Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material

review paper
  • 49 Downloads

Abstract

Hemicelluloses are heteropolysaccharides existing in plant cell wall and seed, and they can be extracted or separated from plants as byproducts during the biomass pretreatment in biorefineries and the pulping in paper industry. The hemicelluloses have many applications such as in biofuels, platform chemicals, and materials. Producing packaging materials (films) is a potential high-value application of the hemicelluloses. However, native hemicelluloses are usually unable to form strong and durable films due to their short chain (low molecular weight), high hydrophilicity, and heterogeneous nature. Chemical and biological modifications could change the physicochemical properties of the hemicelluloses and thereby improve the strength and performance of the hemicellulose-based films. The present review extensively summarized and discussed the recent development and progress in hemicellulose modification strategies and methods for improving the formability and properties of the hemicellulose-based packaging films such as mechanical strength, processability, thermal stability, hydrophobicity, and oxygen and water vapor permeability, which include enzymatic treatment, esterification, etherification, oxidation, coupling, and crosslinking. The challenges and opportunities of hemicellulose as packaging materials were addresses.

Keywords

Enzymatic modification Chemical modification Packaging film Xylan Mannan 

Notes

Acknowledgements

The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China (31470601 and 31370581) and China Scholarship Council (CSC).

References

  1. Abdel-Halim ES, Alanazi HH, Al-Deyab SS (2015) Utilization of olive tree branch cellulose in synthesis of hydroxypropyl carboxymethyl cellulose. Carbohydr Polym 127:124–134.  https://doi.org/10.1016/j.carbpol.2015.03.037 CrossRefGoogle Scholar
  2. Adams GA (1965) Hemicellulose. Extraction from annual plants by pretreatment with liquid ammonia. Methods Carbohydr Chem 5:146–147Google Scholar
  3. Akpinar O, Erdogan K, Bakir U, Yilmaz L (2010) Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. Lwt Food Sci Technol 43:119–125.  https://doi.org/10.1016/j.lwt.2009.06.025 CrossRefGoogle Scholar
  4. Albertsson AC, Edlund U (2011) Barrier layer for a packaging laminate and packaging laminate comprising such barrier layer. Patent application WO 2011/005181Google Scholar
  5. Alekhina M, Mikkonen KS, Alén R, Tenkanen M, Sixta H (2014) Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films. Carbohydr Polym 100:89–96.  https://doi.org/10.1016/j.carbpol.2013.03.048 CrossRefGoogle Scholar
  6. Andrewartha KA, Phillips DR, Stone BA (1979) Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr Res 77:191–204.  https://doi.org/10.1016/s0008-6215(00)83805-7 CrossRefGoogle Scholar
  7. Anthony R, Xiang ZY, Runge T (2015) Paper coating performance of hemicellulose-rich natural polymer from distiller’s grains. Prog Org Coat 89:240–245.  https://doi.org/10.1016/j.porgcoat.2015.09.013 CrossRefGoogle Scholar
  8. Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013) Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crops Prod 44:306–314.  https://doi.org/10.1016/j.indcrop.2012.10.036 CrossRefGoogle Scholar
  9. Azeredo HMC, Kontou-Vrettou C, Moates GK, Wellner N, Cross K, Pereira PHF, Waldron KW (2015) Wheat straw hemicellulose films as affected by citric acid. Food Hydrocolloids 50:1–6.  https://doi.org/10.1016/j.foodhyd.2015.04.005 CrossRefGoogle Scholar
