Skip to main content
Log in

Characterization and recovery of phosphorus from wastewater by combined technologies

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Phosphorus is a critical element in agriculture because of its role in fertilizing fields. Thus, and due to sewage discharges, phosphorus is also present in aquatic ecosystems, causing eutrophication. Phosphorus can be found in inorganic and organic forms. One solution to phosphorus-related conflicts is the application of technologies for the recovery of phosphorus from wastewater and its possible reuse. However, existing technologies are focused on the elimination/recovery of inorganic phosphorus, while technologies based on combined mechanisms have demonstrated greater efficiency in the treatment of different forms of phosphorus and its recovery. This article reviews the operational factors of the different technologies based on the physical, chemical and biological mechanisms of phosphorus recovery. Emerging combined technologies that have been able to maximize the recovery of organic and inorganic phosphorus from different wastewater streams are also reviewed. Thus, the forms of phosphorus must be understood for the appropriate technology for the recovery different forms of P in wastewater discharges to be chosen, providing environmental protection to aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel-Denee M, Abbott T, Eskicioglu C (2018) Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate. Water Res 132:292–300

    Article  CAS  Google Scholar 

  • Adám K, Krogstad T, Suliman FR et al (2005) Phosphorous sorption by filtralite P—small scale box experiment. J Environ Sci Health A 40:1239–1250

    Article  CAS  Google Scholar 

  • Adhikari U, Harrigan T, Reinhold DM (2015) Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecol Eng 78:6–14

    Article  Google Scholar 

  • American Public Health Association (APHA) (2012) Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.C

    Google Scholar 

  • Ammary BY (2004) Nutrients requirements in biological industrial wastewater treatment. Afr J Biotechnol 3:236–238

    Article  CAS  Google Scholar 

  • Andrés E, Araya F, Vera I et al (2018) Phosphate removal using zeolite in treatment wetlands under different oxidation-reduction potentials. Ecol Eng 117:18–27

    Article  Google Scholar 

  • Arias C, Brix H, Johansen N (2003) Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter. Water Sci Technol 48:51–58

    Article  CAS  Google Scholar 

  • Arivoli A, Mohanraj R, Seenivasan R (2015) Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ Sci Pollut Res 22:13336–13343

    Article  CAS  Google Scholar 

  • Bering S, Mazur J, Tarnowski K et al (2018) The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment. Sci Total Environ 627:1638–1643

    Article  CAS  Google Scholar 

  • Bi W, Li Y, Hu Y (2014) Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate. Bioresour Technol 166:1–8

    Article  CAS  Google Scholar 

  • Boenke A (1998) The standards, measurements and testing programme (SMT), the European support to standardisation, measurements and testing projects. In: Love G, Nicholson WAP, Armigliato A (eds) Modern developments and applications in microbeam analysis. Springer, Vienna, pp 387–392

    Chapter  Google Scholar 

  • Brown N, Shilton A (2014) Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Bio/Technol 13:321–328

    Article  CAS  Google Scholar 

  • Bunce J, Ndam E, Ofiteru ID et al (2018) A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci 6:1–15

    Article  Google Scholar 

  • Bus A, Karczmarczyk A (2015) Kinetic and sorption equilibrium studies on phosphorus removal from natural swimming ponds by selected reactive materials. Fresen Environ Bull 24:2736–2741

    CAS  Google Scholar 

  • Bustamante MA, Paredes C, Moral R et al (2005) Uses of winery and distillery effluents in agriculture: characterization of nutrient and hazardous components. Water Sci Technol 51:145–151

    Article  CAS  Google Scholar 

  • Cai W, Jin M, Zhao Z et al (2018) Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules. Bioresour Technol Rep 2:7–14

    Article  Google Scholar 

  • Calheiros CS, Rangel AO, Castro PM (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour Technol 100:3205–3213

