Chlorinated and brominated polycyclic aromatic hydrocarbons in ambient air: seasonal variation, profiles, potential sources, and size distribution

Abstract

Chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs, respectively) are a new derivative group of PAHs. These halogenated PAHs (Halo-PAHs) have been reported to be carcinogenic and are considered emerging persistent organic pollutants. Gaining a clear understanding of the distribution and behavior of these ubiquitous organic pollutants is essential for the control and mitigation of their emission into the environment. However, research into the characteristics of Halo-PAHs in the atmosphere has been somewhat limited. This review paper thus aims to provide an overview of the seasonal patterns, profiles, potential sources, and particle-size distributions of atmospheric ClPAHs and BrPAHs with 3–5 rings. Most previous studies have focused on particulate Halo-PAHs and reported that their levels are higher during the cold season than during the warm season, with this seasonal variation more apparent for ClPAHs than for BrPAHs. In terms of their phase distribution, ClPAHs and BrPAHs share a similar trend, with their gaseous concentrations highest in summer and lowest in winter and their particulate concentrations exhibiting the opposite trend. Halo-PAH profiles have been shown to differ between sampling locations, possibly reflecting differences in the potential sources present at these sites, e.g., coal burning, traffic emissions, and industrial activity. The majority of Halo-PAHs tend to accumulate as ultrafine particles with an aerodynamic diameter of less than 1.0 µm. Overall, a detailed understanding of the characteristics of Halo-PAHs in the atmosphere has yet to be achieved; hence, further research on atmospheric Halo-PAHs is necessary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  2. Armstrong BG, Gibbs G (2009) Exposure–response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs). Occup Environ Med 66:740–746

    CAS  Article  Google Scholar 

  3. Choi S-D, Baek S-Y, Chang Y-S (2007) Influence of a large steel complex on the spatial distribution of volatile polycyclic aromatic hydrocarbons (PAHs) determined by passive air sampling using membrane-enclosed copolymer (MECOP). Atmos Environ 41:6255–6264

    CAS  Article  Google Scholar 

  4. Choi S-D, Ghim YS, Lee JY, Kim JY, Kim YP (2012a) Factors affecting the level and pattern of polycyclic aromatic hydrocarbons (PAHs) at Gosan, Korea during a dust period. J Hazard Mater 227–228:79–87

    Article  CAS  Google Scholar 

  5. Choi S-D, Kwon H-O, Lee Y-S, Park E-J, Oh J-Y (2012b) Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city. J Hazard Mater 241–242:252–258

    Article  CAS  Google Scholar 

  6. Colmsjö A, Rannug A, Rannug U (1984) Some chloro derivatives of polynuclear aromatic hydrocarbons are potent mutagens in Salmonella typhimurium. Mutat Res Genet Toxicol 135:21–29

    Article  Google Scholar 

  7. Dang J, He M (2016) Mechanisms and kinetic parameters for the gas-phase reactions of anthracene and pyrene with Cl atoms in the presence of NOx. RSC Adv 6:17345–17353

    CAS  Article  Google Scholar 

  8. Fu J, Suuberg EM (2012) Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons. Environ Toxicol Chem 31:486–493

    CAS  Article  Google Scholar 

  9. Fu PP, Yang SK (1982) Stereoselective metabolism of 6-bromobenzo[a]pyrene by rat liver microsomes: absolute configuration of trans-dihydrodiol metabolites. Biochem Biophys Res Commun 109:927–934

    CAS  Article  Google Scholar 

  10. Fu PP, Tungeln LSV, Unruh LE, Ni Y-C, Chou MW (1991) Comparative regioselective and stereoselective metabolism of 7-chlorobenz[a]anthracene and 7-bromobenz[a]anthracene and 7-bromobenz[a]anthracene by mouse and rat liver microsomes. Carcinogenesis 12:371–378

    CAS  Article  Google Scholar 

  11. Fu PP, Von Tungeln LS, Zhan D-J, Bucci T (1996) Potent tumorigenicity of 7-chlorobenz[α]anthracene and 7-bromobenz[α]anthracene in the neonatal B6C3F1 male mouse. Cancer Lett 101:37–42

    CAS  Article  Google Scholar 

  12. Fu PP, Von Tungeln LS, Chiu LH, Own ZY (1999) Halogenated-polycyclic aromatic hydrocarbons: a class of genotoxic environmental pollutants. Environ Carcino Ecotox Rev C 17:71–109

    Article  Google Scholar 

  13. Fujima S, Ohura T, Amagai T (2006) Simultaneous determination of gaseous and particulate chlorinated polycyclic aromatic hydrocarbons in emissions from the scorching of polyvinylidene chloride film. Chemosphere 65:1983–1989

    CAS  Article  Google Scholar 

  14. Gustafsson E, Brunström B, Nilsson U (1994) Lethality and EROD-inducing potency of chlorinated chrysene in chick embryos. Chemosphere 29:2301–2308

