Skip to main content

Progress in the development of methods used for the abatement of microbial contaminants in ethanol fermentations: a review

Abstract

Biofuel research and development roadmap is currently underway in several countries and is expected to pave a way for the establishment of a viable renewable energy sector that can compete with petroleum-based fuels. Ethanol fermentation has garnered increasing attention amongst various stakeholders (industries, governments, and academia) due to its economic and environmental merits. However, microbial contamination continues to be one of the major barriers in ethanologenic processes, resulting in low ethanol yields and thereby translating into economic losses. To this end, technological innovations geared towards effective elimination of microbial contamination are constantly being developed. This review explores and discusses the fermentation conditions that facilitate the growth of undesired microorganisms during ethanol fermentation processes. It highlights the methods that are currently used in biorefineries as well as innovative and advanced biotechnological methods currently being evaluated as viable alternative strategies to control or eliminate microbial contaminants in ethanol fermentations. These methods have the potential to minimize or control the contamination problem and could pave a way for the development of an efficient biofuel sector.

This is a preview of subscription content, access via your institution.

Fig. 1

Adapted and modified from Ceccato-Antonini (2018)

References

  1. Abbasiliasi S, Tan JS, Tengku Ibrahim TAT, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB (2017) Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv 7(47):29395–29420

    CAS  Google Scholar 

  2. Abbaspour M, Makhmalzadeh BS, Rezaee B, Shoja S, Ahangari Z (2015) Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J Microbiol 8(10):e24239

    Google Scholar 

  3. Adelabu BA, Kareem SO, Oluwafemi F, Adeogun IA (2019) Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. J King Saud Univ 31(1):136–141

    Google Scholar 

  4. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 101:590–599

    Google Scholar 

  5. Akmaz S, Adıgüzel ED, Yasar M, Erguven O (2013) The effect of Ag content of the chitosan–silver nanoparticle composite material on the structure and antibacterial activity. Adv Mater Sci Eng 2013:1–6

    Google Scholar 

  6. Akram F, ul Haq I, Imran W, Mukhtar H (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energy 122:225–238

    CAS  Google Scholar 

  7. Albers E, Johansson E, Franzén CJ, Larsson C (2011) Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol Biofuels 4(1):59

    CAS  Google Scholar 

  8. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    CAS  Google Scholar 

  9. Alli I, Fairbairn R, Baker BE, Garcia G (1983) The effects of ammonia on the fermentation of chopped sugarcane. Anim Feed Sci Technol 9(4):291–299

    Google Scholar 

  10. Amorim HV, Lopes ML, De Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275

    CAS  Google Scholar 

  11. An MZ, Tang YQ, Mitsumasu K, Liu ZS, Shigeru M, Kenji K (2011) Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 33:1367–1374

    CAS  Google Scholar 

  12. Aquarone E (1960) Penicillin and tetracycline as contamination control agents in alcoholic fermentation of sugar cane Molasses. Appl Microbiol 8(5):263–268

    CAS  Google Scholar 

  13. Arkoun M, Daigle F, Heuzey MC, Ajji A (2017a) Antibacterial electrospun chitosan-based nanofibers: a bacterial membrane perforator. Food Sci Nutr 5(4):865–874

    CAS  Google Scholar 

  14. Arkoun M, Daigle F, Heuzey MC, Ajji A (2017b) Mechanism of action of electron chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4):585

    Google Scholar 

  15. Awan AR, Blount BA, Bell DJ, Shaw WM, Ho JCH, MnKiernam RM, Ellis T (2017) Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun 8:15202

    Google Scholar 

  16. Ayeni AO, Daramola MO, Sekoai PT, Adeeyo O, Garba MJ, Awosusi AA (2018a) Statistical modelling and optimization of alkaline peroxide oxidation pretreatment process on rice husk cellulosic biomass to enhance enzymatic convertibility and fermentation to ethanol. Cellulose 25(4):2487–2504

    CAS  Google Scholar 

  17. Ayeni AO, Daramola MO, Awoyomi A, Elehinafe FB, Ogunbiyi A, Sekoai PT, Folayan JA (2018b) Morphological modification of Chromolaena odorata cellulosic biomass using alkaline peroxide oxidation pretreatment methodology and its enzymatic conversion to biobased products. Cogent Eng 5:1

    Google Scholar 

  18. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AZM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61

    Google Scholar 

  19. Banat IM, Singh-Nee Nigam P, Singh D, McHale AP, Marchant R (1998) Ethanol production using thermotolerant/thermophilic yeast strains: potential future exploitation. In: Pandey A (ed) Advances in biotechnology. Educational Publishers & Distributors, Delhi, pp 105–119

    Google Scholar 

  20. Barth D, de Souza Monteiro AR, da Costa MM, Virkajärvi I, Sacon V, Wilhelmsom A (2014) DesinFix TM 135 in fermentation process for bioethanol production. Braz J Microbiol 45(1):323–325

    Google Scholar 

  21. Basílio AC, de Araújo PR, de Morais JO, da Silva Filho EA, de Morais Jr MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56(4):322–326

    Google Scholar 

  22. Bassi APG, Meneguello L, Paraluppi AL, Sanches BCP, Ceccato-Antonini SR (2018) Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie Van Leeuwenhoek 111(9):1661–1672

    CAS  Google Scholar 

  23. Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1162

    CAS  Google Scholar 

  24. Basso TO, Gomes FS, Lopes ML, De Amorim HV, Eggleston G, Basso LC (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105(1):169–177

    CAS  Google Scholar 

  25. Bayrock DP, Thomas KC, Ingledew WM (2003) Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl Microbiol Biotechnol 62(5–6):498–502

