Evaluation of the potential of cassava-based residues for biofuels production

Abstract

Cassava is the third significant source of calories after rice and maize in tropical countries. The annual production of cassava crop is approximately 550 million metric tons (MMT) which generates about 350 MMT of cassava solid residues, including peel, bagasse, stem, rhizome, and leaves. Cassava peel, bagasse, stem, and rhizome can be exploited for solid, liquid and gaseous biofuels production. Biofuels production from cassava starch started in the 1970s and researchers are now extensively studying cassava residues like peel, bagasse, stem, rhizome, and leaves to unravel their applications in biofuels production. However, there are technical and economic challenges to overcome the problems existing in the production of biofuels from cassava-based residues. This review provides a comprehensive summary of the techniques used for biofuels production from various cassava-based residues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abidin Z, Saraswati E, Naid T (2014) Bioethanol production from waste of the cassava peel (Manihot esculenta) by acid hydrolysis and fermentation process. Int J PharmTech Res 6:1209–1212

    Google Scholar 

  2. Adelekan BA, Bamgboye AI (2009) Comparison of biogas productivity of cassava peels mixed in selected ratios with major livestock waste types. Afr J Agric Res 4:571–577

    Google Scholar 

  3. Adesanya OA, Oluyemi KA, Josiah SJ et al (2008) Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. Internet J Microbiol 5:25–35

    Google Scholar 

  4. Adetunji OR, Youdeowei PK, Kolawole OO (2015) Production of bioethanol from cassava peel. In: Proceedings from international conference on renewable energy and power held at Atlanta, Georgia

  5. Adeyanju AA (2008) Effect of seeding of wood-ash on biogas production using pig waste and cassava peels. J Eng Appl Sci 3:242–245

    CAS  Google Scholar 

  6. Adiotomre KO (2015) Production of bioethanol as an alternative source of fuel using cassava and yam peels as raw materials. Int J Innov Res Sci Eng Technol 3:28–44

    Google Scholar 

  7. Akponah E, Akpomie OO (2011) Analysis of the suitability of yam, potato and cassava root peels for bioethanol production using Saccharomyces cerevisiae. Int Res J Microbiol 2:393–398

    Google Scholar 

  8. Alves AAC (2002) Cassava botany and physiology. Cassava Biol Prod Util. https://doi.org/10.1079/9780851995243.0067

    Article  Google Scholar 

  9. Anbuselvi S, Balamurugan T (2013) Study on ethanol production from cassava leaves and pulp using S. cerevisiae. Res J Pharm Biol Chem Sci 4:1755–1761

    CAS  Google Scholar 

  10. Asikong BE, Epoke J, Eja EM, Antai EE (2012) Potentials of biogas generation by combination of cassava peels (CP) and poultry droppings (PD) in cross river state—Nigeria. Niger J Microbiol 26:2543–2552

    Google Scholar 

  11. Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefining 4:77–93. https://doi.org/10.1002/bbb

    CAS  Article  Google Scholar 

  12. Bansal P (2005) Evolving sustainably: a longitudinal study of corporate sustainable development. Strateg Manag J 26:197–218. https://doi.org/10.1002/smj.441

    Article  Google Scholar 

  13. Berndes G, Hoogwijk M, Van Den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28. https://doi.org/10.1016/S0961-9534(02)00185-X

    Article  Google Scholar 

  14. Bhardwaj AK, Zenone T, Chen J (eds) (2015) Sustainable biofuels an ecological assessment of future energy. Walter Gruyter GmbH Co KG, Berlin

    Google Scholar 

  15. Casson A, Muliastra YIKD, Obidzinski K (2014) Large-scale plantations, bioenergy developments and land use change in Indonesia. CIFOR Working Paper No. 170. CIFOR 170. https://doi.org/10.17528/cifor/005434

  16. Castaño Peláez H, Reales Alfaro J, Zapata Montoya J (2013) Simultaneous saccharification and fermentation of cassava stems. Dyna 80:97–104

    Google Scholar 

  17. Chibuzor O, Uyoh EA, Igile G (2016) Bioethanol production from cassava peels using different microbial inoculants. Afr J Biotechnol 15:1608–1612. https://doi.org/10.5897/AJB2016.15391