    CAS  Article  Google Scholar 

  15. Haglund P, Alsberg T, Bergman A, Jansson B (1987) Analysis of halogenated polycyclic aromatic hydrocarbons in urban air, snow and automobile exhaust. Chemosphere 16:2441–2450

    CAS  Article  Google Scholar 

  16. Hamilton DJ (1980) Gas chromatographic measurement of volatility of herbicide esters. J Chromatogr A 195:75–83

    CAS  Article  Google Scholar 

  17. Harner T, Bidleman TF (1996) Measurements of octanol-air partition coefficients for polychlorinated biphenyls. J Chem Eng Data 41:895–899

    CAS  Article  Google Scholar 

  18. Harner T, Bidleman TF (1998) Measurement of octanol-air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. J Chem Eng Data 43:40–46

    CAS  Article  Google Scholar 

  19. Harner T, Mackay D (1995) Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs, and DDT. Environ Sci Technol 29:1599–1606

    CAS  Article  Google Scholar 

  20. Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825–832

    CAS  Article  Google Scholar 

  21. Helm PA, Bidleman TF, Li HH, Fellin P (2004) Seasonal and spatial variation of polychlorinated naphthalenes and non-/mono-ortho-substituted polychlorinated biphenyls in arctic air. Environ Sci Technol 38:5514–5521

    CAS  Article  Google Scholar 

  22. Hinckley DA, Bidleman TF, Foreman WT, Tuschall JR (1990) Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data. J Chem Eng Data 35:232–237

    CAS  Article  Google Scholar 

  23. Horii Y, Ok G, Ohura T, Kannan K (2008) Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators. Environ Sci Technol 42:1904–1909

    CAS  Article  Google Scholar 

  24. Ichikawa Y, Watanabe T, Horimoto Y, Ishii K, Naito S (2018) Measurements of 50 non-polar organic compounds including polycyclic aromatic hydrocarbons, n-alkanes and phthalate esters in fine particulate matter (PM2.5) in an industrial area of Chiba prefecture, Japan. Asian J Atmos Environ 12:274–288

    CAS  Article  Google Scholar 

  25. Ishaq R, Näf C, Zebühr Y, Broman D, Järnberg U (2003) PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples-patterns and variations. Chemosphere 50:1131–1150

    CAS  Article  Google Scholar 

  26. Jin R et al (2017a) Secondary copper smelters as sources of chlorinated and brominated polycyclic aromatic hydrocarbons. Environ Sci Technol 51:7945–7953

    CAS  Article  Google Scholar 

  27. Jin R et al (2017b) Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method. J Chromatogr A 1509:114–122

    CAS  Article  Google Scholar 

  28. Jin R et al (2017c) Profiles, sources and potential exposures of parent, chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated atmosphere. Sci Total Environ 593:390–398

    Article  CAS  Google Scholar 

  29. Jin R, Zheng M, Yang H, Yang L, Wu X, Xu Y, Liu G (2017d) Gas–particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze. Environ Pollut 231:1601–1608

    CAS  Article  Google Scholar 

  30. Jin R, Zheng M, Lammel G, Bandowe BAM, Liu G (2020a) Chlorinated and brominated polycyclic aromatic hydrocarbons: sources, formation mechanisms, and occurrence in the environment. Prog Energy Combust Sci 76:100803

    Article  Google Scholar 

  31. Jin R et al (2020b) New classes of organic pollutants in the remote continental environment—chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. Environ Int 137:105574

    CAS  Article  Google Scholar 

  32. Kakimoto K, Nagayoshi H, Konishi Y, Kajimura K, Ohura T, Hayakawa K, Toriba A (2014) Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia. Chemosphere 111:40–46

    CAS  Article  Google Scholar 

  33. Kakimoto K et al (2017) Size distribution of chlorinated polycyclic aromatic hydrocarbons in atmospheric particles. Arch Environ Contam Toxicol 72:58–64

    CAS  Article  Google Scholar 

  34. Kamiya Y, Ikemori F, Ohura T (2015) Optimisation of pre-treatment and ionisation for GC/MS analysis for the determination of chlorinated PAHs in atmospheric particulate samples AU. Int J Environ Anal Chem 95:1157–1168

    CAS  Article  Google Scholar 

  35. Kamiya Y, Iijima A, Ikemori F, Okuda T, Ohura T (2016) Source apportionment of chlorinated polycyclic aromatic hydrocarbons associated with ambient particles in a Japanese megacity. Sci Rep 6:38358

    CAS  Article  Google Scholar 

  36. Kitazawa A, Amagai T, Ohura T (2006) Temporal trends and relationships of particulate chlorinated polycyclic aromatic hydrocarbons and their parent compounds in urban air. Environ Sci Technol 40:4592–4598