    CAS  Google Scholar 

  26. Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53(4):387–394

    CAS  Google Scholar 

  27. Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. Biomed Res Int 2018:18

    Google Scholar 

  28. Behr J, Vogel RF (2009) Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem 57(14):6074–6081

    CAS  Google Scholar 

  29. Behr J, Vogel RF (2010) Mechanisms of hop inhibition include the transmembrane redox reaction. Appl Environ Microbiol 76(1):142–149

    CAS  Google Scholar 

  30. Behr J, Gänzle MG, Vogel RF (2006) Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 72(10):6483–6492

    CAS  Google Scholar 

  31. Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A (2016) “The good, the bad and the ugly” of Chitosans. Mar Drugs 14(5):99

    Google Scholar 

  32. Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamón JM, Rozès N, Mas A (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. System Appl Microbiol 25(2):287–293

    CAS  Google Scholar 

  33. Berbegal C, Peña N, Russo P, Grieco F, Pardo I, Ferrer S, Spano G, Capozzi V (2016) Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol 57:187–194

    CAS  Google Scholar 

  34. BetaHop (2019) Hops-derived fermentation aids for ethanol production. https://betatec.com/fermentation-aids/. Accessed 6 March 2019

  35. Bhattacharya S, Virani S, Zavro M, Haas GJ (2003) Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents. Econ Bot 57(1):118–125

    Google Scholar 

  36. Binod P, Gnansounou E, Sindhu R, Pandey A (2018) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325

    Google Scholar 

  37. Bischoff KM, Skinner-Nemec KA, Leathers TD (2007) Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 34(11):739–744

    CAS  Google Scholar 

  38. Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO (2009) Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng 103(1):117–122

    CAS  Google Scholar 

  39. Bonatelli ML, Quecine MC, Silva MS, Labate CA (2017) Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiol Lett 364(17):fnx159

    Google Scholar 

  40. Branco P, Sabir F, Diniz M, Carvalho L, Albergaria H, Prista C (2019) Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 103(7):3073–3083

    CAS  Google Scholar 

  41. Brexó RP, Sant’Ana As (2017) Impact and significance of microbial contamination during fermentation for bioethanol production. Renew Sustain Energy Rev 73:423–434

    Google Scholar 

  42. Bucur FL, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AL (2018) Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front Microbiol 9:2700

    Google Scholar 

  43. Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CMAP (2018) Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 84:41–44

    Google Scholar 

  44. Capecchi L, Galbe M, Wallberg O, Mattarelli P, Barbanti L (2016) Combined ethanol and methane production from switchgrass (Panicum virgatum L.) impregnated with lime prior to steam explosion. Biomass Bioenergy 90:22–31

    CAS  Google Scholar 

  45. Carrillo-Nieves D, Alanís MJR, Quiroz Rd, Ruiz HC, Iqbal HMN, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sustain Energy Rev 102:63–74

    CAS  Google Scholar 

  46. Casquete R, Castro SM, Teixeira P (2017) Evaluation of the combined effect of chitosan and lactic acid bacteria in Alheira (fermented meat sausage) Paste. J Food Proc Preserv 14(2):1–8

    Google Scholar 

  47. Catchpole CR, Andrews JM, Brenwald N, Wise R (1997) A reassessment of the in vitro activity of colistin sulphomethate sodium. J Antimicrob Chem 39:255–260

    CAS  Google Scholar 

  48. Ceccato-Antonini SR (2018) Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World J Microbiol Biotechnol 34(6):1–11

    CAS  Google Scholar 

  49. Ceylan Z, Sengor GFU, Yilmaz MT (2018) Nanoencapsulation of liquid smoke/thymol combination in chitosan nanofibers to delay microbiological spoilage of sea bass (Dicentrachus labrax). J Food Eng 229:43–49

    CAS  Google Scholar 

  50. Chadwick LR, Pauli GF, Farnsworth NR (2006) The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 13:119–131

    CAS  Google Scholar 

  51. Chang IS, Kim BH, Shin PK, Lee WK (1995) Bacterial contamination and Its effects on ethanol fermentation. J Microbiol Biotechnol 5(6):309–314

    CAS  Google Scholar 

  52. Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol 63(1):1–6

    CAS  Google Scholar 

  53. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK (2019) Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol 126:569–577

    CAS  Google Scholar 

  54. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478

    CAS  Google Scholar 

  55. Chen S, Xu Z, Li X, Yu J, Cai M, Jin M (2018) Integrated bioethanol production from mixtures of corn and corn stover. Bioresour Technol 258:18–25

    CAS  Google Scholar 

  56. Chintagunta AD, Jacob S, Banerjee R (2016) Integrated bioethanol and biomanure production from potato waste. Waste Manag 49:320–325

    CAS  Google Scholar 

  57. Choudhury RS, Goswami A (2013) Supramolecular reactive sulfur nanoparticles: a novel and efficient antimicrobial agent. J Appl Microbiol 114(1):1–10

    Google Scholar 

  58. Chung YC, Bakalinsky A, Penner MH (2005) Enzymatic saccharification and fermentation of xylose-optimized dilute acid-treated lignocellulosics. Appl Biochem Biotechnol 124:947–961

    Google Scholar 

  59. Costa VM, Basso TO, Angeloni LHP, Oetterer M, Basso LC (2008) Production of acetic acid, ethanol and optical isomers of lactic acid by Lactobacillus strains from industrial ethanol fermentation. Ciênc Agrotec 32(2):503–509

    CAS  Google Scholar 

  60. Costa OY, Souto BM, Tupinambá DD, Bergmann JC, Kyaw CM, Kruger RH, Barreto CC, Quirino BF (2015) Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind Microbiol Biotechnol 42(1):73–84

    CAS  Google Scholar 

  61. Costa MAS, Cerri BC, Ceccato-Antonini SR (2018) Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production. Appl Microbiol 66:77–85

