment of diesel contaminated soils in a one-dimensional column. Chemosphere 285:131471

    Article  CAS  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109(1):14–45. https://doi.org/10.1016/j.marpolbul.2016.04.023

    Article  CAS  Google Scholar 

  • Lin SH, Leu HG (1999) Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Res 33(7):1735–1741

    Article  CAS  Google Scholar 

  • Liptak JF, Lombardo G (1996) The development of chemical-specific, risk-based soil cleanup guidelines results in timely and cost-effective remediation. J Soil Contam 5(1):83–94

    Article  CAS  Google Scholar 

  • Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32(1):23–29. https://doi.org/10.1007/s10653-009-9262-5

    Article  CAS  Google Scholar 

  • Liu F, Oturan N, Zhang H, Oturan MA (2020) Soil washing in combination with electrochemical advanced oxidation for the remediation of synthetic soil heavily contaminated with diesel. Chemosphere 249:126176

    Article  CAS  Google Scholar 

  • Liu J-W, Wei K-H, Xu S-W, Cui J, Ma J, Xiao X-L, Xi B-D, He X-S (2021) Surfactant-enhanced remediation of oil-contaminated soil and groundwater: a review. Sci Total Environ 756:144142

    Article  CAS  Google Scholar 

  • Liu C, Kwon J-H, Prabhu SM, Ha G-S, Khan MA, Park Y-K, Jeon B-H (2022a) Efficiency of diesel-contaminated soil washing with different tween 80 surfactant concentrations, pH, and bentonite ratios. Environ Res 214:113830. https://doi.org/10.1016/j.envres.2022.113830

    Article  CAS  Google Scholar 

  • Liu J, Zhao L, Liu Q, Li J, Qiao Z, Sun P, Yang Y (2022b) A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int J Environ Sci Technol 19(1):601–624. https://doi.org/10.1007/s13762-021-03144-1

    Article  CAS  Google Scholar 

  • Liu J, Li W-Y, Chen H-X, Li S-Q, Yang L-H, Peng K-M, Cai C, Huang X-F (2023) Applications of functional nanoparticle–stabilized surfactant foam in petroleum-contaminated soil remediation. J Hazard Mater 443:130267

    Article  CAS  Google Scholar 

  • Lominchar MA, Lorenzo D, Romero A, Santos A (2018) Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. J Chem Technol Biotechnol 93(5):1270–1278. https://doi.org/10.1002/jctb.5485

    Article  CAS  Google Scholar 

  • Long A, Zhang H, Lei Y (2013) Surfactant flushing remediation of toluene contaminated soil: optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Sep Purif Technol 118:612–619

    Article  CAS  Google Scholar 

  • López-Vizcaíno R, Sáez C, Cañizares P, Rodrigo MA (2012) The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Sep Purif Technol 88:46–51

    Article  Google Scholar 

  • Lv Y, Bao J, Zhu L (2022) A comprehensive review of recent and perspective technologies and challenges for the remediation of oil-contaminated sites. Energy Rep 8:7976–7988

    Article  Google Scholar 

  • Lysenko L, Mishchuk N, Kovalchuk V (2022) Basic principles and problems in decontamination of natural disperse systems. The electrokinetic treatment of soils. Adv Colloid Interface Sci 102798

  • Machackova J, Wittlingerova Z, Vlk K, Zima J, Linka A (2007) Comparison of two methods for assessment of in situ jet-fuel remediation efficiency. Water Air Soil Pollut 187(1–4):181–194. https://doi.org/10.1007/s11270-007-9507-9

    Article  CAS  Google Scholar 

  • Madrid F, Ballesteros R, Lacorte S, Villaverde J, Morillo E (2019) Extraction of PAHS from an aged creosote-polluted soil by cyclodextrins and rhamnolipids. Side effects on removal and availability of potentially toxic elements. Sci Total Environ 653:384–392