  10. Bahcegul E, Toraman HE, Ozkan N, Bakir U (2012) Evaluation of alkaline pretreatment temperature on a multi-product basis for the co-production of glucose and hemicellulose based films from lignocellulosic biomass. Biores Technol 103:440–445.  https://doi.org/10.1016/j.biortech.2011.09.138 CrossRefGoogle Scholar
  11. Barkalow D, Zyck D, Soto M (2006) Edible film compositions. patent application EP 1621080Google Scholar
  12. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond 364:1985–1998CrossRefGoogle Scholar
  13. Berlanga-Reyes CM, Carvajal-Millán E, Lizardi-Mendoza J, Rascón-Chu A, Marquez-Escalante JA, Martínez-López AL (2009) Maize arabinoxylan gels as protein delivery matrices. Molecules 14:1475–1482.  https://doi.org/10.3390/molecules14041475 CrossRefGoogle Scholar
  14. Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864Google Scholar
  15. Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332:439–444.  https://doi.org/10.1016/s0008-6215(01)00104-5 CrossRefGoogle Scholar
  16. Chauhan K, Kaur J, Kumari A, Kumari A, Chauhan GS (2015) Efficient method of starch functionalization to bis-quaternary structure unit. Int J Biol Macromol 80:498–505.  https://doi.org/10.1016/j.ijbiomac.2015.07.011 CrossRefGoogle Scholar
  17. Chen GG et al (2015) Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Sci Rep.  https://doi.org/10.1038/srep16405 Google Scholar
  18. Chen CX et al (2016a) Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. BioResources 11:5553–5564Google Scholar
  19. Chen GG, Qi XM, Guan Y, Peng F, Yao CL, Sun RC (2016b) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993.  https://doi.org/10.1021/acssuschemeng.5b01252 CrossRefGoogle Scholar
  20. Chimphango AFA, van Zyl WH, Gorgens JF (2012) In situ enzymatic aided formation of xylan hydrogels and encapsulation of horse radish peroxidase for slow release. Carbohydr Polym 88:1109–1117.  https://doi.org/10.1016/j.carbpol.2012.01.077 CrossRefGoogle Scholar
  21. Chun EH, Oh SM, Kim HY, Kim BY, Baik MY (2016) Effect of high hydrostatic pressure treatment on conventional hydroxypropylation of maize starch. Carbohydr Polym 146:328–336.  https://doi.org/10.1016/j.carbpol.2016.03.067 CrossRefGoogle Scholar
  22. Damez C, Bouquillon S, Harakat D, Hénin F, Muzart J, Pezron I, Komunjer L (2007) Alkenyl and alkenoyl amphiphilic derivatives of d-xylose and their surfactant properties. Carbohydr Res 342:154–162.  https://doi.org/10.1016/j.carres.2006.11.013 CrossRefGoogle Scholar
  23. Deutschmann R, Dekker RFH (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 30:1627–1640.  https://doi.org/10.1016/j.biotechadv.2012.07.001 CrossRefGoogle Scholar
  24. Ebringerová A, Kardosová A, Hromádková Z, Malovíková A, Hríbalová V (2002) Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. Int J Biol Macromol 30:1–6.  https://doi.org/10.1016/s0141-8130(01)00186-6 CrossRefGoogle Scholar
  25. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides 1: structure, characterization and use. Advances in polymer science, vol 186. Springer, Berlin, pp 1–67.  https://doi.org/10.1007/b136816 Google Scholar
  26. Edlund U, Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538.  https://doi.org/10.1021/bm100767g CrossRefGoogle Scholar
  27. Edwards M, Dea ICM, Bulpin PV, Reid JSG (1985) Xyloglucan (amyloid) mobilisation in the cotyledons of Tropaeolum majus L. seeds following germination. Planta 163:133–140.  https://doi.org/10.1007/bf00395907 CrossRefGoogle Scholar
  28. Egúees I, Stepan AM, Eceiza A, Toriz G, Gatenholm P, Labidi J (2014) Corncob arabinoxylan for new materials. Carbohydr Polym 102:12–20.  https://doi.org/10.1016/j.carbpol.2013.11.011 CrossRefGoogle Scholar