    CAS  Google Scholar 

  62. Cousin FJ, Le Guellec R, Chuat V, Dalmasso M, Laplace JM, Cretenet M (2019) Multiplex PCR for rapid identification of major lactic acid bacteria genera in cider and other fermented foods. Int J Food Microbiol 291:17–24

    CAS  Google Scholar 

  63. Cui H, Bai M, Li C, Liu R, Lin L (2018) Fabrication of chitosan nanofibers containing tea tree of liposomes against Salmonella spp. in chicken. LWT 96:671–678

    CAS  Google Scholar 

  64. Cunningham S, Stewart GG (1998) Effects of high-gravity brewing and acid washing on brewers’ yeast. J Am Soc Brew Chem 56(1):12–18

    CAS  Google Scholar 

  65. Day WH, Serjak WC, Stratton JR, Stone L (1954) Contamination inhibition, antibiotics as contamination-control agents in grain alcohol fermentations. J Agric Food Chem 2(5):252–258

    CAS  Google Scholar 

  66. de Farias BS, Sant’ Anna Cadaval Junior TR, de Almeida Pinto LA (2019) Chitosan-functionalized nanofibers: a comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123:210–220

    Google Scholar 

  67. de Souza Liberal AT, Basílio AC, do Monte Resende A, Brasileiro BT, da Silva-Filho FA, de Morais JO, Simões DA, de Morais Jr MA (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102(2):538–547

    Google Scholar 

  68. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification and food applications. J Mol Microbiol Biotechnol 13:194–199

    Google Scholar 

  69. Denby CM, Li RA, Vu VT, Costello Z, Lin W, Chan LJG, Williams J, Donaldson B, Bamforth CW, Petzold CJ, Scheller HV, Martin HG, Keasling JD (2018) Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun 9:965

    Google Scholar 

  70. Dhiman SS, David A, Braband VW, Hussein A, Salem DR, Sani RK (2017) Improved bioethanol production from corn stover: role of enzymes, inducers and simultaneous product recovery. Appl Energy 208:1420–1429

    CAS  Google Scholar 

  71. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    CAS  Google Scholar 

  72. Díez-Antolínez R, Hijosa-Valsero M, Paniagua-García AI, Garita-Cambronero J, Gómez X (2018) Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads. PLoS ONE 13(12):e0210002

    Google Scholar 

  73. Dimopoulou M, Hatzikamari M, Masneuf-Pomarede I, Albertin W (2019) Sulfur dioxide response of Brettanomyces bruxellensis strains isolated from Greek wine. Food Microbiol 78:155–163

    CAS  Google Scholar 

  74. Dodo CM, Mamphweli S, Okoh O (2017) Bioethanol production from lignocellulosic sugarcane leaves and tops. J Energy S Afr 28(3):1–11

    Google Scholar 

  75. Doğan A, Demirci S, Aytekin AÖ, Şahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174:28–42

    Google Scholar 

  76. du Plessis HW, Dicks LMT, Pretorius IS, Lambrechts MG, du Toit M (2004) Identification of lactic acid bacteria isolated from South African brandy base wines. Int J Food Microbiol 91(1):19–29

    Google Scholar 

  77. du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S (2011) Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Technol 4(6):876–906

    Google Scholar 

  78. Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR (2013) Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 3:31

    Google Scholar 

  79. Ducrotté P, Sawant P, Jayanthi V (2012) Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroenterol 18(30):4012–4018

    Google Scholar 

  80. DuPont (2018) DuPont industrial biosciences granted US patent for FERMASURE. Available at: http://ethanolproducer.com/articles/15164/dupont-industrial-biosciences-granted-us-patent-for-fermasure. Accessed on 06 March 2019

  81. Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36

    CAS  Google Scholar 

  82. Egusa M, Iwamoto R, Izawa H, Morimoto M, Saimoto H, Kaminaka H, Ifuku S (2015) Characterization of chitosan nanofiber sheets for antifungal application. Int J Mol Sci 16(11):26202–26210

    CAS  Google Scholar 

  83. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629

    CAS  Google Scholar 

  84. Elmaci BS, Gülgör G, Tokatli M, Erten H, İşci A, Özçelik F (2015) Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek 107(3):675–686

    Google Scholar 

  85. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng: C 32(7):1711–1726

    CAS  Google Scholar 

  86. Evans ME, Feola DJ, Rapp RP (1999) Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960–967

    CAS  Google Scholar 

  87. Ferrando V, Quiberoni A, Reinhemer J, Suárez V (2015) Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiol 48:63–71

    CAS  Google Scholar 

  88. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300(6):357–362

    CAS  Google Scholar 

  89. Fraczek MG, Naseeb S, Delneri D (2018) History of genome editing in yeast. Yeast 35:361–368

    CAS  Google Scholar 

  90. Franz CMAP, den Besten HMW, Böhnlein C, Gareis M, Zwietering MH, Fusco V (2018) Microbial food safety in the 21st century: emerging challenges and foodborne pathogenic bacteria. Trends Food Sci Technol 81:155–158

    CAS  Google Scholar 

  91. G-Alegría E, López I, Ruiz J, Sáenz J, Fernández E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F (2004) High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 230(1):53–61

    Google Scholar 

  92. Gales AC, Reis AO, Jones RN (2001) Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J Clin Microbiol 39:183–190

    CAS  Google Scholar 

  93. Gales AC, Jones RN, Sader HS (2006) Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clin Microbiol Infect 12:315–321

    CAS  Google Scholar 

  94. Gallo CR (1989) Determinac¸ão da microbiota bacteriana de mosto e de dornas de fermentac¸ão alcoólica. Campinas. Ph.D. Thesis, Universidade Estadual de Campinas, p. 387. http://www.bibliotecadigital.unicamp.br/document/?code=000038046&fd=y (in Portuguese)