    Article  CAS  Google Scholar 

  • Mallard I, Städe LW, Ruellan S, Jacobsen PAL, Larsen KL, Fourmentin S (2015) Synthesis, characterization and sorption capacities toward organic pollutants of new β-cyclodextrin modified zeolite derivatives. Colloids Surf, A 482:50–57

    Article  CAS  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435. https://doi.org/10.1016/j.jhazmat.2014.12.009

    Article  CAS  Google Scholar 

  • Maurya NK, Mandal A (2018) Investigation of synergistic effect of nanoparticle and surfactant in macro emulsion based EOR application in oil reservoirs. Chem Eng Res Des 132:370–384. https://doi.org/10.1016/j.cherd.2018.01.049

    Article  CAS  Google Scholar 

  • Memon MK, Elraies KA, Al-Mossawy MI (2016) Impact of new foam surfactant blend with water alternating gas injection on residual oil recovery. J Petrol Explor Prod Technol 7(3):843–851. https://doi.org/10.1007/s13202-016-0303-1

    Article  CAS  Google Scholar 

  • Mena E, Ruiz C, Villasenor J, Rodrigo MA, Canizares P (2015) Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. J Hazard Mater 283:131–139. https://doi.org/10.1016/j.jhazmat.2014.08.069

    Article  CAS  Google Scholar 

  • Minhee Lee HK, Do W (2005) Application of nonionic surfactnat-enhanced in situ flushing to a diesel contaminated site. Water Res 39(1):139–146

    Article  Google Scholar 

  • Morillo E, Sánchez-Trujillo MA, Moyano JR, Villaverde J, Gómez-Pantoja ME, Pérez-Martínez JI (2012) Enhanced solubilisation of six PAHs by three synthetic cyclodextrins for remediation applications: molecular modelling of the inclusion complexes. PLoS ONE 7(9):e44137

    Article  CAS  Google Scholar 

  • Morillo E, Madrid F, Lara-Moreno A, Villaverde J (2020) Soil bioremediation by cyclodextrins a review. Int J Pharm 591:119943

    Article  CAS  Google Scholar 

  • Mousset E, Huguenot D, van Hullebusch ED, Oturan N, Guibaud G, Esposito G, Oturan MA (2016) Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environ Pollut 211:354–362

    Article  CAS  Google Scholar 

  • Muherei MA, Junin R (2008) Mixing effect of anionic and nonionic surfactants on micellization, adsorption and partitioning of nonionic surfactant. Mod Appl Sci 2(3):3–12

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60(1–4):371–380. https://doi.org/10.1016/S0013-7952(00)00117-4

    Article  Google Scholar 

  • Navarro A, Martínez F (2010) The use of soil-flushing to remediate metal contamination in a smelting slag dumping area: column and pilot-scale experiments. Eng Geol 115(1–2):16–27

    Article  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Kalogerakis N (2013) Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull 72(1):165–173. https://doi.org/10.1016/j.marpolbul.2013.04.007

    Article  CAS  Google Scholar 

  • Occulti F, Roda GC, Berselli S, Fava F (2008) Sustainable decontamination of an actual-site aged PCB-polluted soil through a biosurfactant-based washing followed by a photocatalytic treatment. Biotechnol Bioeng 99(6):1525–1534. https://doi.org/10.1002/bit.21703

    Article  CAS  Google Scholar 

  • Offiong N-AO, Fatunla OK, Essien JP, Yang C, Dong J (2021) Soil washing of total petroleum and polycyclic aromatic hydrocarbons from crude oil-contaminated ultisol using aqueous extracts of waterleaf. Environ Technol 44(1):35–44. https://doi.org/10.1080/09593330.2021.1961875

    Article  CAS  Google Scholar 

  • Olasanmi IO, Thring RW (2020) Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils. J Adv Res 21:79–90

    Article  CAS  Google Scholar 

  • Onotri L, Race M, Clarizia L, Guida M, Alfè M, Andreozzi R, Marotta R (2017) Solar photocatalytic processes for treatment of soil washing wastewater. Chem Eng J 318:10–18. https://doi.org/10.1016/j.cej.2016.04.053

