Skip to main content

The application of purple non-sulfur bacteria for microbial mixed culture polyhydroxyalkanoates production

Abstract

Polyhydroxyalkanoates (PHA) are a group of biopolymers produced naturally by microorganisms with properties similar to various petroleum-based plastics. However, to date their commercial production has remained uncompetitive due to substrate, sterilization, aeration and processing costs. Purple non-sulfur bacteria (PNSB) are a group of anoxygenic photoheterotrophic bacteria that have the ability to accumulate PHA under unbalanced conditions in anaerobic environments and constant feeding with high conversion ratios. Such characteristics could potentially overcome some of the bottlenecks of conventional chemoheterotrophic PHA production. Yet these organisms have received relatively limited attention. This review explores the factors involved in the PHA accumulation process from PNSB, highlighting the differences to conventional PHA production and the areas yet to be optimized. The roles of fermentation systems, carbon substrate, feeding conditions, nutrients, pH and various aspects of light are reviewed to understand their role in PHA accumulation in PNSB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39:3127–3141. https://doi.org/10.1016/j.ijhydene.2013.12.084

    CAS  Article  Google Scholar 

  2. Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627. https://doi.org/10.1128/AEM.66.8.3624-3627.2000

    CAS  Article  Google Scholar 

  3. Akiyama M, Taima Y, Doi Y (1992) Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotechnol 37:698–701. https://doi.org/10.1007/BF00174830

    CAS  Article  Google Scholar 

  4. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. BIOHYDROGEN 2002 27:1195–1208. https://doi.org/10.1016/S0360-3199(02)00071-X

  5. Albuquerque MGE, Concas S, Bengtsson S, Reis MAM (2010) Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresour Technol 101:7112–7122. https://doi.org/10.1016/j.biortech.2010.04.019

    CAS  Article  Google Scholar 

  6. Albuquerque MGE, Torres CAV, Reis MAM (2010) Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res 44:3419–3433. https://doi.org/10.1016/j.watres.2010.03.021

    CAS  Article  Google Scholar 

  7. Ali Hassan M, Shirai Y, Kusubayashi N et al (1996) Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter sphaeroides. J Ferment Bioeng 82:151–156. https://doi.org/10.1016/0922-338X(96)85038-0

    Article  Google Scholar 

  8. Ali Hassan M, Shirai Y, Kusubayashi N et al (1997) The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J Ferment Bioeng 83:485–488. https://doi.org/10.1016/S0922-338X(97)83007-3

    Article  Google Scholar 

  9. Allegue LD, Puyol D, Melero JA (2020) Food waste valorization by purple phototrophic bacteria and anaerobic digestion after thermal hydrolysis. Biomass Bioenergy 142:105803. https://doi.org/10.1016/j.biombioe.2020.105803

    CAS  Article  Google Scholar 

  10. Alloul A, Wuyts S, Lebeer S, Vlaeminck SE (2019) Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria: Paving the way for protein production on fermented wastewater. Water Res 152:138–147. https://doi.org/10.1016/j.watres.2018.12.025

    CAS  Article  Google Scholar 

  11. Almeida JR, Serrano E, Fernandez M et al (2021) Polyhydroxyalkanoates production from fermented domestic wastewater using phototrophic mixed cultures. Water Res 197:117101. https://doi.org/10.1016/j.watres.2021.117101

    CAS  Article  Google Scholar 

  12. Amulya K, Reddy MV, Rohit MV, Mohan SV (2016) Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH. J Clean Prod 112:4618–4627. https://doi.org/10.1016/j.jclepro.2015.08.009

    CAS  Article  Google Scholar 

  13. Anis SNS, Md Iqbal N, Kumar S, Amirul A-A (2013) Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2. Sep Purif Technol 102:111–117. https://doi.org/10.1016/j.seppur.2012.09.036

    CAS  Article  Google Scholar 

  14. Basak B, Ince O, Artan N et al (2011) Effect of nitrogen limitation on enrichment of activated sludge for PHA production. Bioprocess Biosyst Eng 34:1007–1016. https://doi.org/10.1007/s00449-011-0551-x

    CAS  Article  Google Scholar 

  15. Basset N, Katsou E, Frison N et al (2016) Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line. Bioresour Technol 200:820–829. https://doi.org/10.1016/j.biortech.2015.10.063

    CAS  Article  Google Scholar 

  16. Bertling K, Hurse TJ, Kappler U, Rakić AD (2006) Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol Bioeng 94:337–345. https://doi.org/10.1002/bit.20881