    Article  CAS  Google Scholar 

  • Cao L, Wang J, Xiang S et al (2019) Nutrient removal from digested swine wastewater by combining ammonia stripping with struvite precipitation. Environ Sci Pollut Res 26:6725–6734

    Article  CAS  Google Scholar 

  • Carrillo V, Leiva AM, Vidal G (2019) Constructed wetlands: an emerging green technology for phosphorus treatment in industrial wastewater. In: Bharagava RN (ed) Environmental contaminants: ecological implications and management. Springer, Singapore, pp 185–204

    Chapter  Google Scholar 

  • Chamorro S, Hernández V, Monsalvez E et al (2010) Detection of estrogenic activity from kraft mill effluents by the yeast estrogen screen. Bull Environ Contam Toxicol 84:165–169

    Article  CAS  Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Chen X, Chen X, Wan X et al (2010) Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresour Technol 101:9025–9030

    Article  CAS  Google Scholar 

  • Cheng J, Bergmann B, Classen J et al (2002) Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresour Technol 81:81–85

    Article  CAS  Google Scholar 

  • Cieślik B, Konieczka P (2017) A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J Clean Prod 142:1728–1740

    Article  CAS  Google Scholar 

  • Comeau Y, Brisson J, Réville JP et al (2001) Phosphorus removal from trout farm effluents by constructed wetlands. Water Sci Technol 44:55–60

    Article  CAS  Google Scholar 

  • Committee Report (1970) Chemistry of nitrogen and phosphorus in water. J Am Water Works Assoc 62:127–140

    Article  Google Scholar 

  • Cooman K, Gajardo M, Nieto J et al (2003) Tannery wastewater characterization and toxicity effects on Daphnia spp. Environ Toxicol 18:45–51

    Article  CAS  Google Scholar 

  • Cornel P, Schaum C (2009) Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 59:1069–1076

    Article  CAS  Google Scholar 

  • Cornelissen ER, Harmsen D, Beerendonk EF et al (2011) The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater. Water Sci Technol 63:1557–1565

    Article  CAS  Google Scholar 

  • Coskun T, Debik E, Demir N (2010) Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination 259:65–70

    Article  CAS  Google Scholar 

  • Crutchik D, Garrido JM (2011) Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater. Water Sci Technol 64:2460–2467

    Article  CAS  Google Scholar 

  • Crutchik D, Morales N, Vázquez-Padín J et al (2017) Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product. Water Sci Technol 75:609–618

    Article  CAS  Google Scholar 

  • da Fontoura J, Rolim G, Farenzena M et al (2017) Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Saf Environ 111:355–362

    Article  CAS  Google Scholar 

  • Dai H, Lu X, Peng Y et al (2017) Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environ Sci Pollut Res 24:5791–5799

    Article  CAS  Google Scholar 

  • de Boer M, Hammerton M, Slootweg J (2018) Uptake of pharmaceuticals by sorbent-amended struvite fertilizers recovered from human urine and their bioaccumulation in tomato fruit. Water Res 133:19–26

    Article  CAS  Google Scholar 

  • DeBusk TA, Grace KA, Dierberg FE (2004) An investigation of the limits of phosphorus removal in wetlands: a mesocosm study of a shallow periphyton-dominated treatment system. Ecol Eng 23:1–14

    Article  Google Scholar 

  • del Bubba M, Checchini L, Pifferi C et al (2004) Olive mill wastewater treatment by a pilot-scale subsurface horizontal flow (SSF-h) constructed wetland. Ann Chim 94:875–887

    Article  Google Scholar 

  • Desmidt E, Ghyselbrecht K, Zhang Y et al (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45:336–384

    Article  CAS  Google Scholar 

  • Dotro G, Fort R, Barak J et al (2015) Long-term performance of constructed wetlands with chemical dosing for phosphorus removal. In: Vymazal J (ed) The role of natural and constructed wetlands in nutrient cycling and retention on the landscape. Springer, Cham, pp 273–292