    CAS  Article  Google Scholar 

  37. Lei YD, Chankalal R, Chan A, Wania F (2002) Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons. J Chem Eng Data 47:801–806

    CAS  Article  Google Scholar 

  38. Liu G, Cai Z, Zheng M (2014) Sources of unintentionally produced polychlorinated naphthalenes. Chemosphere 94:1–12

    Article  CAS  Google Scholar 

  39. Löfroth G, Nilsson L, Agurell E, Sugiyama T (1985) Salmonella/microsome mutagenicity of monochloro derivatives of some di-, tri- and tetracyclic aromatic hydrocarbons. Mutat Res Genet Toxicol 155:91–94

    Article  Google Scholar 

  40. Lv Y et al (2016) Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition. Atmos Chem Phys 16:2971–2983

    CAS  Article  Google Scholar 

  41. Ma J, Chen Z, Wu M, Feng J, Horii Y, Ohura T, Kannan K (2013) Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai. China. Environ Sci Technol 47:7615–7623

    CAS  Article  Google Scholar 

  42. Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    CAS  Article  Google Scholar 

  43. Miyake Y, Tokumura M, Wang Q, Amagai T, Horii Y, Kannan K (2017) Mechanism of formation of chlorinated pyrene during combustion of polyvinyl chloride. Environ Sci Technol 51:14100–14106

    CAS  Article  Google Scholar 

  44. Nguyen TNT, Jung K-S, Son JM, Kwon H-O, Choi S-D (2018) Seasonal variation, phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea. Environ Pollut 236:529–539

    CAS  Article  Google Scholar 

  45. Ni H-G, Zeng EY (2012) Environmental and human exposure to soil chlorinated and brominated polycyclic aromatic hydrocarbons in an urbanized region. Environ Toxicol Chem 31:1494–1500

    CAS  Article  Google Scholar 

  46. Nilsson UL, Colmsjö AL (1990) Formation of chlorinated polycyclic aromatic hydrocarbons in different chlorination reactions. Chemosphere 21:939–951

    CAS  Article  Google Scholar 

  47. Nilsson UL, Colmsjö AL (1991) Retention characteristics of chlorinated polycyclic aromatic hydrocarbons in normal phase HPLC. I. Chloro-added PAHs. Chromatographia 32:334–340

    CAS  Article  Google Scholar 

  48. Nilsson UL, Colmsjö AL (1992) Retention characteristics of chlorinated polycyclic aromatic hydrocarbons in normal phase HPLC. II. Chloro-substituted PAHs. Chromatographia 34:115–120

    CAS  Article  Google Scholar 

  49. Nilsson UL, Oestman CE (1993) Chlorinated polycyclic aromatic hydrocarbons: method of analysis and their occurrence in urban air. Environ Sci Technol 27:1826–1831

    CAS  Article  Google Scholar 

  50. Odabasi M, Cetin E, Sofuoglu A (2006) Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas–particle partitioning in an urban atmosphere. Atmos Environ 40:6615–6625

    CAS  Article  Google Scholar 

  51. Ohura T (2007) Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons. Sci World J 7:372–380

    Article  Google Scholar 

  52. Ohura T, Miwa M (2016) Photochlorination of polycyclic aromatic hydrocarbons in acidic brine solution. Bull Environ Contam Toxicol 96:524–529

    CAS  Article  Google Scholar 

  53. Ohura T, Kitazawa A, Amagai T, Makino M (2005) Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban air. Environ Sci Technol 39:85–91

    CAS  Article  Google Scholar 

  54. Ohura T, Morita M, Makino M, Amagai T, Shimoi K (2007) Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons. Chem Res Toxicol 20:1237–1241

    CAS  Article  Google Scholar 

  55. Ohura T, Amagai T, Makino M (2008a) Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane. Chemosphere 70:2110–2117

    CAS  Article  Google Scholar 

  56. Ohura T, Fujima S, Amagai T, Shinomiya M (2008b) Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: seasonal levels, gas-particle partitioning, and origin. Environ Sci Technol 42:3296–3302

    CAS  Article  Google Scholar 

  57. Ohura T, Sawada K, Amagai T, Shinomiya M (2009) Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity. Environ Sci Technol 43:2269–2275

    CAS  Article  Google Scholar 

  58. Ohura T, Kamiya Y, Ikemori F, Imanaka T, Ando M (2012) Analysis of halogenated polycyclic aromatic hydrocarbons in the air. In: Badilla GL, Valdez B, Schorr M (eds) Air quality—new perspective. IntechOpen, Rijeka

    Google Scholar 

  59. Ohura T, Horii Y, Kojima M, Kamiya Y (2013) Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in urban air, Japan. Atmos Environ 81:84–91

    CAS  Article  Google Scholar 

  60. Ohura T, Kamiya Y, Ikemori F (2016) Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity. J Hazard Mater 312:254–261