    CAS  Article  Google Scholar 

  17. Blunt W, Levin DB, Cicek N (2018) Bioreactor operating strategies for improved polyhydroxyalkanoate (PHA) productivity. Polymers 10:1197. https://doi.org/10.3390/polym10111197

    CAS  Article  Google Scholar 

  18. Boran E, Özgür E, van der Burg J et al (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35. https://doi.org/10.1016/j.jclepro.2010.03.018

    CAS  Article  Google Scholar 

  19. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982. https://doi.org/10.1128/aem.54.8.1977-1982.1988

    CAS  Article  Google Scholar 

  20. Brandl H, Knee EJ, Fuller RC et al (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (β-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55. https://doi.org/10.1016/0141-8130(89)90040-8

    CAS  Article  Google Scholar 

  21. Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93. https://doi.org/10.1007/BFb0010232

    CAS  Article  Google Scholar 

  22. Brandl H, Gross RA, Lenz RW et al (1991) The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides. Arch Microbiol 155:337–340. https://doi.org/10.1007/BF00243452

    CAS  Article  Google Scholar 

  23. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808. https://doi.org/10.3144/expresspolymlett.2014.82

    CAS  Article  Google Scholar 

  24. Capson-Tojo G, Batstone DJ, Grassino M et al (2020) Purple phototrophic bacteria for resource recovery: challenges and opportunities. Biotechnol Adv 43:107567. https://doi.org/10.1016/j.biotechadv.2020.107567

    CAS  Article  Google Scholar 

  25. Cardeña R, Valdez-Vazquez I, Buitrón G (2017) Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate. Bioprocess Biosyst Eng 40:231–239. https://doi.org/10.1007/s00449-016-1691-9

    CAS  Article  Google Scholar 

  26. Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249. https://doi.org/10.1016/S0168-1656(01)00280-2

    CAS  Article  Google Scholar 

  27. Carlozzi P, Lambardi M (2009) Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renew Energy 34:2577–2584. https://doi.org/10.1016/j.renene.2009.04.016

    CAS  Article  Google Scholar 

  28. Carlozzi P, Seggiani M, Cinelli P et al (2018) Photofermentative poly-3-hydroxybutyrate production by Rhodopseudomonas sp. S16-VOGS3 in a novel outdoor 70-L photobioreactor. Sustainability 10:3133. https://doi.org/10.3390/su10093133

    CAS  Article  Google Scholar 

  29. Carlozzi P, Giovannelli A, Traversi ML et al (2019a) Poly-3-hydroxybutyrate and H2 production by Rhodopseudomonas sp. S16-VOGS3 grown in a new generation photobioreactor under single or combined nutrient deficiency. Int J Biol Macromol 135:821–828. https://doi.org/10.1016/j.ijbiomac.2019.05.220

    CAS  Article  Google Scholar 

  30. Carlozzi P, Touloupakis E, Di Lorenzo T et al (2019b) Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: new routes towards a circular bioeconomy. J Biotechnol 303:37–45. https://doi.org/10.1016/j.jbiotec.2019.07.008

    CAS  Article  Google Scholar 

  31. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009. https://doi.org/10.1016/j.biortech.2009.03.088

    CAS  Article  Google Scholar 

  32. Cerruti M, Stevens B, Ebrahimi S et al (2020) Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater. Front Bioeng Biotechnol 8:1432. https://doi.org/10.3389/fbioe.2020.557234

    Article  Google Scholar 

  33. Chayabutra C, Ju LK (2001) Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145. Biotechnol Prog 17:419–423. https://doi.org/10.1021/bp010036a

    CAS  Article  Google Scholar 

  34. Cheah Y-K, Vidal-Antich C, Dosta J, Mata-Álvarez J (2019) Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ Sci Pollut Res 26:35509–35522. https://doi.org/10.1007/s11356-019-05394-6

    CAS  Article  Google Scholar 

  35. Chee J, Yoga S, Lau N et al (2010) Bacterially produced polyhydroxyalkanoates (PHA): Converting renewable resources into bioplastics. In: Mendez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Spain, pp 1395–1404

  36. Chen Y-T, Wu S-C, Lee C-M (2012) Relationship between cell growth, hydrogen production and poly-β-hydroxybutyrate (PHB) accumulation by Rhodopseudomonas palustris WP3-5. ICCE-2011 37:13887–13894. https://doi.org/10.1016/j.ijhydene.2012.06.024