    Google Scholar 

  • Drenkova-Tuhtan A, Schneider M, Franzreb M et al (2017) Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe3O4/SiO2 particles with magnetic harvesting. Water Res 109:77–87

    Article  CAS  Google Scholar 

  • Dueñas J, Alonso J, Rey À et al (2003) Characterization of phosphorous forms in wastewater treatment plants. J Hazard Mater 97:193–205

    Article  Google Scholar 

  • Ebbers B, Ottosen LM, Jensen P (2015) Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochim Acta 181:90–99

    Article  CAS  Google Scholar 

  • Egle L, Rechberger H, Krampe J et al (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542

    Article  CAS  Google Scholar 

  • Ekholm P, Jouttijärvi T, Priha M et al (2007) Determining algal-available phosphorus in pulp and paper mill effluents: algal assays vs routine phosphorus analyses. Environ Pollut 145:715–722

    Article  CAS  Google Scholar 

  • European Commission (2013) Science for environment policy in-depth report: sustainable phosphorus use. Report produced for the European Commission DG Environment. Science Communication Unit, University of the West of England, Bristol

    Google Scholar 

  • Falahati F, Baghdadi M, Aminzadeh B (2018) Treatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using in situ sludge magnetic impregnation (ISSMI). Pollution 4:29–41

    CAS  Google Scholar 

  • Finlayson C, Chick A (1983) Testing the potential of aquatic plants to treat abattoir effluent. Water Res 17:415–422

    Article  CAS  Google Scholar 

  • Fuentes B, Bolan N, Naidu R et al (2006) Phosphorus in organic waste-soil systems. J Soil Sci Plant Nut 6:64–83

    Google Scholar 

  • Gannoun H, Bouallagui H, Okbi A et al (2009) Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J Hazard Mater 170:263–271

    Article  CAS  Google Scholar 

  • Ge H, Batstone DJ, Keller J (2015) Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. Water Res 69:173–182

    Article  CAS  Google Scholar 

  • Gu A, Liu L, Neethling J (2011) Treatability and fate of various phosphorus fractions in different wastewater treatment processes. Water Sci Technol 63:804–810

    Article  CAS  Google Scholar 

  • Guisasola A, Chan C, Larriba O et al (2019) Long-term stability of an enhanced biological phosphorus removal system in a phosphorus recovery scenario. J Clean Prod 214:308–318

    Article  CAS  Google Scholar 

  • Gutiérrez-Sarabia A, Fernández-Villagómez G, Martínez-Pereda P et al (2004) Slaughterhouse wastewater treatment in a full-scale system with constructed wetlands. Water Environ Res 76:334–343

    Article  Google Scholar 

  • Hao X, Wang C, van Loosdrecht M et al (2013) Looking beyond struvite for P-recovery. Environ Sci Technol 47:4965–4966

    Article  CAS  Google Scholar 

  • Harouiya N, Rue S, Prost-Boucle S et al (2011) Phosphorus removal by apatite in horizontal flow constructed wetlands for small communities: pilot and full-scale evidence. Water Sci Technol 63:1629–1637

    Article  CAS  Google Scholar 

  • Harris W, Wilkie A, Cao X et al (2008) Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresour Technol 99:3036–3043

    Article  CAS  Google Scholar 

  • Hermassi M, Valderrama C, Dosta J et al (2015) Evaluation of hydroxyapatite crystallization in a batch reactor for the valorization of alkaline phosphate concentrates from wastewater treatment plants using calcium chloride. Chem Eng J 267:142–152

    Article  CAS  Google Scholar 

  • Huang H, Song Q, Wang W et al (2012) Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process. J Environ Manag 101:68–74

    Article  CAS  Google Scholar 

  • Huang H, Zhang P, Zhang Z (2016) Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. J Clean Prod 127:302–310

    Article  CAS  Google Scholar 

  • Huang H, Zhang D, Zhao Z et al (2017) Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation. J Clean Prod 141:429–438