  95. Garcia Peña LV, Petkova P, Margalef-Marti R, Vives M, Aguilar L, Gallegos A, Francesko A, Perelshtein I, Gedanken A, Mendoza E, Casas-Zapata JC, Morató J, Tzanov T (2017) Hybrid chitosan–silver nanoparticles enzymatically embedded on cork filter material for water disinfection. Ind Eng Chem Res 56(13):3599–3606

    Google Scholar 

  96. Garg P, Park YJD, Sharma D, Wang TN (2010) Antimicrobial effect of chitosan on the growth of lactic acid bacteria strains known to spoil beer. JEMI 14:7–12

    Google Scholar 

  97. Garrido-Maestu A, Ma Z, Paik SYR, Chen N, Ko S, Tong Z, Jeong KCC (2018) Engineering of chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydr Polym 197:623–630

    CAS  Google Scholar 

  98. Gasparini M, Aurilia C, Lubian D, Testa M (2016) Herbal remedies and the self-treatment of stress: an Italian survey. Eur J Int Med 8(4):465–470

    Google Scholar 

  99. Gassara F, Antzak C, Ajila CM, Sarma SJ, Brar SK, Verma M (2015) Chitin and chitosan as natural flocculants for beer clarification. J Food Eng 166:80–85

    CAS  Google Scholar 

  100. Ge B, Domesle KJ, Yang Q, Young SR, Rice-Trujillo CL, Jones SMB, Gaines SA, Keller MW, Li X, Piñeiro SA (2017) Effects of low concentrations of erythromycin, penicillin, and virginiamycin on bacterial resistance development in vitro. Sci Rep 7(1):11017

    Google Scholar 

  101. Georgieva R, Yocheva L, Tserovska L, Zhelezova G, Stefanova N, Atanasova A, Danguleva A, Ivanova G, Karapetkov N, Rumyan N, Karaivanova E (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip 29(1):84–91

    CAS  Google Scholar 

  102. Ghaderi H, Moini A, Pishvaee MS (2018) A multi-objective robust possibilistic programming approach to sustainable switchgrass-based bioethanol supply chain network design. J Clean Prod 179:368–406

    Google Scholar 

  103. Ghalayani EA, Lazazzera B, Draghi L, Farè S, Chiesa R, De Nardo L, Billi F (2019) Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. J Appl Microbiol 126(1):87–101

    Google Scholar 

  104. Gibbons WR, Westby CA, Arnold E (1988) Semicontinuous diffusion fermentation of fodder beets for fuel ethanol and cubed protein feed production. Biotechnol Bioeng 31(7):696–704

    CAS  Google Scholar 

  105. Giersch RM, Finnigan GC (2017) Yeast still a beast: diverse applications of CRISPR/Cas editing technology in S. cerevisiae. Yale J Biol Med 90:643–651

    CAS  Google Scholar 

  106. Haas GJ, Barsoumian R (1994) Antimicrobial activity of hop resins. J Food Prot 57:59–61

    CAS  Google Scholar 

  107. Hafid HS, Nor ‘Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS (2017) Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag 67:95–105

    CAS  Google Scholar 

  108. Hammond GP, Mansell RVM (2018) A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Appl Energy 224:136–146

    CAS  Google Scholar 

  109. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422

    CAS  Google Scholar 

  110. Haris S, Fang C, Bastidas-Oyanedel JR, Prather KJ, Schmidt JE, Thomsen MH (2018) Natural antibacterial agents from arid-region pretreated lignocellulosic biomasses and extracts for the control of lactic acid bacteria in yeast fermentation. AMB Express 8(1):127

    Google Scholar 

  111. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294

    CAS  Google Scholar 

  112. He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24(4):671–681

    CAS  Google Scholar 

  113. Hege M, Jung F, Sellmann C, Jin C, Ziegenhardt D, Hellerbrand C, Bergheim I (2018) An iso-α-acid-rich extract from hops (Humulus lupulus) attenuates acute alcohol-induced liver steatosis in mice. Nutrition 45:68–75

    CAS  Google Scholar 

  114. Hermsen ED, Sullivan CJ, Rotschafer JC (2003) Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin N Am 17:545–562

    Google Scholar 

  115. Hernández-Heredia S, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG (2018) Spoilage yeasts: what are the sources of contamination of foods and beverages? Int J Food Microbiol 286:98–110

    Google Scholar 

  116. Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690

    CAS  Google Scholar 

  117. Hu K, Liu J, Li B, Liu L, Gharibzahedi SMT, Su Y, Jiang Y, Tan J, Wang W, Guo Y (2018) Global research trends in food safety in agriculture and industry from 1991 to 2018: a data-driven analysis. Food Sci Technol 85:262–276

    Google Scholar 

  118. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    CAS  Google Scholar 

  119. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR (2011) Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother 55(7):3432–3438

    CAS  Google Scholar 

  120. Huang X, Bao X, Liu Y, Wang Z, Hu Q (2017) Catechol-functional chitosan/silver nanoparticle composite as a highly effective antibacterial agent with species-specific mechanisms. Sci Rep 7(1):1860

    Google Scholar 

  121. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19(11):18367–18380

    Google Scholar 

  122. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospun nano-fibre mats with antibacterial properties from quaternized chitosan and poly (vinyl alcohol). Carbohydr Res 341(12):2098–2107

    CAS  Google Scholar 

  123. Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9(1):102–111

    CAS  Google Scholar 

  124. Intaramas K, Sakdaronnarong C, Liu CG, Mehmood MA, Jonglertjunya W, Laosiripojana N (2019) Sequential catalytic-mixed-milling and thermohydrolysis of cassava starch improved ethanol fermentation. Food Bioprod Proc 114:72–84

    CAS  Google Scholar 

  125. Jampaphaeng K, Ferrocino I, Giordano M, Rantsiou K, Maneerat S, Cocolin L (2018) Microbiota dynamics and volatilome profile during stink bean fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a starter culture. Food Microbiol 76:91–102