    CAS  Article  Google Scholar 

  61. Ohura T, Horii Y, Yamashita N (2018) Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts. Environ Pollut 232:367–374

    CAS  Article  Google Scholar 

  62. Ohura T, Suhara T, Kamiya Y, Ikemori F, Kageyama S, Nakajima D (2019) Distributions and multiple sources of chlorinated polycyclic aromatic hydrocarbons in the air over Japan. Sci Total Environ 649:364–371

    CAS  Article  Google Scholar 

  63. Oishi R, Imai Y, Ikemori F, Ohura T (2019) Traffic source impacts on chlorinated polycyclic aromatic hydrocarbons in PM2.5 by short-range transport. Atmos Environ 216:116944

    CAS  Article  Google Scholar 

  64. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    CAS  Article  Google Scholar 

  65. Sonnefeld WJ, Zoller WH, May WE (1983) Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons. Anal Chem 55:275–280

    CAS  Article  Google Scholar 

  66. Spencer WF, Cliath MM (1983) Measurement of pesticide vapor pressures, vol 85. Springer, New York

    Google Scholar 

  67. Sun J-L, Zeng H, Ni H-G (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–1759

    CAS  Article  Google Scholar 

  68. Tang J et al (2020) The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: comparison of GC–MS, GC–MS/MS and GC × GC–MS/MS determination methods. J Hazard Mater 394:122573

    CAS  Article  Google Scholar 

  69. Vuong QT, Kim S-J, Nguyen TNT, Thang PQ, Lee S-J, Ohura T, Choi S-D (2020a) Passive air sampling of halogenated polycyclic aromatic hydrocarbons in the largest industrial city in Korea: spatial distributions and source identification. J Hazard Mater 382:121238

    CAS  Article  Google Scholar 

  70. Vuong QT, Thang PQ, Ohura T, Choi S-D (2020b) Determining sub-cooled liquid vapor pressures and octanol-air partition coefficients for chlorinated and brominated polycyclic aromatic hydrocarbons based on gas chromatographic retention times: application for gas/particle partitioning in air. Atmos Environ 229:117461

    CAS  Article  Google Scholar 

  71. Vuong QT, Thang PQ, Nguyen TNT, Ohura T, Choi S-D (2020c) Seasonal variation and gas/particle partitioning of atmospheric halogenated polycyclic aromatic hydrocarbons and the effects of meteorological conditions in Ulsan, South Korea. Environ Pollut 263:114592

    CAS  Article  Google Scholar 

  72. Wang D, Piao M, Chu S, Xu X (2001) Chlorinated polycyclic aromatic hydrocarbons from polyvinylchloride combustion. Bull Environ Contam Toxicol 66:326–333

    CAS  Article  Google Scholar 

  73. Wania F, Lei YD, Harner T (2002) Estimating octanol-air partition coefficients of nonpolar semivolatile organic compounds from gas chromatographic retention times. Anal Chem 74:3476–3483

    CAS  Article  Google Scholar 

  74. Xia Q, Yi P, Zhan D-J, Von Tungeln LS, Hart RW, Heflich RH, Fu PP (1998) Liver tumors induced in B6C3F1 mice by 7-chlorobenz[a]anthracene and 7-bromobenz[a]anthracene contain K-ras protooncogene mutations. Cancer Lett 123:21–25

    CAS  Article  Google Scholar 

  75. Yoshino H, Urano K (1997) Formation of chlorinated PAHs in exhaust gas from municipal waste incinerators, and their mutagenic activities. Toxicol Environ Chem 63:233–246

    CAS  Article  Google Scholar 

  76. Zhang L et al (2019) Characteristics and health risks of particulate polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons at urban and suburban elementary schools in Shanghai, China. Asian J Atmos Environ 13:266–275

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) (2020R1A2B5B01002669), the 2020 Research Fund (1.200044) of the Ulsan National Institute of Science and Technology (UNIST), and the Korea Rural Development Administration (PJ01429701).

Author information

Affiliations

Authors

Contributions

Quang Tran Vuong: Writing—original draft. Phan Quang Thang: Data curation. Takeshi Ohura: Supervision, Resources. Sung-Deuk Choi: Supervision, Project administration.

Corresponding author

Correspondence to Sung-Deuk Choi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vuong, Q.T., Thang, P.Q., Ohura, T. et al. Chlorinated and brominated polycyclic aromatic hydrocarbons in ambient air: seasonal variation, profiles, potential sources, and size distribution. Rev Environ Sci Biotechnol 19, 259–273 (2020). https://doi.org/10.1007/s11157-020-09535-z

Download citation

Keywords

  • Chlorinated PAH
  • Brominated PAH
  • Atmosphere
  • Seasonal variation
  • Formation mechanism
  • Size distribution