    Article  CAS  Google Scholar 

  • Hultberg M, Bodin H (2019) Fungi-based treatment of real brewery waste streams and its effects on water quality. Bioprocess Biosyst Eng 42:1317–1324

    Article  CAS  Google Scholar 

  • Hussain S, Aziz H, Isa M et al (2011) Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination 271:265–272

    Article  CAS  Google Scholar 

  • Hutnik N, Kozik A, Mazienczuk A et al (2013) Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Res 47:3635–3643

    Article  CAS  Google Scholar 

  • Ichihashi O, Hirooka K (2012) Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol 114:303–307

    Article  CAS  Google Scholar 

  • Jarpa M, Pozo G, Baeza R et al (2012) Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor. J Environ Sci Health A 47:2052–2059

    Article  CAS  Google Scholar 

  • Jasinski SM (2018) Phosphate rock. US Geol Surv Miner Commod Summar 2011:118–119

    Google Scholar 

  • Johir M, George J, Vigneswaran S et al (2011) Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent. Desalination 275:197–202

    Article  CAS  Google Scholar 

  • Jones AB, Dennison WC, Preston NP (2001) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193:155–178

    Article  Google Scholar 

  • Karaca S, Gürses A, Ejder M et al (2006) Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J Hazard Mater 128:273–279

    Article  CAS  Google Scholar 

  • Kasprzyk M, Gajewska M (2019) Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Sci Total Environ 650:249–256

    Article  CAS  Google Scholar 

  • Kataki S, West H, Clarke M et al (2016) Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156

    Article  Google Scholar 

  • Kim D, Min KJ, Lee K et al (2016) Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environ Eng Res 22:12–18

    Article  Google Scholar 

  • Kruk D, Elektorowicz M, Oleszkiewicz J (2014) Struvite precipitation and phosphorus removal using magnesium sacrificial anode. Chemosphere 101:28–33

    Article  CAS  Google Scholar 

  • Kwon JH, Kim IK, Park KY et al (2014) Removal of phosphorus and coliforms from secondary effluent using ferrate (VI). KSCE J Civ Eng 18:81–85

    Article  Google Scholar 

  • Lefebvre O, Vasudevan N, Torrijos M et al (2005) Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor. Water Res 39:1471–1480

    Article  CAS  Google Scholar 

  • Leiviskä T, Nurmesniemi H, Pöykiö R et al (2008) Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent. Water Res 42:3952–3960

    Article  CAS  Google Scholar 

  • Lemaire R, Yuan Z, Bernet N et al (2009) A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation 20:339–350

    Article  CAS  Google Scholar 

  • Li B, Brett MT (2012) The impact of alum based advanced nutrient removal processes on phosphorus bioavailability. Water Res 46:837–844

    Article  CAS  Google Scholar 

  • Li B, Brett MT (2013) The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environ Pollut 182:37–44

    Article  CAS  Google Scholar 

  • Li RH, Wang XM, Li XY (2018) A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment. Water Res 129:402–412

    Article  CAS  Google Scholar 

  • Li L, Pang H, He J et al (2019) Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Mg2+. Chem Eng J 373:1279–1285

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Liu Q, Fang Z, Liu Y et al (2019) Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO. Waste Manag 87:71–77

    Article  CAS  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J et al (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44:847–907

    Article  CAS  Google Scholar 

  • López D, Sepúlveda M, Vidal G (2016) Phragmites australis and Schoenoplectus californicus in constructed wetlands: development and nutrient uptake. J Soil Sci Plant Nutr 16:763–777

    Google Scholar 

  • Luo W, Hai FI, Price WE et al (2016) Phosphorus and water recovery by a novel osmotic membrane bioreactor–reverse osmosis system. Bioresour Technol 200:297–304

    Article  CAS  Google Scholar 

  • Mantovi P, Marmiroli M, Maestri E et al (2003) Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresour Technol 188(8):5–94

    Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012) Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol 112:234–241

    Article  CAS  Google Scholar 

  • Markou G, Inglezakis VJ, Mitrogiannis D et al (2016) Sorption mechanism (s) of orthophosphate onto Ca (OH)2 pretreated bentonite. RSC Adv 6:22295–22305

    Article  CAS  Google Scholar 

  • Massé DI, Croteau F, Masse L (2007) The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresour Technol 98:2819–2823

    Article  CAS  Google Scholar 

  • Mayer B, Baker L, Boyer T et al (2016) Total value of phosphorus recovery. Environ Sci Technol 50:6606–6620

    Article  CAS  Google Scholar 

  • Mehta CM, Khunjar WO, Nguyen V et al (2015) Technologies to recover nutrients from waste streams: a critical review. Crit Rev Environ Sci Technol 45:385–427

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2018) Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resour Res 54:345–358

    Article  CAS  Google Scholar 

  • Melia PM, Cundy AB, Sohi SP et al (2017) Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 186:381–395

    Article  CAS  Google Scholar 

  • Monbet P, McKelvie ID, Saefumillah A et al (2007) A protocol to assess the enzymatic release of dissolved organic phosphorus species in waters under environmentally relevant conditions. Environ Sci Technol 41:7479–7485

    Article  CAS  Google Scholar 

  • Mosse K, Patti A, Christen E et al (2011) Winery wastewater quality and treatment options in Australia. Aust J Grape Wine Res 17:111–122

    Article  CAS  Google Scholar 

  • Muster T, Douglas G, Sherman N et al (2013) Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere 91:676–684

    Article  CAS  Google Scholar 

  • Nelson NO, Mikkelsen RL, Hesterberg DL (2003) Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresour Technol 89:229–236

    Article  CAS  Google Scholar 

  • Neubauer M, De Los P, Reyes C, Pozo G et al (2012) Growth and nutrient uptake by Schoenoplectus californicus (CA Méyer) Sójak in a constructed wetland fed with swine slurry. J Soil Sci Plant Nutr 12:421–430

    Google Scholar 

  • Nilsson C, Lakshmanan R, Renman G et al (2013) Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal—column experiment in recirculation batch mode. Water Res 47:5165–5175

    Article  CAS  Google Scholar 

  • Nur T, Loganathan P, Ahmed MB et al (2018) Struvite production using membrane-bioreactor wastewater effluent and seawater. Desalination 444:1–5

    Article  CAS  Google Scholar 

  • Oladoja N, Adelagun R, Ahmad A et al (2017) Green reactive material for phosphorus capture and remediation of aquaculture wastewater. Process Saf Environ 105:21–31

    Article  CAS  Google Scholar 

  • Ong S, Uchiyama K, Inadama D et al (2009) Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland. J Hazard Mater 165:696–703

    Article  CAS  Google Scholar 

  • Park Y, Park S, Yu J et al (2017) Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chem Eng J 316:673–679

    Article  CAS  Google Scholar 

  • Passero M, Cragin B, Coats E et al (2015) Dairy wastewaters for algae cultivation, polyhydroxyalkanote reactor effluent versus anaerobic digester effluent. BioEnergy Res 8:1647–1660

    Article  CAS  Google Scholar 

  • Peng L, Dai H, Wu Y et al (2018) A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 197:768–781

    Article  CAS  Google Scholar 

  • Perera MK, Englehardt JD, Dvorak AC (2019) Technologies for recovering nutrients from wastewater: a critical review. Environ Eng Sci 36:511–529

    Article  CAS  Google Scholar 

  • Petruccioli M, Duarte JC, Eusebio A et al (2002) Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor. Process Biochem 37:821–829

    Article  CAS  Google Scholar 

  • Pratt C, Parsons SA, Soares A et al (2012) Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Curr Opin Biotechnol 23:890–896