    CAS  Google Scholar 

  126. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5):1–20

    Google Scholar 

  127. Jin G, Zhu Y, Xu Y (2017) Mystery behind Chinese liquor fermentation. Trends Food Sci Technol 63:18–28

    CAS  Google Scholar 

  128. Jung J, Kasi G, Seo J (2018) Development of functional antimicrobial papers using chitosan/starch-silver nanoparticles. Int J Biol Macromol 112:530–536

    CAS  Google Scholar 

  129. Jutakanoke R, Leepipatpiboon N, Tolieng V, Kitpreechavanich V, Srinorakutara T, Akaracharanya A (2012) Sugarcane leaves: pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 39:283–289

    CAS  Google Scholar 

  130. Kabir E, Kumar V, Kim K-H, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271

    CAS  Google Scholar 

  131. Kalaivani R, Maruthupandy M, Muneeswaran T, Beevi AH, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35

    Google Scholar 

  132. Karabin M, Hudcova T, Jelinek L, Dostalek P (2015) Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 33(6):1063–1090

    CAS  Google Scholar 

  133. Katsimpouras C, Dedes G, Bistis P, Kekos D, Kalogiannis KG, Topakas E (2018) Acetone/water oxidation of corn stover for the production of bioethanol and prebiotic oligosaccharides. Bioresour Technol 270:208–215

    CAS  Google Scholar 

  134. Keiler AM, Helle J, Bader MI, Ehrhardt T, Nestler K, Kretzschmar G, Bernhardt R, Vollmer G, Nikolić D, Bolton JL, Pauli GF, Chen SN, Dietz BM, van Breemen RB, Zierau O (2017) A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine 34:50–58

    CAS  Google Scholar 

  135. Keles G, Demirci U (2011) The effect of homofermentative and heterofermentative lactic acid bacteria on conservation characteristics of baled triticale—Hungarian vetch silage and lamb performance. Anim Feed Sci Technol 164(1–2):21–28

    Google Scholar 

  136. Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    CAS  Google Scholar 

  137. Keskin S, Şirin Y, Çakir HE, Keskin M (2019) An investigation of Humulus lupulus L.: phenolic composition, antioxidant capacity and inhibition properties of clinically important enzymes. S Afr J Bot 120:170–174

    CAS  Google Scholar 

  138. Khatibi PA, McMaster NJ, Musser R, Schmale DG (2014a) Survey of mycotoxins in corn distillers’ dried grains with solubles from seventy-eight ethanol plants in twelve states in the U.S. in 2011. Toxins 6(4):1155–1168

    CAS  Google Scholar 

  139. Khatibi P, Roach D, Donovan D, Hughes S, Bischoff K (2014b) Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol Biofuels 7:104

    Google Scholar 

  140. Kim HS, Kim NR, Yang J, Choi W (2011) Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 91:1159–1172

    CAS  Google Scholar 

  141. Kim HM, Song Y, Wi SG, Bae HJ (2017) Production of D-tagatose and bioethanol from onion waste by an intergrating bioprocess. J Biotechnol 260:84–90

    CAS  Google Scholar 

  142. Kim JS, Daum MA, Jin YS, Miller MJ (2018) Yeast derived lysa2 can control bacterial contamination in ethanol fermentation. Viruses 10(6):281

    Google Scholar 

  143. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci 100(4):1990–1995

    CAS  Google Scholar 

  144. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  145. Le Borgne S (2012) Genetic engineering of industrial strains of Saccharomyces cerevisiae. Methods Mol Biol 824:451–465

    Google Scholar 

  146. Leite IR, Faria JR, Marquez LDS, Reis MHM, de Resende MM, Ribeiro EJ, Cardoso VL (2013) Evaluation of hop extract as a natural antibacterial agent in contaminated fuel ethanol fermentations. Fuel Proc Technol 106:611–618

    CAS  Google Scholar 

  147. Li T, McCluskey JJ (2017) Consumer preferences for second-generation bioethanol. Energy Econ 61:1–7

    Google Scholar 

  148. Lin X, Han P, Donga S, Li H (2015) Preparation and application of bacteriophage-loaded chitosan microspheres for controlling Lactobacillus plantarum contamination in bioethanol fermentation. RSC Adv 5:69886–69893

    CAS  Google Scholar 

  149. Lin L, Liao X, Surendhiran D, Cui H (2018) Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Pack Shelf Life 17:134–141

    Google Scholar 

  150. Lino FSO, Basso TO, Sommer MOA (2018) A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels 11:221

    Google Scholar 

  151. Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, Summer EJ (2015) Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol Biofuels 8:132

    CAS  Google Scholar 

  152. Liu S, Laaksonen O, Kortesniemi M, Kalpio M, Yang B (2018) Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Food Chem 266:262–274

    CAS  Google Scholar 

  153. López I, López R, Santamaría P, Torres CF, Ruiz-Larrea F (2008) Performance of malolactic fermentation by inoculation of selected Lactobacillus plantarum and Oenococcus oeni strains isolated from Rioja red wines. Vitis 47(2):123–129

    Google Scholar 

  154. López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005) Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behaviour. J Colloid Interface Sci 283(2):344–351

    Google Scholar 

  155. Love MJ, Bhandari D, Dobson RCJ, Billington C (2018) Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics 7(1):17

    Google Scholar 

  156. Lucena BTL, Santos BM, Moreira JLS, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais Jr MA (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbial 10:298–306

    Google Scholar 

  157. Lucio O, Pardo I, Heras JM, Krieger S, Ferrer S (2018) Influence of yeast strains on managing wine acidity using Lactobacillus plantarum. Food Control 92:471–478