    CAS  Article  Google Scholar 

  37. Chen Z, Huang L, Wen Q, Guo Z (2015) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75. https://doi.org/10.1016/j.jbiotec.2015.06.382

    CAS  Article  Google Scholar 

  38. Chen Y, Jiang X, Xiao K et al (2017) Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – investigation on dissolved organic matter transformation and microbial community shift. Water Res 112:261–268. https://doi.org/10.1016/j.watres.2017.01.067

    CAS  Article  Google Scholar 

  39. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21. https://doi.org/10.1007/s002530051357

    CAS  Article  Google Scholar 

  40. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015

    CAS  Article  Google Scholar 

  41. Corneli E, Adessi A, Dragoni F et al (2016) Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation. Bioresour Technol 216:941–947. https://doi.org/10.1016/j.biortech.2016.06.046

    CAS  Article  Google Scholar 

  42. De Philippis R, Ena A, Guastini M et al (1992) Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol Rev 9:187–194. https://doi.org/10.1111/j.1574-6968.1992.tb05837.x

    Article  Google Scholar 

  43. Dietrich K, Dumont M-J, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consump 9:58–70. https://doi.org/10.1016/j.spc.2016.09.001

    Article  Google Scholar 

  44. Erb TJ, Berg IA, Brecht V et al (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci 104:10631. https://doi.org/10.1073/pnas.0702791104

    CAS  Article  Google Scholar 

  45. Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Van Leeuwenhoek 55:291–296. https://doi.org/10.1007/BF00393857

    CAS  Article  Google Scholar 

  46. Fradinho JC, Domingos JMB, Carvalho G et al (2013a) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153. https://doi.org/10.1016/j.biortech.2013.01.050

    CAS  Article  Google Scholar 

  47. Fradinho JC, Oehmen A, Reis MAM (2013b) Effect of dark/light periods on the polyhydroxyalkanoate production of a photosynthetic mixed culture. Bioresour Technol 148:474–479. https://doi.org/10.1016/j.biortech.2013.09.010

    CAS  Article  Google Scholar 

  48. Fradinho JC, Oehmen A, Reis MAM (2014) Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake. J Biotechnol 185:19–27. https://doi.org/10.1016/j.jbiotec.2014.05.035

    CAS  Article  Google Scholar 

  49. Fradinho JC, Reis MAM, Oehmen A (2016) Beyond feast and famine: selecting a PHA accumulating photosynthetic mixed culture in a permanent feast regime. Water Res 105:421–428. https://doi.org/10.1016/j.watres.2016.09.022

    CAS  Article  Google Scholar 

  50. Fradinho JC, Oehmen A, Reis MAM (2019) Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions. Int J Biol Macromol 126:1085–1092. https://doi.org/10.1016/j.ijbiomac.2018.12.270

    Article  Google Scholar 

  51. García D, de Godos I, Domínguez C et al (2019) A systematic comparison of the potential of microalgae-bacteria and purple phototrophic bacteria consortia for the treatment of piggery wastewater. Bioresour Technol 276:18–27. https://doi.org/10.1016/j.biortech.2018.12.095

    CAS  Article  Google Scholar 

  52. Gebicki J, Modigell M, Schumacher M et al (2009) Development of photobbioreactors for anoxygenic production of hydrogen by purple bacteria. Chem Eng Trans 18:363–368. https://doi.org/10.3303/CET0918058

    Article  Google Scholar 

  53. Ghimire A, Valentino S, Frunzo L et al (2015) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: a synergy for energy recovery. Int J Hydrog Energy 40:16045–16055. https://doi.org/10.1016/j.ijhydene.2015.09.117

    CAS  Article  Google Scholar 

  54. Ghimire A, Valentino S, Frunzo L et al (2016) Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Spec Issue Bioenergy Bioprod Environ Sustain 217:157–164. https://doi.org/10.1016/j.biortech.2016.03.017

    CAS  Article  Google Scholar 

  55. Ghosh S, Dairkee UK, Chowdhury R, Bhattacharya P (2017) Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB)–a review. Energy Convers Manag 141:299–314. https://doi.org/10.1016/j.enconman.2016.09.001

    CAS  Article  Google Scholar 

  56. Guerra-Blanco P, Cortes O, Poznyak T et al (2018) Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition. Eur Polym J 98:94–104. https://doi.org/10.1016/j.eurpolymj.2017.11.007