    CAS  Article  Google Scholar 

  18. Cock JH (1982) Cassava: a basic energy source in the tropics. Science 218:755–762. https://doi.org/10.1126/science.7134971

    CAS  Article  Google Scholar 

  19. Cuzin N, Labat M (1992) Reduction of cyanide levels during anaerobic digestion of cassava. Int J Food Sci Technol 27:329–336. https://doi.org/10.1111/j.1365-2621.1992.tb02034.x

    CAS  Article  Google Scholar 

  20. Cuzin N, Farinet JL, Segretain C, Labat M (1992) Methanogenic fermentation of cassava peel using a pilot plug flow digester. Bioresour Technol 41:259–264. https://doi.org/10.1016/0960-8524(92)90011-L

    CAS  Article  Google Scholar 

  21. Cuzin N, Ouattara AS, Labat M, Garcia JL (2001) Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51:489–493. https://doi.org/10.1099/00207713-51-2-489

    CAS  Article  Google Scholar 

  22. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31:171–192. https://doi.org/10.1016/j.pecs.2005.02.002

    CAS  Article  Google Scholar 

  23. Dineshkumar R, Dash SK, Sen R (2015) Process integration for microalgal lutein and biodiesel production with concomitant flue gas CO2 sequestration: a biorefinery model for healthcare, energy and environment. RSC Adv 5:73381–73394. https://doi.org/10.1039/C5RA09306F

    CAS  Article  Google Scholar 

  24. Djuma’ali DA, Sumarno SN et al (2011) Cassava pulp as a biofuel feedstock of an enzymatic hydrolysis process. Makara Tecknologi 15:183–192. https://doi.org/10.7454/mst.v15i2.938

    Article  Google Scholar 

  25. Edama NA, Sulaiman A, Abd.Rahim NS (2014) Enzymatic saccharification of Tapioca processing wastes into biosugars through immobilization technology. Biofuel Res J 1:2–6. https://doi.org/10.18331/BRJ2015.1.1.3

    CAS  Article  Google Scholar 

  26. El-Sharkawy MA (2003) Cassava biology and physiology. Plant Mol Biol 53:621–641. https://doi.org/10.1007/s11103-005-2270-7

    Article  Google Scholar 

  27. Ezebuiro V, Ogugbue CJ, Oruwari B, Ire FS (2015) Bioethanol production by an ethanol-tolerant Bacillus cereus strain GBPS9 using sugarcane bagasse and cassava peels as feedstocks. J Biotechnol Biomater. https://doi.org/10.4172/2155-952X.1000213

    Article  Google Scholar 

  28. Ezekoye VA, Ezekoye BA (2009) Characterization and storage of biogas produced from the anaerobic digestion of cow dung, spent grains/cow dung, and cassava peels/rice husk. Pacific J Sci Technol 10:898–904

    Google Scholar 

  29. Ezekoye VA, Ezekoye BA, Offor PO (2011) Effect of retention time on biogas production from poultry droppings and cassava peels. Niger J Biotechnol 22:53–59

    Google Scholar 

  30. FAO (1999) FAO. www.apps.fao.org/lim500/nph-wrap.pl?FS.CropsAndProducts&Domain=FS&servlet=1%3E. Accessed 5 May 2014

  31. FAO (2018) FAO. https://web.archive.org/web/20110713020710/ http://faostat.fao.org/site/339/default.aspx. Accessed 13 Mar 2018

  32. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810. https://doi.org/10.1126/science.1137013

    CAS  Article  Google Scholar 

  33. Han M, Kim Y, Kim Y et al (2011) Bioethanol production from optimized pretreatment of cassava stem. Korean J Chem Eng 28:119–125. https://doi.org/10.1007/s11814-010-0330-4

    CAS  Article  Google Scholar 

  34. Hermiati E, Azuma J, Mangunwidjaja D et al (2011) Hydrolysis of carbohydrates in cassava pulp and tapioca flour under microwave irradiation. Indones J Chem 11:238–245

    Google Scholar 

  35. Jekayinfa SO, Scholz V (2013) Laboratory scale preparation of biogas from cassava tubers, cassava peels, and palm kernel oil residues. Energy Sources Part A Recover Util Environ Eff 35:2022–2032. https://doi.org/10.1080/15567036.2010.532190