    Article  CAS  Google Scholar 

  • Prochaska CA, Zouboulis AI (2006) Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol Eng 26:293–303

    Article  Google Scholar 

  • Pronk M, De Kreuk MK, De Bruin B et al (2015) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217

    Article  CAS  Google Scholar 

  • Prot T, Nguyen VH, Wilfert P et al (2019) Magnetic separation and characterization of vivianite from digested sewage sludge. Sep Purif Technol 224:564–579

    Article  CAS  Google Scholar 

  • Punzi M, Nilsson F, Anbalagan A et al (2015) Combined anaerobic–ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. J Hazard Mater 292:52–60

    Article  CAS  Google Scholar 

  • Qin C, Liu H, Liu L et al (2015) Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents. Sci Total Environ 511:47–53

    Article  CAS  Google Scholar 

  • Qiu G, Ting YP (2014) Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour Technol 170:221–229

    Article  CAS  Google Scholar 

  • Rugaika AM, Van Deun R, Njau KN et al (2019) Phosphorus recovery as calcium phosphate by a pellet reactor pre-treating domestic wastewater before entering a constructed wetland. Int J Environ Sci Technol 16:3851–3860

    Article  CAS  Google Scholar 

  • Schulz C, Gelbrecht J, Rennert B (2003) Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217:207–221

    Article  CAS  Google Scholar 

  • Sengupta S, Pandit A (2011) Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res 45:3318–3330

    Article  CAS  Google Scholar 

  • Sengupta S, Nawaz T, Beaudry J (2015) Nitrogen and phosphorus recovery from wastewater. Curr Pollut Rep 1:155–166

    Article  CAS  Google Scholar 

  • Shahid M, Kim Y, Choi Y (2019) Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors. Chem Eng Res Des 148:169–179

    Article  CAS  Google Scholar 

  • Shilton A, Elmetri I, Drizo A et al (2006) Phosphorus removal by an ‘active’slag filter-a decade of full scale experience. Water Res 40:113–118

    Article  CAS  Google Scholar 

  • Šostar-Turk S, Petrinić I, Simonič M (2005) Laundry wastewater treatment using coagulation and membrane filtration. Resour Conserv Recycl 44:185–196

    Article  Google Scholar 

  • Spångberg J, Jönsson H, Tidåker P (2013) Bringing nutrients from sea to land—mussels as fertilizer from a life cycle perspective. J Clean Prod 51:234–244

    Article  CAS  Google Scholar 

  • Sukačová K, Trtílek M, Rataj T (2015) Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res 71:55–63

    Article  CAS  Google Scholar 

  • Tang X, Huang S, Scholz M et al (2011) Nutrient removal in vertical subsurface flow constructed wetlands treating eutrophic river water. Int J Environ Anal Chem 91:727–739

    Article  CAS  Google Scholar 

  • Tang X, Wu M, Li R et al (2017) Prospect of recovering phosphorus in magnesium slag-packed wetland filter. Environ Sci Pollut Res 24:22808–22815

    Article  CAS  Google Scholar 

  • Tarayre C, De Clercq L, Charlier R et al (2016) New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresour Technol 206:264–274

    Article  CAS  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM et al (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM et al (2005) Extraction of soil organic phosphorus. Talanta 66:294–306

    Article  CAS  Google Scholar 

  • Venkatesan A, Gan W, Ashani H et al (2018) Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples. Water Res 133:264–271

    Article  CAS  Google Scholar 

  • Venkiteshwaran K, McNamara PJ, Mayer BK (2018) Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. Sci Total Environ 644:661–674

    Article  CAS  Google Scholar 

  • Vera I, Araya F, Andrés E et al (2014) Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration. Environ Technol 35:1639–1649

    Article  CAS  Google Scholar 

  • Villamar CA, Rodríguez DC, López D et al (2013) Effect of the generation and physical–chemical characterization of swine and dairy cattle slurries on treatment technologies. Waste Manag Res 31:820–828