    CAS  Article  Google Scholar 

  57. Hanada S (2016) Anoxygenic photosynthesis - a photochemical reaction that does not contribute to oxygen reproduction. Microbes Env 31:1–3. https://doi.org/10.1264/jsme2.ME3101rh

    Article  Google Scholar 

  58. Heinrich D, Raberg M, Fricke P et al (2016) Synthesis gas (Syngas)-derived medium-chain-length polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 82:6132–6140. https://doi.org/10.1128/AEM.01744-16

    CAS  Article  Google Scholar 

  59. Higuchi-Takeuchi M, Numata K (2019) Acetate-inducing metabolic states enhance polyhydroxyalkanoate production in marine purple non-sulfur bacteria under aerobic conditions. Front Bioeng Biotechnol 7:118. https://doi.org/10.3389/fbioe.2019.00118

    Article  Google Scholar 

  60. Higuchi-Takeuchi M, Morisaki K, Numata K (2016a) A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater. Front Microbiol 7:1509. https://doi.org/10.3389/fmicb.2016.01509

    Article  Google Scholar 

  61. Higuchi-Takeuchi M, Morisaki K, Toyooka K, Numata K (2016b) Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. Plos One 11:e0160981. https://doi.org/10.1371/journal.pone.0160981

    CAS  Article  Google Scholar 

  62. Hülsen T, Batstone DJ, Keller J (2014) Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Res 50:18–26. https://doi.org/10.1016/j.watres.2013.10.051

    CAS  Article  Google Scholar 

  63. Hustede E, Steinbüchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93. https://doi.org/10.1007/BF00166854

    CAS  Article  Google Scholar 

  64. Imhoff JF (2017) Anoxygenic phototrophic bacteria from extreme environments. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer International Publishing, Switzerland, pp 427–480

    Chapter  Google Scholar 

  65. Imhoff JF (2017) Diversity of anaerobic anoxygenic phototrophic purple bacteria. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer International Publishing, Switzerland, pp 47–85

    Chapter  Google Scholar 

  66. Imhoff JF, Hiraishi A, Suling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, Boston, pp 119–132

    Chapter  Google Scholar 

  67. Ismail KSK, Najafpour G, Younesi H et al (2008) Biological hydrogen production from CO: bioreactor performance. Biochem Eng J 39:468–477. https://doi.org/10.1016/j.bej.2007.11.003

    CAS  Article  Google Scholar 

  68. Jiang G, Hill DJ, Kowalczuk M et al (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157. doi:https://doi.org/10.3390/ijms17071157. https://doi.org/10.3390/ijms17071157

    CAS  Article  Google Scholar 

  69. Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles – Taxonomy, diversity, physiology and applications. In: Satyanarayana T, Johri B, Anil P (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 1–34

    Google Scholar 

  70. Kantachote D, Torpee S, Umsakul K (2005) The potential use of anoxygenic phototrophic bacteria for treating latex rubber sheet wastewater. Electron J Biotechnol. https://doi.org/10.4067/S0717-34582005000300012

  71. Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrog Energy 34:2201–2207. https://doi.org/10.1016/j.ijhydene.2009.01.017

    CAS  Article  Google Scholar 

  72. Kars G, Ceylan A (2013) Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int J Hydrog Energy 38:5573–5579. https://doi.org/10.1016/j.ijhydene.2013.03.013

    CAS  Article  Google Scholar 

  73. Kars G, Gündüz U (2010) Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. ISMF-09 35:6646–6656. https://doi.org/10.1016/j.ijhydene.2010.04.037

    CAS  Article  Google Scholar 

  74. Khatipov E, Miyake M, Miyake J, Asada Y (1998a) Polyhydroxybutyrate accumulation and hydrogen evolution by Rhodobacter sphaeroides as a function of nitrogen availability. In: Zaborsky OR, Benemann JR, Matsunaga T et al (eds) BioHydrogen. Springer, Boston, pp 157–161

    Google Scholar 

  75. Khatipov E, Miyake M, Miyake J, Asada Y (1998) Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol Lett 162:39–45. https://doi.org/10.1111/j.1574-6968.1998.tb12976.x

    CAS  Article  Google Scholar 

  76. Kim M-S, Kim D-H, Son H-N et al (2011) Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate. 2010 AsianAPEC BioH2 36:13964–13971. https://doi.org/10.1016/j.ijhydene.2011.03.099

    CAS  Article  Google Scholar 

  77. Kim M-S, Kim D-H, Cha J, Lee JK (2012) Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresour Technol 116:179–183. https://doi.org/10.1016/j.biortech.2012.04.011