  29. Egüés I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Biores Technol 103:239–248.  https://doi.org/10.1016/j.biortech.2011.09.139 CrossRefGoogle Scholar
  30. Egüés I, Eceiza A, Labidi J (2013) Effect of different hemicelluloses characteristics on film forming properties. Ind Crops Prod 47:331–338.  https://doi.org/10.1016/j.indcrop.2013.03.031 CrossRefGoogle Scholar
  31. Escalante A, Goncalves A, Bodin A, Stepan A, Sandstrӧm C, Toriz G, Gatenholm P (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87:2381–2387.  https://doi.org/10.1016/j.carbpol.2011.11.003 CrossRefGoogle Scholar
  32. Fang JM, Sun RC, Fowler P, Tomkinson J, Hill CAS (1999) Esterification of wheat straw hemicelluloses in the N,N-dimethylformamide/lithium chloride homogeneous system. J Appl Polym Sci 74:2301–2311CrossRefGoogle Scholar
  33. Figueroa-Espinoza MC, Rouau X (1998) Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans. Cereal Chem 75:259–265.  https://doi.org/10.1094/cchem.1998.75.2.259 CrossRefGoogle Scholar
  34. Fu Z, Luo SJ, Liu W, Liu CM, Zhan LJ (2016) Structural changes induced by high speed jet on invitro digestibility and hydroxypropylation of rice starch. Int J Food Sci Technol 51:1034–1040.  https://doi.org/10.1111/ijfs.13046 CrossRefGoogle Scholar
  35. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012a) Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydr Polym 87:170–176.  https://doi.org/10.1016/j.carbpol.2011.07.034 CrossRefGoogle Scholar
  36. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012b) Syntheses and characterization of xylan esters. Polymer 53:3885–3893.  https://doi.org/10.1016/j.polymer.2012.06.038 CrossRefGoogle Scholar
  37. Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydr Polym 43:367–374.  https://doi.org/10.1016/s0144-8617(00)00181-8 CrossRefGoogle Scholar
  38. Gao CD, Ren JL, Wang SY, Sun RC, Zhao LH (2014) Preparation of polyvinyl alcohol/xylan blending films with 1,2,3,4-butane tetracarboxylic acid as a new plasticizer. J Nanomater.  https://doi.org/10.1155/2014/764031 Google Scholar
  39. Garrote G, Dominguez H, Parajo JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109CrossRefGoogle Scholar
  40. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782CrossRefGoogle Scholar
  41. Gidley MJ et al (1991) Structure and solution properties of tamarind-seed polysaccharide. Carbohydr Res 214:299–314.  https://doi.org/10.1016/0008-6215(91)80037-n CrossRefGoogle Scholar
  42. Goksu EI, Karamanlioglu M, Bakir U, Yilmaz L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55:10685–10691.  https://doi.org/10.1021/jf071893i CrossRefGoogle Scholar
  43. Gomes KR, Chimphango AFA, Gorgens JF (2015) Modifying solubility of polymeric xylan extracted from Eucalyptus grandis and sugarcane bagasse by suitable side chain removing enzymes. Carbohydr Polym 131:177–185.  https://doi.org/10.1016/j.crabpol.2015.05.029 CrossRefGoogle Scholar
  44. Gordobil O, Egüés I, Urruzola I, Labidi J (2014) Xylan-cellulose films: improvement of hydrophobicity, thermal and mechanical properties. Carbohydr Polym 112:56–62.  https://doi.org/10.1016/j.carbpol.2014.05.060 CrossRefGoogle Scholar
  45. Grondahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood Xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535.  https://doi.org/10.1021/bm049925n CrossRefGoogle Scholar
  46. Gröndahl M, Bindgard L, Gatenholm P, Hjertberg T (2010) Polymeric film or coating comprising hemicellulose. USA Patent application US 2010/0129642Google Scholar