    CAS  Article  Google Scholar 

  36. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66. https://doi.org/10.1016/j.tca.2009.10.003

    CAS  Article  Google Scholar 

  37. Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218. https://doi.org/10.1016/j.pbi.2003.12.001

    CAS  Article  Google Scholar 

  38. Johnson R, Padmaja G (2011) Utilization of cassava fibrous residue for the production of glucose and high fructose syrup. Ind Biotechnol 7:448–455. https://doi.org/10.1089/ind.2011.0015

    CAS  Article  Google Scholar 

  39. Kalakul S, Malakul P, Siemanond K, Gani R (2014) Integration of life cycle assessment software with tools for economic and sustainability analyses and process simulation for sustainable process design. J Clean Prod 71:98–109. https://doi.org/10.1016/j.jclepro.2014.01.022

    CAS  Article  Google Scholar 

  40. Ki OL, Kurniawan A, Lin CX et al (2013) Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol 145:157–161. https://doi.org/10.1016/j.biortech.2013.01.122

    CAS  Article  Google Scholar 

  41. Klinpratoom B, Ontanee A, Ruangviriyachai C (2015) Improvement of cassava stem hydrolysis by two-stage chemical pretreatment for high yield cellulosic ethanol production. Korean J Chem Eng 32:413–423. https://doi.org/10.1007/s11814-014-0235-8

    CAS  Article  Google Scholar 

  42. Kongkiattikajorn J (2013) Production of glucoamylase from Saccharomycopsis fibuligera sp. and hydrolysis of cassava peels for alcohol production. Int J Comput Internet Manag 21:1–7

    Google Scholar 

  43. Kongkiattikajorn J, Sornvoraweat B (2011) Comparative study of bioethanol production from cassava peels by monoculture and co-culture of yeast. Kasetsart J Nat Sci 45:268–274

    CAS  Google Scholar 

  44. Kouteu Nanssou PA, Jiokap Nono Y, Kapseu C (2016) Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process. Renew Energy 97:252–265. https://doi.org/10.1016/j.renene.2016.05.050

    CAS  Article  Google Scholar 

  45. Laohalidanond K, Heil J, Wirtgen C (2006) The production of synthetic diesel from biomass. KMITL Sci Technol 6:35–45

    Google Scholar 

  46. Larsson S, Lockneus O, Xiong S, Samuelsson R (2015) Cassava stem powder as an additive in biomass fuel pellet production. Energy Fuels 29:5902–5908. https://doi.org/10.1021/acs.energyfuels.5b01418

    CAS  Article  Google Scholar 

  47. Li S, Cui Y, Zhou Y et al (2017) The industrial applications of cassava: current status, opportunities and prospects. J Sci Food Agric. https://doi.org/10.1002/jsfa.8287

    Article  Google Scholar 

  48. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919. https://doi.org/10.1016/j.energy.2006.10.017

    Article  Google Scholar 

  49. Magesh A, Preetha B, Viruthagiri T (2011a) Simultaneous Saccharification and fermentation of tapioca stem var. 226 white rose to ethanol by cellulase enzyme and Saccharomyces cerevisiae. Int J ChemTech Res 3:1821–1829

    CAS  Google Scholar 

  50. Magesh A, Preetha B, Viruthagiri T (2011b) Statistical optimization of process variables for direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum. Int J Chem Mol Nucl Mater Metall Eng 5:226–231

    Google Scholar 

  51. Mangnimit S, Malakul P, Gani R (2013) Sustainable process design of biofuels: bioethanol production from cassava rhizome. In: Proceedings of the 6th international conference on process systems engineering (PSE ASIA) vol 25, pp 1–6

  52. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    CAS  Article  Google Scholar 

  53. Moshi AP, Temu SG, Nges IA et al (2015) Combined production of bioethanol and biogas from peels of wild cassava Manihot glaziovii. Chem Eng J 279:297–306. https://doi.org/10.1016/j.cej.2015.05.006

    CAS  Article  Google Scholar 

  54. Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol (Méndez-Vilas, A, Ed) 2:897–907. https://doi.org/10.1016/j.jrras.2014.02.003