    CAS  Article  Google Scholar 

  78. Kniewel R, Lopez OR, Prieto MA (2019) Biogenesis of medium-chain-length polyhydroxyalkanoates. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Springer International Publishing, Cham, pp 457–481

    Chapter  Google Scholar 

  79. Koller M, Braunegg G (2018) Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. Eurobiotech J 2:89–103. https://doi.org/10.2478/ebtj-2018-0013

    Article  Google Scholar 

  80. Kompantseva EI, Komova AV, Sorokin DY (2010) Communities of anoxygenic phototrophic bacteria in the saline soda lakes of the Kulunda steppe (Altai Krai). Microbiol 79:89–95. https://doi.org/10.1134/S0026261710010121

    CAS  Article  Google Scholar 

  81. Kumar BV, Ramprasad EVV, Sasikala C, Ramana CV (2013) Rhodopseudomonas pentothenatexigens sp. nov. and Rhodopseudomonas thermotolerans sp. nov., isolated from paddy soils. Int J Syst Evol Microbiol 63:200–207. https://doi.org/10.1099/ijs.0.038620-0

    CAS  Article  Google Scholar 

  82. Lai Y-C, Liang C-M, Hsu S-C et al (2017) Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell. J Biosci Bioeng 123:722–730. https://doi.org/10.1016/j.jbiosc.2017.01.012

    CAS  Article  Google Scholar 

  83. Laurinavichene T, Tekucheva D, Laurinavichius K, Tsygankov A (2018) Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Enzyme Microb Technol 110:1–7. https://doi.org/10.1016/j.enzmictec.2017.11.009

    CAS  Article  Google Scholar 

  84. Liebergesell M, Hustede E, Timm A et al (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421. https://doi.org/10.1007/BF00244955

    CAS  Article  Google Scholar 

  85. Luongo V, Ghimire A, Frunzo L et al (2017) Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Bioresour Technol 228:171–175. https://doi.org/10.1016/j.biortech.2016.12.079

    CAS  Article  Google Scholar 

  86. Mack EE, Mandelco L, Woese CR, Madigan MT (1993) Rhodospirillum sodomense, sp. nov., a Dead Sea rhodospirillum species. Arch Microbiol 160:363–371. https://doi.org/10.1007/BF00252222

    CAS  Article  Google Scholar 

  87. Madigan MT, Jung DO (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht

    Google Scholar 

  88. Marang L, van Loosdrecht MCM, Kleerebezem R (2018) Enrichment of PHA-producing bacteria under continuous substrate supply. N Biotechnol 41:55–61. https://doi.org/10.1016/j.nbt.2017.12.001

    CAS  Article  Google Scholar 

  89. Melnicki MR, Eroglu E, Melis A (2009) Changes in hydrogen production and polymer accumulation upon sulfur-deprivation in purple photosynthetic bacteria. Int J Hydrog Energy 34:6157–6170. https://doi.org/10.1016/j.ijhydene.2009.05.115

    CAS  Article  Google Scholar 

  90. Merugu R, Rudra M, Girisham S, Reddy SM (2012) Biotechnological applications of purple non sulphur phototrophic bacteria: a minireview. Int J App Biol Pharm 3:376–384

    Google Scholar 

  91. Molina Grima E, Belarbi E-H, Acién Fernández FG et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    CAS  Article  Google Scholar 

  92. Montano-Herrera L, Laycock B, Werker A, Pratt S (2017) The evolution of polymer composition during PHA accumulation: the significance of reducing equivalents. Bioengineering 4:20. https://doi.org/10.3390/bioengineering4010020

    CAS  Article  Google Scholar 

  93. Montiel-Corona V, Buitrón G (2021) Polyhydroxyalkanoates from organic waste streams using purple non-sulfur bacteria. Bioresour Technol 323:124610. https://doi.org/10.1016/j.biortech.2020.124610

    CAS  Article  Google Scholar 

  94. Montiel-Corona V, Revah S, Morales M (2015) Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions. Int J Hydrog Energy 40:9096–9105. https://doi.org/10.1016/j.ijhydene.2015.05.067

    CAS  Article  Google Scholar 

  95. Montiel Corona V, Le Borgne S, Revah S, Morales M (2017) Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate. Bioresour Technol 226:238–246. https://doi.org/10.1016/j.biortech.2016.12.021