    Article  CAS  Google Scholar 

  • Osei-Bonsu K, Shokri N, Grassia P (2015) Foam stability in the presence and absence of hydrocarbons: from bubble- to bulk-scale. Colloids Surf Physicochem Eng Asp 481:514–526. https://doi.org/10.1016/j.colsurfa.2015.06.023

    Article  CAS  Google Scholar 

  • Pal S, Ahamed Z, Pal P (2022) Removal of antibiotics and pharmaceutically active compounds from water environment: experiments towards industrial scale up. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2022.121249

    Article  Google Scholar 

  • Pannu JK, Singh A, Ward OP (2004) Vegetable oil as a contaminated soil remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil. Process Biochem 39(10):1211–1216

    Article  CAS  Google Scholar 

  • Pei G, Zhu Y, Cai X, Shi W, Li H (2017) Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil. Chemosphere 185:1112–1121

    Article  CAS  Google Scholar 

  • Peng S, Wu W, Chen J (2011) Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness. Chemosphere 82(8):1173–1177

    Article  CAS  Google Scholar 

  • Piccolo A, De Martino A, Scognamiglio F, Ricci R, Spaccini R (2021) Efficient simultaneous removal of heavy metals and polychlorobiphenyls from a polluted industrial site by washing the soil with natural humic surfactants. Environ Sci Pollut Res 28(20):25748–25757

    Article  CAS  Google Scholar 

  • Pizzul L, Sjögren Å, Castillo MDP, Stenström J (2007) Degradation of polycyclic aromatic hydrocarbons in soil by a two-step sequential treatment. Biodegradation 18(5):607–616

    Article  CAS  Google Scholar 

  • Plaza G, Nalecz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59(2):289–296. https://doi.org/10.1016/j.chemosphere.2004.11.049

    Article  CAS  Google Scholar 

  • Pomiès M, Choubert JM, Wisniewski C, Coquery M (2013) Modelling of micropollutant removal in biological wastewater treatments: a review. Sci Total Environ 443:733–748. https://doi.org/10.1016/j.scitotenv.2012.11.037

    Article  CAS  Google Scholar 

  • Priyadarshini I, Chattopadhyay P (2023) Remediation of diesel-contaminated soil using zero-valent nano-nickel and zero-valent nano copper particles-stabilized Tween 80 surfactant foam. Mater Today Proc 76:388–392

    Article  CAS  Google Scholar 

  • Przybylski R (2001) Canola oil: physical and chemical properties. Canola Council of Canada

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85(3):257–261. https://doi.org/10.1016/S0960-8524(02)00119-0

    Article  CAS  Google Scholar 

  • Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ (2018) An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. J Environ Manag 218:309–321

    Article  CAS  Google Scholar 

  • Ramírez EM, Camacho JV, Rodrigo MA, Cañizares P (2015) Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: a comparison of strategies. Sci Total Environ 533:307–316. https://doi.org/10.1016/j.scitotenv.2015.06.127

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu HL, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP (2005) Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman road site. 2. System operation and evaluation. Environ Sci Technol 39(6):1791–1801. https://doi.org/10.1021/es049563r

    Article  CAS  Google Scholar 

  • Rasool B, De Mahmood R, Zubair M, Khan MA, Ramzani PMA, Dradrach A, Turan V, Iqbal M, Khan SA, Tauqeer HM, Farhad M, Virk ZA, Iqbal M (2022) Synergetic efficacy of amending Pb-polluted soil with P-loaded jujube (Ziziphus mauritiana) twigs biochar and foliar chitosan application for reducing Pb distribution in Moringa leaf extract and improving its anti-cancer potential. Water Air Soil Pollut. https://doi.org/10.1007/s11270-022-05807-2

    Article  Google Scholar 

  • Robert T, Martel R, Lefebvre R, Lauzon J-M, Morin A (2017) Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation. J Contam Hydrol 204:57–65