    CAS  Article  Google Scholar 

  55. Nassar NMA (2007) Wild and indigenous cassava, Manihot esculenta Crantz diversity: an untapped genetic resource. Genet Resour Crop Evol 54:1523–1530. https://doi.org/10.1007/s10722-006-9144-y

    Article  Google Scholar 

  56. Nguyen QA, Yang J, Bae HJ (2017) Bioethanol production from individual and mixed agricultural biomass residues. Ind Crops Prod 95:718–725. https://doi.org/10.1016/j.indcrop.2016.11.040

    CAS  Article  Google Scholar 

  57. Nigam PSN, Pandey A (eds) (2009) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer Science & Business Media

  58. Nkodi TM, Taba KM, Kayembe S et al (2016) Biogas production by co-digestion of cassava peels with urea. Int J Sci Eng Technol 55:139–141

    Google Scholar 

  59. Nnabuchi MN, Ukpai PA (2012) Comparative study of biogas production from cow dung, cow pea and cassava peeling using 45 l biogas digester. Prime Res Med 2:89–93

    Google Scholar 

  60. Noor NM, Shariff A, Abdullah N (2012) Slow pyrolysis of cassava wastes for biochar production and characterization. Iran J Energy Environ 3:60–65. https://doi.org/10.5829/idosi.ijee.2012.03.05.10

    CAS  Article  Google Scholar 

  61. Nurse K (2006) Culture as the fourth pillar of sustainable development. Small States Econ Rev Basic Stat 11:28–40. https://doi.org/10.1177/026327690007002004

    Article  Google Scholar 

  62. Nuwamanya E, Chiwona-karltun L, Kawuki RS, Baguma Y (2012) Bio-ethanol production from non-food parts of CASSAVA (Manihot esculenta Crantz). Ambio 41:262–270. https://doi.org/10.1007/s13280-011-0183-z

    CAS  Article  Google Scholar 

  63. Ofoefule AU, Uzodinma EO (2009) Biogas production from blends of cassava (Manihot utilissima) peels with some animal wastes. Int J Phys Sci 4(1):Ofoef:398–Ofoef:402

    Google Scholar 

  64. Okareh OT, Adeolu AT, Shittu OI (2012) Enrichment of pig dung with selected crop wastes for the production of biogas. Int J Microbiol 3:258–263

    Google Scholar 

  65. Okekunle PO, Itabiyi OE, Adetola SO et al (2016) Biofuel production by pyrolysis of cassava peel in a fixed bed reactor. Int J Energy Clean Environ 17:57–65

    Article  Google Scholar 

  66. Oparaku NF, Ofomatah AC, Okoroigwe EC (2013) Biodigestion of cassava peels blended with pig dung for methane generation. Afr J Biotechnol 12:5956–5961. https://doi.org/10.5897/AJB2013.12938

    CAS  Article  Google Scholar 

  67. Orhorhoro OW, Orhorhoro EK, Ebunilo PO (2016) Analysis of the effect of carbon/nitrogen (C/N) ratio on the performance of biogas yields for non-uniform multiple feed stock availability and composition in Nigeria. Int J Innov Sci Eng Technol 3:119–126

    Google Scholar 

  68. Oyeleke SB, Dauda BEN, Oyewole OA, Okoliegbe IN, Ojebode T (2012) Production of bioethanol from cassava and sweet potato peels. Adv Environ Biol 6:241–245

    Google Scholar 

  69. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3

    CAS  Article  Google Scholar 

  70. Pandey A (2004) Concise encyclopedia of bioresource technology (No. C/620.803 C6). New York: Food Products Press

  71. Pandey A, Soccol CR (2000) Economic utilization of crop residues for value addition: a futuristic approach. J Sci Ind Res 59:12–22

    CAS  Google Scholar 

  72. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80. https://doi.org/10.1016/S0960-8524(99)00142-X

    CAS  Article  Google Scholar 

  73. Pandian CA, Suganya C, Sivamani S, Baskar R (2016) Saccharification and single step fermentation of cassava peel by mixed culture of Saccharomycopsis fibuligera NCIM 3161 and Zymomonas mobilis MTCC 92. Am J Biomass Bioenergy 5:57–64. https://doi.org/10.7726/ajbb.2016.1005