    CAS  Google Scholar 

  158. Madeira-Jr JV, Gombert AK (2018) Towards high-temperature fuel ethanol production using Kluyveromyces marxianus: on the search for plug-in strains for the Brazilian sugarcane-based biorefinery. Biomass Bioenergy 119:217–228

    CAS  Google Scholar 

  159. Mahboubi A, Cayli B, Bulkan G, Doyen W, De Wever H, Taherzadeh MJ (2018) Removal of bacterial contamination from bioethanol fermentation system using membrane bioreactor. Fermentation 4(4):88

    CAS  Google Scholar 

  160. Maietti A, Brighenti V, Bonetti G, Tedeschi P, Prencipe FP, Benvenuti S, Brandolini V, Pellati F (2017) Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (hop). J Pharm Biomed Anal 142:28–34

    CAS  Google Scholar 

  161. Mans R, Daran JMG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56

    CAS  Google Scholar 

  162. Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15(11):20800–20832

    CAS  Google Scholar 

  163. Mathara JM, Schillinger U, Kutima PM, Mbungua SK, Guigas C, Franz C (2008) Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional milk products in Kenya. Curr Microbiol 56:315–321

    CAS  Google Scholar 

  164. Mendoza LM, Neef A, Vignolo G, Belloch C (2017) Yeast diversity during the fermentation of Andean chicha: a comparison of high-throughput sequencing and culture-dependent approaches. Food Microbiol 67:1–10

    CAS  Google Scholar 

  165. Meneghin SP, Reis FC, de Almeida PG, Ceccato-Antonini SR (2008) Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation. Braz J Microbiol 39(2):337–343

    Google Scholar 

  166. Miller EL (2002) The penicillins: a review and update. J Midwifery Womens Health 47(6):426–434

    Google Scholar 

  167. Miller BJ, Franz CM, Cho GS, du Toit M (2011) Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions. Curr Microbiol 62(6):1682–1688

    CAS  Google Scholar 

  168. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci 105:7393–7398

    CAS  Google Scholar 

  169. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220

    CAS  Google Scholar 

  170. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53

    Google Scholar 

  171. Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sustain Energy Rev 78:1007–1032

    CAS  Google Scholar 

  172. Moodley P, Rorke DCS, Gueguim Kana EB (2019) Development of artificial neural network tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. Bioresour Technol 273:682–686

    CAS  Google Scholar 

  173. Moreno-García J, García-Martínez T, Mauricio JC, Moreno J (2018) Yeast immobilization systems for alcoholic wine fermentations: actual trends and future perspectives. Front Microbiol 9:241

    Google Scholar 

  174. Moshi AP, Hosea KMM, Elisante E, Mamo G, Mattiasson B (2015) High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol 180:128–136

    CAS  Google Scholar 

  175. Muthaiyan A, Ricke SC (2010) Current perspectives on detection of microbial contamination in bioethanol fermentors. Bioresour Technol 101:5033–5042

    CAS  Google Scholar 

  176. Muthaiyan A, Limayem A, Ricke SC (2011) Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci 37:351–370

    CAS  Google Scholar 

  177. Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71:2239–2243

    CAS  Google Scholar 

  178. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365

    CAS  Google Scholar 

  179. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    CAS  Google Scholar 

  180. Niknejad F, Mohammadi M, Khomeiri M, Razavi SH (2015) Antifungal and antioxidant effects of hops (Humulus lupulus L.) flower extracts. Adv Environ Biol 8(824):395–401

    Google Scholar 

  181. Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F (2018) Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018:12

    Google Scholar 

  182. Nkosi BD, Meeske R, van der Merwe HJ, Groenewald IB (2010) Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Anim Feed Sci Technol 157(3–4):195–200

    CAS  Google Scholar 

  183. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):R87–R100

    CAS  Google Scholar 

  184. Nordmeier A, Chidambaram D (2018) Use of Zymomonas mobilis immobilized in doped calcium alginate threads for ethanol production. Energy 165(B):603–609

    CAS  Google Scholar 

  185. Nordmeier A, Chidambaram D (2019) Use of electrospun threads in immobilized cell reactors for continuous ethanol production. Colloids Surf B: Biointerf. https://doi.org/10.1016/j.colsurfb.2019.05.013 (in press)

    CAS  Google Scholar 

  186. Nuutinen T (2018) Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 157:198–228

    CAS  Google Scholar 

  187. Oh HI, Kim YJ, Chang EJ, Kim JY (2001) Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise. Biosci Biotechnol Biochem 65(11):2378–2383

    CAS  Google Scholar 

  188. Oh EJ, Wei N, Kwak S, Kim H, Jin YS (2019) Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol 292:1–4

    CAS  Google Scholar 

  189. Ohsugi M, Basnet P, Kadota S, Ishii E, Tamura T, Okumura Y, Namba T (1997) Antibacterial activity of traditional medicines and an active constituent lupulone from Humulus lupulus against Helicobacter pylori. J Tradit Med 14:186–191

    CAS  Google Scholar 

  190. Oliva-Neto P, Dorta C, Carvalho AFA, Lima VMG, Silva DF (2013) The Brazilian technology of fuel ethanol fermentation—yeast inhibition factors and new perspectives to improve the technology. In: Méndez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 371–379

    Google Scholar 

  191. Oliveira AS, Weinberg ZG, Ogunade IM, Cervantes AAP, Arriola KG, Jiang Y, Kim D, Li X, Gonçalves MCM, Vyas D, Adesogan AT (2017) Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J Dairy Sci 100(6):4587–4603

    CAS  Google Scholar 

  192. Oliveira H, São-José C, Azeredo J (2018) Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 10(6):292

    Google Scholar 

  193. Overk CR, Yao P, Chadwick LR, Nikolic D, Sun Y, Cuendet MA, Deng Y, Hedayat AS, Pauli GF, Farnsworth NR, Van RB (2005) Comparison of the in vitro estrogenic activities of compounds from hops (Humulus lupulus) and red clover (Trifolium pratense). J Agric Food Chem 53:6246–6253