    Article  CAS  Google Scholar 

  • Rosas J, Vicente F, Santos A, Romero A (2013a) Soil remediation using soil washing followed by Fenton oxidation. Chem Eng J 220:125–132

    Article  CAS  Google Scholar 

  • Rosas JM, Santos A, Romero A (2013b) Soil-washing effluent treatment by selective adsorption of toxic organic contaminants on activated carbon. Water Air Soil Pollut 224(5):1–10

    Article  CAS  Google Scholar 

  • Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. John Wiley & Sons

    Book  Google Scholar 

  • Sakhaei Z, Riazi M (2022) In-situ petroleum hydrocarbons contaminated soils remediation by polymer enhanced surfactant flushing: mechanistic investigation. Process Saf Environ Prot 161:758–770. https://doi.org/10.1016/j.psep.2022.03.086

    Article  CAS  Google Scholar 

  • Salehian E, Khodadadi A, Hosseini B (2012) Remediation of diesel contaminated soils using surfactants: coulumn study. Am J Environ Sci 8(4):352–359

    Article  CAS  Google Scholar 

  • Sánchez C (2022) A review of the role of biosurfactants in the biodegradation of hydrophobic organopollutants: production, mode of action, biosynthesis and applications. World J Microbiol Biotechnol 38(11):216

    Article  Google Scholar 

  • Sandu C, Popescu M, Rosales E, Pazos M, Lazar G, Sanromán MÁ (2017) Electrokinetic oxidant soil flushing: a solution for in situ remediation of hydrocarbons polluted soils. J Electroanal Chem 799:1–8

    Article  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401

    Article  Google Scholar 

  • Sardeing R, Painmanakul P, Hébrard G (2006) Effect of surfactants on liquid-side mass transfer coefficients in gas–liquid systems: a first step to modeling. Chem Eng Sci 61(19):6249–6260. https://doi.org/10.1016/j.ces.2006.05.051

    Article  CAS  Google Scholar 

  • Shi Z, Chen J, Liu J, Wang N, Sun Z, Wang X (2015) Anionic–nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil. Environ Sci Pollut Res 22(16):12769–12774

    Article  CAS  Google Scholar 

  • Shi L, Lei Y, Huang J, Shi Y, Yi K, Zhou H (2019) Ultrafiltration of oil-in-water emulsions using ceramic membrane: roles played by stabilized surfactants. Colloids Surf A 583:123948

    Article  CAS  Google Scholar 

  • Shiau B-J, Hasagawa MA, Brammer JM, Carter T, Goodspeed M, Harwell JH, Sabatini DA, Knox RC, Szekeres E (2002) Field demonstration of surfactant-enhanced DNAPL remediation: two case studies. Chlor Solv DNAPL Remediat. https://doi.org/10.1021/bk-2002-0837.ch004

    Article  Google Scholar 

  • Shin KH, Kim KW (2004) A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand. Environ Geochem Health 26(1):5–11. https://doi.org/10.1023/B:Egah.0000020895.85344.09

    Article  CAS  Google Scholar 

  • Siagian UWR, Khoiruddin K, Wardani AK, Aryanti PTP, Widiasa IN, Qiu G, Ting YP, Wenten IG (2021) High-performance ultrafiltration membrane: recent progress and its application for wastewater treatment. Curr Pollut Rep. https://doi.org/10.1007/s40726-021-00204-5

    Article  Google Scholar 

  • Singh B, Bhattacharya A, Channashettar VA, Jeyaseelan CP, Gupta S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains. Bull Environ Contam Toxicol 89(2):257–262. https://doi.org/10.1007/s00128-012-0668-x

    Article  CAS  Google Scholar 

  • Singla R, Grieser F, Ashokkumar M (2009) Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant. J Phys Chem A 113(12):2865–2872