    CAS  Article  Google Scholar 

  96. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282. https://doi.org/10.1016/j.micres.2016.07.010

    CAS  Article  Google Scholar 

  97. Muhr A, Rechberger EM, Salerno A et al (2013) Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. Renew Polym Multifunct Mater Prop Process Appl 73:1391–1398. https://doi.org/10.1016/j.reactfunctpolym.2012.12.009

    CAS  Article  Google Scholar 

  98. Mukhopadhyay M, Patra A, Paul AK (2013) Phototrophic growth and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by purple nonsulfur bacterium Rhodopseudomonas palustris SP5212. J Polym 2013:523941. https://doi.org/10.1155/2013/523941

  99. Mukhopadhyay M, Patra A, Paul AK (2005) Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Rhodopseudomonas palustris SP5212. World J Microbiol Biotechnol 21:765–769. https://doi.org/10.1007/s11274-004-5565-y

    CAS  Article  Google Scholar 

  100. Namsaraev ZB, Gorlenko VM, Namsaraev BB et al (2003) The structure and biogeochemical activity of the phototrophic communities from the Bol’sherechenskii alkaline hot spring. Mikrobiologiia 72:193–203. https://doi.org/10.1023/A:1023272131859

    CAS  Article  Google Scholar 

  101. Ni Y-Y, Kim DY, Chung MG et al (2010) Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16. Bioresour Technol 101:8485–8488. https://doi.org/10.1016/j.biortech.2010.06.033

    CAS  Article  Google Scholar 

  102. Ohashi S, Iemura T, Okada N et al (2010) An overview on chlorophylls and quinones in the photosystem I-type reaction centers. Photosynth Res 104:305–319. https://doi.org/10.1007/s11120-010-9530-3

    CAS  Article  Google Scholar 

  103. Olson JM (2013) Green bacteria: the light-harvesting chlorosome. In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry (Second Edition). Academic Press, Waltham, pp 513–516

  104. Özsoy Demiriz B, Kars G, Yücel M et al (2019) Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. Int J Hydrog Energy 44:17269–17277. https://doi.org/10.1016/j.ijhydene.2019.02.036

    CAS  Article  Google Scholar 

  105. Padovani G, Carlozzi P, Seggiani M et al (2016) PHB-rich biomass and BioH2 production by means of photosynthetic microorganisms. Chem Eng Trans 49:55–60. https://doi.org/10.3303/CET1649010

    Article  Google Scholar 

  106. Padovani G, Emiliani G, Giovanelli A et al (2018) Assessment of glycerol usage by five different purple non-sulfur bacterial strains for bioplastic production. J Env Chem Eng 6:616–622. https://doi.org/10.1016/j.jece.2017.12.050

    CAS  Article  Google Scholar 

  107. Pagliano G, Ventorino V, Panico A, Pepe O (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 10:113. https://doi.org/10.1186/s13068-017-0802-4

    CAS  Article  Google Scholar 

  108. Pattanamanee W, Choorit W, Deesan C et al (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrog Energy 37:4077–4087. https://doi.org/10.1016/j.ijhydene.2011.12.002

    CAS  Article  Google Scholar 

  109. Petushkova E, Iuzhakov S, Tsygankov A (2019) Differences in possible TCA cycle replenishing pathways in purple non-sulfur bacteria possessing glyoxylate pathway. Photosynth Res 139:523–537. https://doi.org/10.1007/s11120-018-0581-1

    CAS  Article  Google Scholar 

  110. Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99:597–602

    CAS  Article  Google Scholar 

  111. Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206. https://doi.org/10.1007/BF00446317

    CAS  Article  Google Scholar 

  112. Pfennig N, Lünsdorf H, Süling J, Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168:39–45. https://doi.org/10.1007/s002030050467

    CAS  Article  Google Scholar 

  113. Podola B, Li T, Melkonian M (2017) Porous substrate bioreactors: a paradigm shift in microalgal biotechnology? Trends Biotechnol 35:121–132. https://doi.org/10.1016/j.tibtech.2016.06.004

    CAS  Article  Google Scholar 

  114. Policastro G, Luongo V, Fabbricino M (2020) Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: effect of substrate concentration and nitrogen source. J Environ Manag 271:111006. https://doi.org/10.1016/j.jenvman.2020.111006

    CAS  Article  Google Scholar 

  115. Povolo S, Romanelli MG, Basaglia M et al (2013) Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. Biotechnol Bio Green Econ 30:629–634. https://doi.org/10.1016/j.nbt.2012.11.019