    CAS  Google Scholar 

  194. Pansara C, Chan WY, Parikh A, Trott DJ, Mehta T, Mishra R, Garg S (2019) Formulation optimization of chitosan-stabilized silver nanoparticles using in vitro antimicrobial assay. J Pharm Sci 108(2):1007–1016

    CAS  Google Scholar 

  195. Parente E, Ciocia F, Ricciardi A, Zotta T, Felis GE, Torriani S (2010) Diversity of stress tolerance in Lactobacilus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: a multivariate screening study. Int J Food Microbiol 144(2):270–279

    CAS  Google Scholar 

  196. Penido FCL, Piló FB, Sandes SHC, Nunes ÁC, Colen G, Oliveira ES, Rosa CA, Lacerda IC (2018) Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Braz J Microbiol 49(4):823–831

    CAS  Google Scholar 

  197. Piló FB, Carvajal-Barriga EJ, Guamán-Burneo MC, Portero-Barahona P, Dias AMM, Freitas LFD, Gomes FCO, Rosa CA (2018) Saccharomyces cerevisiae populations and other yeasts associated with indigenous beers (chicha) of Ecuador. Braz J Microbiol 49(4):808–815

    Google Scholar 

  198. Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil R (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst 5(4):345–357

    CAS  Google Scholar 

  199. Qiu J, Ma L, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2017) Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. Bioresour Technol 238:174–181

    CAS  Google Scholar 

  200. Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol 259:228–236

    Google Scholar 

  201. Qun Y, Wei C, Liu Yu (2017) An integrated engineering system for maximizing bioenergy production from food waste. Appl Energy 206:83–89

    Google Scholar 

  202. Raghavi S, Sindhu R, Binod P, Gnansounou E, Pandey A (2016) Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresour Technol 199:202–210

    CAS  Google Scholar 

  203. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455(1–2):219–228

    CAS  Google Scholar 

  204. Raschmanova H, Weninger A, Glieder A, Kovar K, Vogl T (2018) Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol Adv 36:641–665

    CAS  Google Scholar 

  205. Rasmussen ML, Koziel JA, Jane J, Pometto AL (2015) Reducing bacterial contamination in fuel ethanol fermentations by ozone treatment of uncooked corn mash. J Agric Food Chem 63:5239–5248

    CAS  Google Scholar 

  206. Reis VR, Bassi APG, Cerri BC, Almeida AR, Carvalho IGB, Bastos RG, Ceccato-Antonini SR (2018) Effects of feedstock and co culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express 8(1):23

    Google Scholar 

  207. Ricciardi A, Parente E, Guidone A, Ianniello RG, Zotta T, Abu Sayem SM, Varcamonti M (2012) Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. Int J Food Microbiol 157:278–285

    Google Scholar 

  208. Rich JO, Leathers TD, Bischoff KM, Anderson AM, Nunnally MS (2015) Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresour Technol 196:347–354

    CAS  Google Scholar 

  209. Rich JO, Bischoff KM, Leathers TD, Anderson AM, Liu S, Skory CD (2018) Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria—an alternative to antibiotic treatment. Bioresour Technol 247:357–362

    CAS  Google Scholar 

  210. Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM (2013) Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels 6(1):20

    CAS  Google Scholar 

  211. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174–187

    CAS  Google Scholar 

  212. Rosillo-Calle F (2012) Food versus fuel: toward a new paradigm-the need for a holistic approach biofuels and food security. ISRN Renew Energy 2012:1–15

    Google Scholar 

  213. Roy J, Chandra S, Maitra S (2019) Nanotechnology in castable refractory. Ceram Int 45(1):19–29

    CAS  Google Scholar 

  214. Rückle L, Senn T (2006) Hop acids as natural antibacterials can efficiently replace antibiotics in ethanol production. Int Sugar J 108(1287):139–147

    Google Scholar 

  215. Salaberria AM, Fernandes SC, Diaz RH, Labidi J (2014) Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydr Polym 116:286–291

    Google Scholar 

  216. Santos EL, Rostro-Alanís M, Parra-Saldívar R, Alvarez AJ (2018) A novel method for bioethanol production using immobilized yeast cell in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour Technol 247:165–173

    CAS  Google Scholar 

  217. Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J (2014) The wine and beer yeast Dekkera bruxellensis. Yeast 31(9):323–332

    CAS  Google Scholar 

  218. Schmalreck AF, Teuber M (1975) Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Canadian J Microbiol 21(2):205–212

    CAS  Google Scholar 

  219. Schneider T, Baldauf A, Ba LA, Jamier V, Khairan K, Sarakbi MB, Reum N, Schneider M, Röseler A, Becker K, Burkholz T, Winyard PG, Kelkel M, Diederich M, Jacob C (2011) Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol 7(3):395–405

    CAS  Google Scholar 

  220. Schoeman H, Vivier MA, Du Toit M, Dicks LM, Pretorius IS (1999) The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15(8):647–656

    CAS  Google Scholar 

  221. Sekoai PT (2016) Modelling and optimization of operational setpoint parameters for maximum fermentative biohydrogen production using box-behnken design. Fermentation 2(3):1–15

    Google Scholar 

  222. Sekoai PT, Daramola MO (2017) The potential of dark fermentative bio-hydrogen production from biowaste effluents in South Africa. Int J Ren Energy Res 7(1):359–378

    Google Scholar 

  223. Sekoai PT, Kana EBG (2013) Fermentative biohydrogen modelling and optimization research in light of miniaturized parallel bioreactors. Biotechnol Biotechnol Equip 27(4):3901–3908