  47. Grӧndahl M, Teleman A, Gatenholm P (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydr Polym 52:359–366.  https://doi.org/10.1016/s0144-8617(03)00014-6 CrossRefGoogle Scholar
  48. Guan Y, Zhang B, Tan X, Qi XM, Bian J, Peng F, Sun RC (2014) Organic–inorganic composite films based on modified hemicelluloses with clay nanoplatelets. ACS Sustain Chem Eng 2:1811–1818.  https://doi.org/10.1021/sc500124j CrossRefGoogle Scholar
  49. Hamann CH, Koch R, Pleus S (2002) New results on the benzylation of saturated mono- and disaccharides—a semiempirical study. J Carbohydr Chem 21:53–63.  https://doi.org/10.1081/car-120003737 CrossRefGoogle Scholar
  50. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505.  https://doi.org/10.1021/bm800053Z CrossRefGoogle Scholar
  51. Hansen NML, Plackett D (2011) Synthesis and characterization of birch wood xylan succinoylated in 1-n-butyl-3-methylimidazolium chloride. Polym Chem 2:2010–2020.  https://doi.org/10.1039/c1py00086a CrossRefGoogle Scholar
  52. Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031.  https://doi.org/10.1007/s10570-012-9764-7 CrossRefGoogle Scholar
  53. Harris JF, Smuk JM (1961) Economics of the production of furfural from xylose solutions. For Prod J 11:303–309Google Scholar
  54. Hartman J, Albertsson AC, Lindblad MS, Sjӧberg J (2006a) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991.  https://doi.org/10.1002/app.22958 CrossRefGoogle Scholar
  55. Hartman J, Albertsson AC, Sjӧberg J (2006b) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989.  https://doi.org/10.1021/bm060129m CrossRefGoogle Scholar
  56. Heikkinen SL, Mikkonen KS, Pirkkalainen K, Serirnaa R, Joly C, Tenkanen M (2013) Specific enzymatic tailoring of wheat arabinoxylan reveals the role of substitution on xylan film properties. Carbohydr Polym 92:733–740.  https://doi.org/10.1016/j.carbpol.2012.09.085 CrossRefGoogle Scholar
  57. Heikkinen SL et al (2014) Long-term physical stability of plasticized hemicellulose films. BioResources 9:906–921Google Scholar
  58. Hollmann F, Arends I (2012) Enzyme initiated radical polymerizations. Polymers 4:759–793.  https://doi.org/10.3390/polym4010759 CrossRefGoogle Scholar
  59. Holwerda RA, Wherland S, Gray HB (1976) Electron-transfer reactions of copper proteins. Annu Rev Biophys Bioeng 5:363–396.  https://doi.org/10.1146/annurev.bb.05.060176.002051 CrossRefGoogle Scholar
  60. Hu SX, Gu J, Jiang F, Hsieh YL (2016) Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustain Chem Eng 4:728–737.  https://doi.org/10.1021/acssuschemeng.5b00600 CrossRefGoogle Scholar
  61. Huang Y, Wang ZG, Wang LS, Chao YS, Akiyama T, Yokoyama T, Matsumoto Y (2015) Hemicellulose compostion in different cell wall fractions obtained using a DMSO/LiCl wood solvent system and enzyme hydrolysis. J Wood Chem Technol 36:56–62.  https://doi.org/10.1080/02773813.2015.1074248 CrossRefGoogle Scholar
  62. Huang B, Tang Y, Pei Q, Zhang K, Liu D, Zhang X (2017) Hemicellulose-based films reinforced with unmodified and cationically modified nanocrystalline cellulose. J Polym Environ.  https://doi.org/10.1007/s10924-017-1075-5 Google Scholar
  63. Hӧije A, Grӧndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275.  https://doi.org/10.1016/j.carbpol.2005.02.009 CrossRefGoogle Scholar
  64. Hӧije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047.  https://doi.org/10.1021/bm800290m CrossRefGoogle Scholar
  65. Ibn Yaich A, Edlund U, Albertsson AC (2012) Wood hydrolysate barriers: performance controlled via selective recovery. Biomacromolecules 13:466–473.  https://doi.org/10.1021/bm201518d CrossRefGoogle Scholar