    CAS  Article  Google Scholar 

  74. Patle S, Lal B (2008) Investigation of the potential of agro-industrial material as low-cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenergy 32:596–602. https://doi.org/10.1016/j.biombioe.2007.12.008

    CAS  Article  Google Scholar 

  75. Pattiya A (2011a) Thermochemical characterization of agricultural wastes from thai cassava plantations. Energy Sources Part A Recover Util Environ Eff 33:691–701. https://doi.org/10.1080/15567030903228922

    CAS  Article  Google Scholar 

  76. Pattiya A (2011b) Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresour Technol 102:1959–1967. https://doi.org/10.1016/j.biortech.2010.08.117

    CAS  Article  Google Scholar 

  77. Pattiya A, Suttibak S (2012) Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J Anal Appl Pyrolysis 95:227–235. https://doi.org/10.1016/j.jaap.2012.02.010

    CAS  Article  Google Scholar 

  78. Pattiya A, Titiloye JO, Bridgwater AV (2007) Catalytic fast pyrolysis of cassava rhizome in a micro-reactor. Asian J Energy Environ 8:211–228

    Google Scholar 

  79. Pattiya A, Titiloye JO, Bridgwater AV (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81:72–79. https://doi.org/10.1016/j.jaap.2007.09.002

    CAS  Article  Google Scholar 

  80. Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89:244–253. https://doi.org/10.1016/j.fuel.2009.07.003

    CAS  Article  Google Scholar 

  81. Pattiya A, Sukkasi S, Goodwin V (2012) Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy 44:1067–1077. https://doi.org/10.1016/j.energy.2012.04.035

    CAS  Article  Google Scholar 

  82. Raman N, Pothiraj C (2008) Screening of Zymomonas mobilis and Saccharomyces cerevisiae strains for ethanol production from cassava waste. Rasayan J Chem 1:537–541

    CAS  Google Scholar 

  83. Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V (2009) Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng 107:488–493. https://doi.org/10.1016/j.jbiosc.2008.12.024

    CAS  Article  Google Scholar 

  84. Ravindran V (1993) Cassava leaves as animal feed: potential and limitations. J Sci Food Agric 61:141–150. https://doi.org/10.1002/jsfa.2740610202

    Article  Google Scholar 

  85. Ray RC, Mohapatra S, Panda S, Kar S (2008) Solid substrate fermentation of cassava fibrous residue for production of α-amylase, lactic acid and ethanol. J Environ Biol 29:111–115. https://doi.org/10.1016/0167-7799(85)90092-7

    CAS  Article  Google Scholar 

  86. Rymowicz W, Kopec W, Stevens C (2004) Primary production of raw materials. In: Stevens C, Verhé R (eds) Renewable bioresources: scope and modification for non-food applications. Wiley, Chichester, UK

    Google Scholar 

  87. Sanette M, Tando YN (2013) Cassava as feedstock for ethanol production in South Africa. Afr J Biotechnol 12:4975–4983. https://doi.org/10.5897/AJB12.861

    CAS  Article  Google Scholar 

  88. Sen R, Wiwatpanyaporn S, Annachhatre AP (2016) Influence of binders on physical properties of fuel briquettes produced from cassava rhizome waste. Int J Environ Waste Manag 17:158–175

    CAS  Article  Google Scholar 

  89. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  90. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019

    CAS  Article  Google Scholar 

  91. Sirijanusorn S, Sriprateep K, Pattiya A (2013) Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit. Bioresour Technol 139:343–348. https://doi.org/10.1016/j.biortech.2013.04.024

    CAS  Article  Google Scholar 

  92. Sivamani S, Baskar R (2015) Optimization of bioethanol production from cassava peel using statistical experimental design. Environ Prog Sustain Energy 34:567–574. https://doi.org/10.1002/ep.11984

    CAS  Article  Google Scholar 

  93. Sivamani S, Shanmugam A, Baskar R (2015) Optimization of ethanol production from mixed feedstock of cassava peel and cassava waste by coculture of Saccharomycopsis fibuligera NCIM 3161 and Zymomonas mobilis MTCC 92. Chem Bioprocess Eng. https://doi.org/10.1201/b18402-4

    Article  Google Scholar 

  94. Sovorawet B, Kongkiattikajorn J (2012) Bioproduction of ethanol in SHF and SSF from cassava stalks. Asia-Pacific J Sci Technol 17:565–572