    Article  CAS  Google Scholar 

  • Villamar CA, Rivera D, Neubauer ME et al (2015) Nitrogen and phosphorus distribution in a constructed wetland fed with treated swine slurry from an anaerobic lagoon. J Environ Sci Health A 50:60–71

    Article  CAS  Google Scholar 

  • Vohla C, Kõiv M, Bavor HJ et al (2011) Filter materials for phosphorus removal from wastewater in treatment wetlands—a review. Ecol Eng 37:70–89

    Article  Google Scholar 

  • Vollenweider R, Kerekes J (1982) Eutrophication of waters. Monitoring, assessment and control. Organization for Economic Co-Operation and Development (OECD), Paris

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  Google Scholar 

  • Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow, vol 14. Springer, Heidelberg

    Book  Google Scholar 

  • Wang L, Li Y, Chen P et al (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  Google Scholar 

  • Wilsenach JA, Schuurbiers CA, Van Loosdrecht MC (2007) Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 41:458–466

    Article  CAS  Google Scholar 

  • Wong P, Ginige M, Kaksonen A et al (2015) Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen. Water Sci Technol 72:1147–1154

    Article  CAS  Google Scholar 

  • Wood JD, Gordon R, Madani A et al (2008) A long term assessment of phosphorus treatment by a constructed wetland receiving dairy wastewater. Wetlands 28:715–723

    Article  Google Scholar 

  • Yadav A, Garg V (2011) Industrial wastes and sludges management by vermicomposting. Rev Environ Sci Bio/Technol 10:243–276

    Article  CAS  Google Scholar 

  • Yalcuk A, Pakdil NB, Turan SY (2010) Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination 262:209–214

    Article  CAS  Google Scholar 

  • Yan LG, Xu YY, Yu H et al (2010) Adsorption of phosphate from aqueous solution by hydroxy-aluminum. hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. J Hazard Mater 179:244–250

    Article  CAS  Google Scholar 

  • Ye Y, Gan J, Hu B (2015) Screening of phosphorus-accumulating fungi and their potential for phosphorus removal from waste streams. Appl Biochem Biotechnol 177:1127–1136

    Article  CAS  Google Scholar 

  • Ye Y, Ngo H, Guo W et al (2017) Insight into chemical phosphate recovery from municipal wastewater. Sci Total Environ 576:159–171

    Article  CAS  Google Scholar 

  • Ye Y, Ngo H, Guo W et al (2019) Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater. Chem Eng J 358:236–242

    Article  CAS  Google Scholar 

  • Yetilmezsoy K, Sakar S (2008) Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. J Hazard Mater 153:532–543

    Article  CAS  Google Scholar 

  • Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166:260–269

    Article  CAS  Google Scholar 

  • Yuan Z, Pratt S, Batstone DJ (2012) Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol 23:878–883

    Article  CAS  Google Scholar 

  • Zhang Y, Desmidt E, Van Looveren A et al (2013) Phosphate separation and recovery from wastewater by novel electrodialysis. Environ Sci Technol 47:5888–5895

    Article  CAS  Google Scholar 

  • Zita L, Bill B, Stenstrom M et al (2015) Feasibility of a semi-batch vertical-flow wetland for onsite residential graywater treatment. Ecol Eng 82:311–322

    Article  Google Scholar 

  • Zou H, Wang Y (2016) Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresour Technol 211:87–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the following Grants ANID/FONDAP/15130015. V. Carrillo thanks ANID for her Scholarship Program ANID-PCHA/Doctorado Nacional/2018-21180207 and for supporting her Ph.D. studies at the University of Concepción.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys Vidal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, V., Fuentes, B., Gómez, G. et al. Characterization and recovery of phosphorus from wastewater by combined technologies. Rev Environ Sci Biotechnol 19, 389–418 (2020). https://doi.org/10.1007/s11157-020-09533-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-020-09533-1

Keywords

Navigation