    Article  CAS  Google Scholar 

  • Speight JG (2020) 8 - Remediation technologies. In: Speight JG (Ed) Natural water remediation. Butterworth-Heinemann, pp 263–303

  • Srivastava V, Puri M, Srivastava T, Nidheesh PV, Kumar MS (2022) Integrated soil washing and bioreactor systems for the treatment of hexachlorocyclohexane contaminated soil: a review on enhanced degradation mechanisms, and factors affecting soil washing and bioreactor performances. Environ Res 208:112752. https://doi.org/10.1016/j.envres.2022.112752

    Article  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632. https://doi.org/10.1016/j.cej.2015.11.046

    Article  CAS  Google Scholar 

  • Streche C, Cocârţă DM, Istrate I-A, Badea AA (2018) Decontamination of petroleum-contaminated soils using the electrochemical technique: remediation degree and energy consumption. Sci Rep 8(1):3272. https://doi.org/10.1038/s41598-018-21606-4

    Article  CAS  Google Scholar 

  • Sun Q, Li Z, Wang J, Li S, Li B, Jiang L, Wang H, Lü Q, Zhang C, Liu W (2015) Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant. Colloids Surf A 471:54–64

    Article  CAS  Google Scholar 

  • Sun Y, Li M, Gu X, Danish M, Shan A, Ali M, Qiu Z, Sui Q, Lyu S (2021) Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(II). J Hazard Mater 407:124814

    Article  CAS  Google Scholar 

  • Sutton NB, Grotenhuis T, Rijnaarts HH (2014) Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil. Chemosphere 97:64–70. https://doi.org/10.1016/j.chemosphere.2013.11.005

    Article  CAS  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23(5):845–851. https://doi.org/10.1016/S1001-0742(10)60517-7

    Article  CAS  Google Scholar 

  • Tauqeer HM, Basharat Z, Adnan Ramzani PM, Farhad M, Lewinska K, Turan V, Karczewska A, Khan SA, Faran GE, Iqbal M (2022) Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. Environ Pollut 313:120064. https://doi.org/10.1016/j.envpol.2022.120064

    Article  CAS  Google Scholar 

  • Territories GON (2020) Guideline for the design, operation, monitoring, maintenance and closure of petroleum hydrocarbon-contaminated soil treatment facilities in the northwest territories. https://mvlwb.com/sites/default/files/guideline

  • Trellu C, Ganzenko O, Papirio S, Pechaud Y, Oturan N, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016a) Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution. Chem Eng J 306:588–596

    Article  CAS  Google Scholar 

  • Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016b) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174

    Article  CAS  Google Scholar 

  • Trellu C, Pechaud Y, Oturan N, Mousset E, van Hullebusch ED, Huguenot D, Oturan MA (2021) Remediation of soils contaminated by hydrophobic organic compounds: how to recover extracting agents from soil washing solutions? J Hazard Mater 404:124137

    Article  CAS  Google Scholar 

  • Tsai T, Kao C, Surampalli RY, Liang S (2009) Treatment of fuel-oil contaminated soils by biodegradable surfactant washing followed by Fenton-like oxidation. J Environ Eng 135(10):1015–1024

    Article  CAS  Google Scholar 

  • Turan V (2021) Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol Plant 173(1):418–429. https://doi.org/10.1111/ppl.13490

    Article  CAS  Google Scholar 

  • Turan V (2022) Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. Int J Phytorem 24(2):166–176. https://doi.org/10.1080/15226514.2021.1929826

    Article  CAS  Google Scholar 

  • Turan V, Ramzani PMA, Ali Q, Abbas F, Iqbal M, Irum A, Khan W-U-D (2017) Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch Agron Soil Sci 64(8):1053–1067. https://doi.org/10.1080/03650340.2017.1410542

    Article  CAS  Google Scholar 

  • Turan V, Khan SA, Mahmood Ur R, Iqbal M, Ramzani PMA, Fatima M (2018) Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol Environ Saf 161:409–419. https://doi.org/10.1016/j.ecoenv.2018.05.082