    Google Scholar 

  95. Srinorakutara T, Suesat C, Pitiyont B et al (2004) Utilization of waste from cassava starch plant for ethanol production. In: Proceedings of the joint international conference on sustainable energy and environment (SEE), pp 344–349

  96. Sriroth K (2001) Outlook of biomass utilization as biofuel in Thailand. http://www.biomass-asia-workshop.jp/biomassws/01workshop/material/Klanarong%81@Sriroth.pdf. Accessed 13 Mar 2015

  97. Suttibak S, Sriprateep K, Pattiya A (2012) Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidised-bed reactor. Energy Proc 14:668–673. https://doi.org/10.1016/j.egypro.2011.12.993

    CAS  Article  Google Scholar 

  98. Thanarak P (2012) Supply chain management of agricultural waste for biomass utilization and CO2 emission reduction in the lower northern region of Thailand. Energy Proc 14:843–848. https://doi.org/10.1016/j.egypro.2011.12.887

    Article  Google Scholar 

  99. Thongchul N, Navankasattusas S, Yang ST (2010) Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess Biosyst Eng 33:407–416. https://doi.org/10.1007/s00449-009-0341-x

    CAS  Article  Google Scholar 

  100. Ubalua AO (2007) Cassava wastes: treatment options and value addition alternatives. Afr J Biotechnol 6:2065–2073. https://doi.org/10.5897/AJB2007.000-2319

    CAS  Article  Google Scholar 

  101. Uchechukwu-Agua AD, Caleb OJ, Opara UL (2015) Postharvest handling and storage of fresh cassava root and products: a review. Food Bioprocess Tech 8:729–748

    Article  Google Scholar 

  102. Ukpai PA, Nnabuchi MN (2012) Comparative study of biogas production from cow dung, cow pea and cassava peeling using 45 l biogas digester. Adv Appl Sci Res 3:1864–1869

    CAS  Google Scholar 

  103. Ukpai PA, Agbo PE, Nnabuchi MN (2015) The effect of temperature on the rate of digestion and biogas production using cow dung, cow pea, cassava pending. Int J Sci Eng Res 6:1255–1261

    Google Scholar 

  104. Wang L, Yang S-T (2007) Solid state fermentation and its applications. Bioprocess Value Added Prod Renew Resour. https://doi.org/10.1016/B978-044452114-9/50019-0

    Article  Google Scholar 

  105. Wei M, Zhu W, Xie G et al (2015) Cassava stem wastes as potential feedstock for fuel ethanol production: a basic parameter study. Renew Energy 83:970–978. https://doi.org/10.1016/j.renene.2015.05.054

    CAS  Article  Google Scholar 

  106. Wilkinson J, Rocha R (2008) The agro-processing sector: empirical overview, recent trends and development impact. Plenary paper for global industries forum, New Delhi, India

  107. Woiciechowski AL, Saul N, Pandey A, Soccol CR (2002) Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study. Braz Arch Biol Technol 45:393–400

    CAS  Article  Google Scholar 

  108. Wongskeo P, Rangsunvigit P, Chavadej S (2012) Production of glucose from the hydrolysis of cassava residue using bacteria isolates from thai higher termites. World Acad Sci Eng Technol 64:353–356

    Google Scholar 

  109. Yoonan K, Yowapui P, Kongkiattikajorn J (2007) Ethanol production from acid hydrolysate of cassava peels using Saccharomyces cerevisiae. KMUTT Res Dev J 30:405–418

    Google Scholar 

  110. Zhang M, Xie L, Yin Z et al (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215:50–62. https://doi.org/10.1016/j.biortech.2016.04.026

    CAS  Article  Google Scholar 

  111. Zhu W, Lestander TA, Örberg H et al (2015) Cassava stems: a new resource to increase food and fuel production. GCB Bioenergy 7:72–83. https://doi.org/10.1111/gcbb.12112

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Selvaraju Sivamani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sivamani, S., Chandrasekaran, A.P., Balajii, M. et al. Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol 17, 553–570 (2018). https://doi.org/10.1007/s11157-018-9475-0

Download citation

Keywords

  • Cassava residues
  • Biochar
  • Bioethanol
  • Bio-oil
  • Biogas