    CAS  Article  Google Scholar 

  116. Prasertsan P, Choorit W, Suwanno S (1993) Optimization for growth of Rhodocyclus gelatinosus in seafood processing effluents. World J Microbiol Biotechnol 9:593–596. https://doi.org/10.1007/BF00386302

    CAS  Article  Google Scholar 

  117. Qi X, Ren Y, Tian E, Wang X (2017) The exploration of monochromatic near-infrared LED improved anoxygenic photosynthetic bacteria Rhodopseudomonas sp. for wastewater treatment. Bioresour Technol 241:620–626. https://doi.org/10.1016/j.biortech.2017.05.202

    CAS  Article  Google Scholar 

  118. Ramana CV, Sasikala C, Arunasri K et al (2006) Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 56:2157–2164. https://doi.org/10.1099/ijs.0.64209-0

    CAS  Article  Google Scholar 

  119. Ranaivoarisoa TO, Singh R, Rengasamy K et al (2019) Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J Ind Microbiol Biotechnol 46:1401–1417. https://doi.org/10.1007/s10295-019-02165-7

    CAS  Article  Google Scholar 

  120. Rigouin C, Lajus S, Ocando C et al (2019) Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microb Cell 18:99. https://doi.org/10.1186/s12934-019-1140-y

    CAS  Article  Google Scholar 

  121. Sali S, Mackey HR (2021) Integration of polyhydroxyalkanoates production with industrial wastewater treatment. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E (eds) Environmental biotechnology, vol 3. Springer, Switzerland

    Google Scholar 

  122. Samorì C, Abbondanzi F, Galletti P et al (2015) Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresour Technol 189:195–202. https://doi.org/10.1016/j.biortech.2015.03.062

    CAS  Article  Google Scholar 

  123. Sathya A, Velmurugan S, Arockiasamy S et al (2018) Production of polyhydroxyalkanoates from renewable sources using bacteria. J Polym Environ 26:3995–4012. https://doi.org/10.1007/s10924-018-1259-7

    CAS  Article  Google Scholar 

  124. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628. https://doi.org/10.1007/s00253-008-1757-y

    CAS  Article  Google Scholar 

  125. Serôdio J, Vieira S, Cruz S (2008) Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence. Cont Shelf Res 28:1363–1375. https://doi.org/10.1016/j.csr.2008.03.019

    Article  Google Scholar 

  126. Shahid S, Mosrati R, Ledauphin J et al (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: Evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116:302–308. https://doi.org/10.1016/j.jbiosc.2013.02.017

    CAS  Article  Google Scholar 

  127. Sharma PK, Munir RI, Blunt W et al (2017) Synthesis and physical properties of polyhydroxyalkanoate polymers with different monomer compositions by recombinant Pseudomonas putida LS46 expressing a novel PHA SYNTHASE (PhaC116) enzyme. Appl Sci 7:242. https://doi.org/10.3390/app7030242

    CAS  Article  Google Scholar 

  128. Sheu D-S, Chen W-M, Yang J-Y, Chang R-C (2009) Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microb Technol 44:289–294. https://doi.org/10.1016/j.enzmictec.2009.01.004

    CAS  Article  Google Scholar 

  129. Suk AW, Jae PS, Yup LS (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627. https://doi.org/10.1128/AEM.66.8.3624-3627.2000

    Article  Google Scholar 

  130. Suzuki T, Tsygankov AA, Miyake J et al (1995) Accumulation of poly-(hydroxybutyrate) by a non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides RV at different pH. Biotechnol Lett 17:395–400. https://doi.org/10.1007/BF00130796

    CAS  Article  Google Scholar 

  131. Talaiekhozani A, Rezania S (2017) Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: a review. J Water Process Eng 19:312–321. https://doi.org/10.1016/j.jwpe.2017.09.004

    Article  Google Scholar 

  132. Tamang P, Banerjee R, Köster S, Nogueira R (2019) Comparative study of polyhydroxyalkanoates production from acidified and anaerobically treated brewery wastewater using enriched mixed microbial culture. J Environ Sci 78:137–146. https://doi.org/10.1016/j.jes.2018.09.001

    Article  Google Scholar 

  133. Tan G-YA, Chen C-L, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers. https://doi.org/10.3390/polym6030706

  134. Tanskul S, Srisai S, Nualla-Ong A (2016) A purple non-sulfur bacterium producing polyhydroxybutyrate and the conserved region of PHA synthase gene. Biosci J 32:1341–1351. https://doi.org/10.14393/BJ-v32n1a2016-33801