    Article  CAS  Google Scholar 

  • Turan V (2019) Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf 183:109594. https://doi.org/10.1016/j.ecoenv.2019.109594

    Article  CAS  Google Scholar 

  • Turan V (2020) Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere 245:125611. https://doi.org/10.1016/j.chemosphere.2019.125611

    Article  CAS  Google Scholar 

  • Um J-Y, Lee G, Song S-H, Hong S, Lee M (2013) Pilot scale feasibility test of in-situ soil flushing by using “Tween 80” solution at low concentration for the xylene contaminated site. J Soil Groundw Environ 18(6):38–47. https://doi.org/10.7857/jsge.2013.18.6.038

    Article  Google Scholar 

  • Urum K, Pekdemir T, Ross D, Grigson S (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60(3):334–343

    Article  CAS  Google Scholar 

  • Urum K, Grigson S, Pekdemir T, McMenamy S (2006) A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 62(9):1403–1410

    Article  CAS  Google Scholar 

  • USEPA (2000) Cost and performance report: enhanced bioremediation at the Texas gulf coast site. Houston, Texas

    Google Scholar 

  • Vidonish JE, Zygourakis K, Masiello CA, Sabadell G, Alvarez PJJ (2016) Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2(4):426–437. https://doi.org/10.1016/J.ENG.2016.04.005

    Article  CAS  Google Scholar 

  • Villa RD, Trovó AG, Nogueira RFP (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. J Hazard Mater 174(1–3):770–775

    Article  CAS  Google Scholar 

  • Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. J Phys Chem Lett 4(5):797–802

    Article  CAS  Google Scholar 

  • Vitolins AR, Nelson BR, Underhill SA, Thomas LMH (2010) Fenton’s reagent-based in situ chemical oxidation treatment of saturated and unsaturated soils at a historic railroad site. Soil Sediment Contam Int J 12(1):139–150. https://doi.org/10.1080/713610965

    Article  Google Scholar 

  • Von Lau E, Gan S, Ng HK, Poh PE (2014) Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut 184:640–649

    Article  CAS  Google Scholar 

  • Vu KA, Mulligan CN (2022) Utilization of a biosurfactant foam/nanoparticle mixture for treatment of oil pollutants in soil. Environ Sci Pollut Res 29(59):88618–88629

    Article  CAS  Google Scholar 

  • Wan J, Chai L, Lu X, Lin Y, Zhang S (2011) Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption. J Hazard Mater 189(1–2):458–464

    Article  CAS  Google Scholar 

  • Wang P, Keller AA (2008) Partitioning of hydrophobic organic compounds within soil–water–surfactant systems. Water Res 42(8–9):2093–2101

    Article  CAS  Google Scholar 

  • Wang G, Zhou Y, Wang X, Chai X, Huang L, Deng N (2010) Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine-β-cyclodextrin. J Hazard Mater 184(1–3):690–695

    Article  CAS  Google Scholar 

  • Wang Z, Sun J, Wang Y, Guo H, Aryana SA (2021) Optimum concentration of fly ash nanoparticles to stabilize CO2 foams for aquifer and soil remediation. J Contam Hydrol 242:103853

    Article  CAS  Google Scholar 

  • Wang Y, O’Connor D, Shen Z, Lo IMC, Tsang DCW, Pehkonen S, Pu S, Hou D (2019) Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod 226:540–549. https://doi.org/10.1016/j.jclepro.2019.04.128

    Article  CAS  Google Scholar 

  • Wang Z, Sun T, Luo T, Shi X, Lin H, Zhang H (2020) Selective removal of phenanthrene for the recovery of sodium dodecyl sulfate by UV-C and UV-C/PDS processes: performance, mechanism and soil washing recycling. J Hazard Mater 400:123141. https://doi.org/10.1016/j.jhazmat.2020.123141