    CAS  Google Scholar 

  224. Sekoai PT, Yoro KO (2016) Biofuel development initiatives in sub-Saharan Africa: opportunities and challenges. Climate 4:2

    Google Scholar 

  225. Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397

    CAS  Google Scholar 

  226. Shabunin AS, Yudin VE, Dobrovolskaya IP, Zinovyev EV, Zubov V, Ivan’kova EM, Morganti P (2019) Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics 6:16

    CAS  Google Scholar 

  227. Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy 35(2):901–909

    CAS  Google Scholar 

  228. Shankar S, Rhim JW (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 28:116–123

    Google Scholar 

  229. Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586

    CAS  Google Scholar 

  230. Shen C, Geornaras I, Kendall PA, Sofos JN (2009) Control of Listeria monocytogenes on frankfurters by dipping in hops beta acids solutions. J Food Prot 72:702–706

    CAS  Google Scholar 

  231. Shepherd R, Reader S, Falshaw A (1997) Chitosan functional properties. Glycoconj J 14(4):535–542

    CAS  Google Scholar 

  232. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    CAS  Google Scholar 

  233. Si T, Chao R, Yuhao M, Wu Y, Ren W, Zhao H (2017) Automated multiplex genome-scale engineering in yeast. Nat Commun 8:15187

    Google Scholar 

  234. Silva JB, Sauvageau D (2014) Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol Biofuels 7:1–11

    Google Scholar 

  235. Silva JB, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363(4):fnw002

    Google Scholar 

  236. Siragusa GR, Haas GJ, Matthews PD, Smith RJ, Buhr RJ, Dale NM, Wise MG (2008) Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J Antimicrob Chemother 61:853–858

    CAS  Google Scholar 

  237. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31(9):401–408

    CAS  Google Scholar 

  238. Smidsrod O (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    CAS  Google Scholar 

  239. Stewart GG (2018) Yeast flocculation—sedimentation and flotation. Fermentation 4:28

    Google Scholar 

  240. Stolarzewicz I, Białecka-Florjañczyk E, Majewska E, Krzyczkowska J (2011) Immobilization of yeast on polymeric supports. Chem Biochem Eng Q 25(1):135–144

    CAS  Google Scholar 

  241. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Ann Rev Biochem 46:723–763

    CAS  Google Scholar 

  242. Strandskov FB, Bockelmann JB (1953) Antibiotics as inhibitors of microbiological contamination in beer. J Agric Food Chem 1(20):1219–1223

    CAS  Google Scholar 

  243. Swinnen S, Henriques SF, Shrestha R, Ho P-W, Sá-Correia I, Nevoigt E (2017) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact 16:7

    Google Scholar 

  244. Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78:8161–8163

    CAS  Google Scholar 

  245. Tang YQ, An MZ, Zhong YL, Shigeru M, Wu XL, Kida K (2010) Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. J Biosci Bioeng 109(1):41–46

    CAS  Google Scholar 

  246. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Ann Rev Microbiol 33:113–137

    CAS  Google Scholar 

  247. Tyagi S, Rawtani D, Khatri N, Tharmavaram M (2018) Strategies for nitrate removal from aqueous environment using nanotechnology: a review. J Water Proc Eng 21:84–95

    Google Scholar 

  248. Valera MJ, Morcillo-Parra MA, Zagórska I, Mas A, Beltran G, Torija MJ (2019) Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. Int J Food Microbiol 289:174–181

    CAS  Google Scholar 

  249. Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod 72:1220–1230

    Google Scholar 

  250. Walker GM, Stewart GG (2016) Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2:30

    Google Scholar 

  251. Wang D, Wang Z, Liu N, He X, Zhang B (2008) Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol Lett 30:2013–2018

    CAS  Google Scholar 

  252. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765–774

    CAS  Google Scholar 

  253. Waqas M, Naser N, Sarathy M, Morganti K, Al-Qurashi K, Bengt J (2016) Blending octane number of ethanol in HCCI, SI and CI combustion modes. SAE Int J Fuels Lubr 9(3):659–682

    CAS  Google Scholar 

  254. Westman JO, Wang R, Novy V, Franzén CJ (2017) Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw. Biotechnol Biofuels 10:1–16

    Google Scholar 

  255. Xiao B, Wan Y, Zhao M, Liu Y, Zhang S (2011) Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr Polym 83(1):144–150

    CAS  Google Scholar 

  256. Yaguchi A, Spagnuolo M, Blenner M (2018) Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 53:122–129

    CAS  Google Scholar 

  257. Yoro KO, Sekoai PT, Isafiade AJ, Daramola MO (2019) A review on heat and mass integration techniques for energy and material minimization during CO2 capture. In Press, Int J Energy Environ Eng. https://doi.org/10.1007/s40095-019-0304-1

    Book  Google Scholar 

  258. Yuan Z, Wen Y, Li G (2018) Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresour Technol 259:228–236

    CAS  Google Scholar 

  259. Zanoli P, Zavatti M (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharm 116(3):383–396

    CAS  Google Scholar 

  260. Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H (2018) Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 118(Pt A):1045–1054

    CAS  Google Scholar 

  261. Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60(6):1206–1215

    CAS  Google Scholar 

  262. Zhang Y, Wang J, Wang Z, Zhang Y, Shi S, Nielsen J, Liu Z (2019) A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun 10:1053

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sizwe I. Mhlongo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekoai, P.T., Mhlongo, S.I. & Ezeokoli, O.T. Progress in the development of methods used for the abatement of microbial contaminants in ethanol fermentations: a review. Rev Environ Sci Biotechnol 18, 795–821 (2019). https://doi.org/10.1007/s11157-019-09511-2

Download citation

Keywords

  • Bacteriophages
  • Ethanol fermentation
  • Microbial contaminants
  • Natural compounds
  • Genetical-engineering
  • Yeast