  66. Ibn Yaich A, Edlund U, Albertsson AC (2015a) Barriers from wood hydrolysate/quaternized cellulose polyelectrolyte complexes. Cellulose 22:1977–1991.  https://doi.org/10.1007/s10570-015-0621-3 CrossRefGoogle Scholar
  67. Ibn Yaich A, Edlund U, Albertsson AC (2015b) Enhanced formability and mechanical performance of wood hydrolysate films through reductive amination chain extension. Carbohydr Polym 117:346–354.  https://doi.org/10.1016/j.carbpol.2014.09.067 CrossRefGoogle Scholar
  68. Ishurd O, Kermagi A, Elghazoun M, Kennedy JF (2006) Structural of a glucomannan from Lupinus varius seed. Carbohydr Polym 65:410–413.  https://doi.org/10.1016/j.carbpol.2006.01.023 CrossRefGoogle Scholar
  69. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48.  https://doi.org/10.1016/0144-8617(95)00077-1 CrossRefGoogle Scholar
  70. Jain RK, Sjӧstedt M, Glasser WG (2000) Thermoplastic xylan derivatives with propylene oxide. Cellulose 7:319–336.  https://doi.org/10.1023/a:1009260415771 CrossRefGoogle Scholar
  71. Jain I, Kumar V, Satyanarayana T (2015) Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol 53:131–142Google Scholar
  72. Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Biores Technol 102:2745–2750.  https://doi.org/10.1016/j.biortech.2010.11.042 CrossRefGoogle Scholar
  73. Kapoor VP, Taravel FR, Joseleau JP, Milas M, Chanzy H, Rinaudo M (1998) Cassia spectabilis DC seed galactomannan: structural, crystallographical and rheological studies. Carbohydr Res 306:231–241.  https://doi.org/10.1016/s0008-6215(97)00241-3 CrossRefGoogle Scholar
  74. Kayserilioğlu BS, Bakir U, Yilmaz L, Akkaş N (2003) Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Biores Technol 87:239–246.  https://doi.org/10.1016/s0960-8524(02)00258-4 CrossRefGoogle Scholar
  75. Kennes D, Abubackar HN, Diaz M, Veiga MC, Kennes C (2016) Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol 91:304–317.  https://doi.org/10.1002/jctb.4842 CrossRefGoogle Scholar
  76. Kester JJ, Fennema O (1986) Edible films and coatings: a review. Food Technol 40:47–59Google Scholar
  77. Khanna S (2003) The chemical, physical and nutritional properties of the plant polysaccharide konjac glucomannan. PhD thesis, Glasgow Caledonian University, GlasgowGoogle Scholar
  78. Kim TH, Nghiem NP, Hicks KB (2009) Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl Biochem Biotechnol 153:171–179.  https://doi.org/10.1007/s12010-009-8524-0 CrossRefGoogle Scholar
  79. Kim YT, Min B, Kim KW (2014) General characteristics of packaging materials for food system. In: Han J (ed) Innovations in food packaging, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  80. Kisonen V et al (2012) Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications. Carbohydr Res 352:151–158.  https://doi.org/10.1016/j.carres.2012.01.005 CrossRefGoogle Scholar
  81. Kisonen V et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellulose 21:4497–4509.  https://doi.org/10.1007/s10570-014-0428-7 CrossRefGoogle Scholar
  82. Kochumalayil JJ, Berglund LA (2014) Water-soluble hemicelluloses for high humidity applications—enzymatic modification of xyloglucan for mechanical and oxygen barrier properties. Green Chem 16:1904–1910.  https://doi.org/10.1039/c3gc41823e CrossRefGoogle Scholar
  83. Kochumalayil JJ, Zhou Q, Kasai W, Berglund LA (2013) Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films. Carbohydr Polym 93:466–472.  https://doi.org/10.1016/j.carbpol.2012.12.041 CrossRefGoogle Scholar