    Article  CAS  Google Scholar 

  • Wei Y, Liang X, Tong L, Guo C, Dang Z (2015) Enhanced solubilization and desorption of pyrene from soils by saline anionic–nonionic surfactant systems. Colloids Surf A 468:211–218

    Article  CAS  Google Scholar 

  • Wei K-H, Ma J, Xi B-D, Yu M-D, Cui J, Chen B-L, Li Y, Gu Q-B, He X-S (2022) Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. J Hazard Mater 128738

  • Wen Y, Xu X, Wang B, He Z, Bai J, Chen X, Cui J, Xu X (2021) PAHs biodegradation in soil washing effluent by native mixed bacteria embedded in polyvinyl alcohol-sodium alginate-nano alumina gel beads. J Environ Manag 297:113415

    Article  CAS  Google Scholar 

  • Wu H, Sun L, Wang H, Wang X (2018) In situ sodium persulfate/calcium peroxide oxidation in remediation of TPH-contaminated soil in 3D-sand box. Environ Technol 39(1):91–101. https://doi.org/10.1080/09593330.2017.1296029

    Article  CAS  Google Scholar 

  • Xiarchos I, Doulia D, Gekas V, Trägårdh G (2003) Polymeric ultrafiltration membranes and surfactants. Sep Purif Rev 32(2):215–278

    Article  CAS  Google Scholar 

  • Xu R, Zhang Z, Wang L, Yin N, Zhan X (2018) Surfactant-enhanced biodegradation of crude oil by mixed bacterial consortium in contaminated soil. Environ Sci Pollut Res 25(15):4437–14446. https://doi.org/10.1007/s11356-018-1604-3

    Article  CAS  Google Scholar 

  • Xu L, Yan L, Zha F, Zhu F, Tan X, Kang B, Yang C, Lin Z (2022) Remediation characteristics of surfactant-enhanced air sparging (SEAS) technology on volatile organic compounds contaminated soil with low permeability. J Contam Hydrol 250:104049. https://doi.org/10.1016/j.jconhyd.2022.104049

    Article  CAS  Google Scholar 

  • Yan J, Gao W, Qian L, Han L, Chen Y, Chen M (2015) Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate. PLoS ONE 10(8):e0132878

    Article  Google Scholar 

  • Yan G, Ma W, Chen C, Wang Q, Guo S, Ma J (2016) Combinations of surfactant flushing and bioremediation for removing fuel hydrocarbons from contaminated soils. Clean: Soil, Air, Water 44(8):984–991. https://doi.org/10.1002/clen.201500571

    Article  CAS  Google Scholar 

  • Yan W, Herzing AA, Kiely CJ, Zhang W-X (2010) Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118(3):96–104. https://doi.org/10.1016/j.jconhyd.2010.09.003

    Article  CAS  Google Scholar 

  • Yáñez C, Cañete-Rosales P, Castillo JP, Catalán N, Undabeytia T, Morillo E (2012) Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations. PLoS ONE 7(8):e41072

    Article  Google Scholar 

  • Yang J-S, Baek K, Yang J-W (2005a) Crossflow ultrafiltration of surfactant solutions. Desalination 184(1–3):385–394. https://doi.org/10.1016/j.desal.2005.03.051

    Article  CAS  Google Scholar 

  • Yang K, Zhu L, Zhao B (2005b) Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures. J Colloid Interface Sci 291(1):59–66

    Article  CAS  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environ Sci Technol 40(13):4274–4280

    Article  CAS  Google Scholar 

  • Yang Y, Pignatello JJ, Ma J, Mitch WA (2014) Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ Sci Technol 48(4):2344–2351

    Article  CAS  Google Scholar 

  • Yang Z, Lien P, Huang W, Surampalli R, Kao C (2017) Development of the risk assessment and management strategies for TPH-contaminated sites using TPH fraction methods. J Hazard Toxic Radioact Waste 21(1):D4015003

    Article  Google Scholar 

  • Yap C, Gan S, Ng H (2010) Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. J Hazard Mater 177(1–3):28–41