    Article  Google Scholar 

  135. Tufail S, Munir S, Jamil N (2017) Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz J Microbiol 48:629–636. https://doi.org/10.1016/j.bjm.2017.02.008

    CAS  Article  Google Scholar 

  136. Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001

    CAS  Article  Google Scholar 

  137. Uyar B, Eroglu I, Yücel M et al (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrog Energy 32:4670–4677. https://doi.org/10.1016/j.ijhydene.2007.07.002

    CAS  Article  Google Scholar 

  138. Vandi LJ, Chan CM, Werker A et al (2018) Wood-PHA composites: Mapping opportunities. Polymers 10:751. https://doi.org/10.3390/polym10070751

    CAS  Article  Google Scholar 

  139. Verlinden RAJ, Hill DJ, Kenward MA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

    CAS  Article  Google Scholar 

  140. Villano M, Valentino F, Barbetta A et al (2014) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. N Biotechnol 31:289–296. https://doi.org/10.1016/j.nbt.2013.08.001

    CAS  Article  Google Scholar 

  141. Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762. https://doi.org/10.1023/A:1018336209252

    CAS  Article  Google Scholar 

  142. Voinova O, Gladyshev M, Volova TG (2008) Comparative study of PHA degradation in natural reservoirs having various types of ecosystems. Macromol Symp 269:34–37. https://doi.org/10.1002/masy.200850906

    CAS  Article  Google Scholar 

  143. Wang F, Lee SY (1997) Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Env Microbiol 63:3703–3706. https://doi.org/10.1128/aem.63.9.3703-3706.1997

    CAS  Article  Google Scholar 

  144. Wang H, Zhang G, Peng M et al (2016) Synthetic white spirit wastewater treatment and biomass recovery by photosynthetic bacteria: Feasibility and process influence factors. Int Biodeterior Biodegrad 113:134–138. https://doi.org/10.1016/j.ibiod.2016.01.001

    CAS  Article  Google Scholar 

  145. Ward PG, Goff M, Donner M et al (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437. https://doi.org/10.1021/es0517668

    CAS  Article  Google Scholar 

  146. Wu S, Butt HJ (2017) Near-infrared photochemistry at interfaces based on upconverting nanoparticles. Phys Chem Chem Phys PCCP 19:23585–23596. https://doi.org/10.1039/c7cp01838j

    CAS  Article  Google Scholar 

  147. Wu SC, Liou SZ, Lee CM (2012) Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresour Technol 113:44–50. https://doi.org/10.1016/j.biortech.2012.01.090

    CAS  Article  Google Scholar 

  148. Zagrodnik R, Laniecki M (2015) The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresour Technol 194:187–195. https://doi.org/10.1016/j.biortech.2015.07.028

    CAS  Article  Google Scholar 

  149. Zhi R, Yang A, Zhang G et al (2019) Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresour Technol 274:496–501. https://doi.org/10.1016/j.biortech.2018.12.021

    CAS  Article  Google Scholar 

  150. Zhou Q, Zhang P, Zhang G (2014) Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity. Bioresour Technol 171:330–335. https://doi.org/10.1016/j.biortech.2014.08.088

    CAS  Article  Google Scholar 

  151. Zhou Q, Zhang P, Zhang G (2015a) Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresour Technol 179:505–509. https://doi.org/10.1016/j.biortech.2014.12.077

    CAS  Article  Google Scholar 

  152. Zhou Q, Zhang P, Zhang G, Peng M (2015b) Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod. Bioresour Technol 190:196–200. https://doi.org/10.1016/j.biortech.2015.04.092

    CAS  Article  Google Scholar 

  153. Zhu C, Nomura CT, Perrotta JA et al (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430. https://doi.org/10.1002/btpr.355

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support for this project by Qatar National Research fund under the national Priorities Research Program, Grant NPRP11-S-0110-180245.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamish R. Mackey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sali, S., Mackey, H.R. The application of purple non-sulfur bacteria for microbial mixed culture polyhydroxyalkanoates production. Rev Environ Sci Biotechnol 20, 959–983 (2021). https://doi.org/10.1007/s11157-021-09597-7

Download citation

Keywords

  • Anoxygenic phototrophs
  • Polyhydroxyalkanoates
  • Bioplastic
  • Biodegradable polymers
  • Polyhydroxybutrate (PHB)