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Liu Z, Ni N, Chen Y, Gu C, Kengara FO, Li H, Jiang X (2014) Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J Environ Manag 141:161–168

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Wan J, Fang G, Li H, Hu F, Jiang X, Orori Kengara F (2015) Evaluation of enhanced soil washing process with tea saponin in a peanut oil–water solvent system for the extraction of PBDEs/PCBs/PAHs and heavy metals from an electronic waste site followed by vetiver grass phytoremediation. J Chem Technol Biotechnol 90(11):2027–2035

    Article  CAS  Google Scholar 

  • Zha F, Li H, Xu L, Kang B, Sun X (2022) Laboratory characterization of surfactant-enhanced air sparging effectiveness on VOC-contaminated soil with low permeability. Water Air Soil Pollut. https://doi.org/10.1007/s11270-021-05495-4

    Article  Google Scholar 

  • Zhang M, Zhu L (2010) Effect of SDBS–Tween 80 mixed surfactants on the distribution of polycyclic aromatic hydrocarbons in soil–water system. J Soils Sediments 10(6):1123–1130

    Article  CAS  Google Scholar 

  • Zhang C, Valsaraj KT, Constant WD, Roy D (1998) Nutrient and surfactant enhancement for the biodegradation of chlorinated hydrocarbons in the wastewater from a Louisiana Superfund site. J Hazard Mater 62(1):41–58

    Article  CAS  Google Scholar 

  • Zhang W, Li J, Huang G, Song W, Huang Y (2011) An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils. J Environ Sci Health Part A 46(3):306–313

    Article  CAS  Google Scholar 

  • Zhang W, Liu Y-G, Tan X-F, Zeng G-M, Gong J-L, Lai C, Niu Q-Y, Tang Y-Q (2019) Enhancement of detoxification of petroleum hydrocarbons and heavy metals in oil-contaminated soil by using glycine-β-cyclodextrin. Int J Environ Res Public Health 16(7):1155

    Article  CAS  Google Scholar 

  • Zhang X, Huang C, Ren J, Bekele TG, Zhao H (2022) Effect of cyclodextrin on desorption of petroleum hydrocarbons in soil. Process Saf Environ Prot 160:199–208

    Article  CAS  Google Scholar 

  • Zhao B, Che H, Wang H, Xu J (2016) Column flushing of phenanthrene and copper(II) co-contaminants from sandy soil using Tween 80 and citric acid. Soil Sediment Contam Int J 25(1):50–63

    Article  CAS  Google Scholar 

  • Zhaolu H, Quanyuan C (2016) Experimental study on surfactants used in soil washing for diesel-oil contaminated soil remediation. Environ Sci Technol 16–21

  • Zhong H, Zhang H, Liu Z, Yang X, Brusseau ML, Zeng G (2016) Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media. Sci Rep 6(1):33266

    Article  CAS  Google Scholar 

  • Zhou W, Zhu L (2007) Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Environ Pollut 147(2):350–357

    Article  CAS  Google Scholar 

  • Zhou W, Wang X, Chen C, Zhu L (2013) Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids Surf, A 425:122–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of the Republic of Korea under the Creative and Challenging Research Program (2021R1I1A1A01060846) and the Mid-Career Researcher Program [Grant no. 2020R1A2C3004237].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Tae Ahn or Byong-Hun Jeon.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“The original online version of this article has been revised”: the affiliation of Roozbeh Vaziri has been revised, Pasquale Cascone, Fatemeh Tabebordbar, Gabriele Cencetti, Marco Michelozzi, Parviz Shishehbor, Emilio Guerrieri & Massimo Giorgini.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, JH., Ji, MK., Kumar, R. et al. Recent advancement in enhanced soil flushing for remediation of petroleum hydrocarbon-contaminated soil: a state-of-the-art review. Rev Environ Sci Biotechnol 22, 679–714 (2023). https://doi.org/10.1007/s11157-023-09657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-023-09657-0

Keywords

Navigation