  84. Kohnke T, Ostlund A, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12:2633–2641.  https://doi.org/10.1021/bm200437m CrossRefGoogle Scholar
  85. Kohnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 100:24–30.  https://doi.org/10.1016/j.carbpol.2013.03.060 CrossRefGoogle Scholar
  86. Kolenova K, Ryabova O, Vrsanska M, Biely P (2010) Inverting character of family GH115 alpha-glucuronidases. FEBS Lett 584:4063–4068.  https://doi.org/10.1016/j.febslet.2010.08.031 CrossRefGoogle Scholar
  87. Konduri MKR, Fatehi P (2016) Synthesis and characterization of carboxymethylated xylan and its application as a dispersant. Carbohydr Polym 146:26–35.  https://doi.org/10.1016/j.carbpol.2016.03.036 CrossRefGoogle Scholar
  88. Kopania E, Wiśniewska-Wrona M, Wietecha J (2014) Galactoglucomannans (GGMs) extracted from spruce sawdust for medical applications. Fibres Text East Eur 22:29–34Google Scholar
  89. Krawczyk H, Jonsson AS (2011) Separation of dispersed substances and galactoglucomannan in thermomechanical pulp process water by microfiltration. Sep Purif Technol 79:43–49.  https://doi.org/10.1016/j.seppur.2011.03.009 CrossRefGoogle Scholar
  90. Krawczyk H, Oinonen P, Jonssӧn AS (2013) Combined membrane filtration and enzymatic treatment for recovery of high molecular mass hemicelluloses from chemithermomechanical pulp process water. Chem Eng J 225:292–299.  https://doi.org/10.1016/j.cej.2013.03.089 CrossRefGoogle Scholar
  91. Kricka W, Fitzpatrick J, Bond U (2015) Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol 92:89–125.  https://doi.org/10.1016/bs.aambs.2015.02.003 CrossRefGoogle Scholar
  92. Krochta JM, De Mulder-Johnston C (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol 51:61–74Google Scholar
  93. Laine C et al (2013) Hydroxyalkylated xylans—their synthesis and application in coatings for packaging and paper. Ind Crops Prod 44:692–704.  https://doi.org/10.1016/j.indcrop.2012.08.033 CrossRefGoogle Scholar
  94. Laine C, Asikainen S, Talja R, Stepan A, Sixta H, Harlin A (2016) Simultaneous bench scale production of dissolving grade pulp and valuable hemicelluloses from softwood kraft pulp by ionic liquid extraction. Carbohydr Polym 136:402–408.  https://doi.org/10.1016/j.carbpol.2015.09.039 CrossRefGoogle Scholar
  95. Lawther JM, Sun RC, Banks WB (1996) Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 60:1827–1837CrossRefGoogle Scholar
  96. Li ZQ, Qin MH, Xu CL, Chen XQ (2013) Hot water extraction of hemicelluloses from aspen wood chips of different sizes. BioResources 8:5690–5700Google Scholar
  97. Lichtenthaler FW (1998) Enantiopure building blocks from sugars, part 24, towards improving the utility of ketoses as organic raw materials. Carbohydr Res 313:69–89CrossRefGoogle Scholar
  98. Lindqvist H, Bialczak S, Willfӧr S, Sundberg A (2013a) Functionalization of paper surfaces by modified galactoglucomannans. J-FOR 3:6–12Google Scholar
  99. Lindqvist H, Holmback J, Rosling A, Salminen K, Holmbom B, Auer M, Sundberg A (2013b) Galactoglucomannan derivatives and their application in papermaking. BioResources 8:994–1010CrossRefGoogle Scholar
  100. Liu YX, Sun B, Wang ZL, Ni YH (2016) Mechanical and water vapor barrier properties of bagasse hemicellulose-based films. BioResources 11:4226–4236Google Scholar
  101. Lopez OV, Castillo LA, Garcia MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids 43:18–24.  https://doi.org/10.1016/j.foodhyd.2014.04.021 CrossRefGoogle Scholar
  102. Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym 48:29–39.  https://doi.org/10.1016/s0144-8617(01)00210-7 CrossRefGoogle Scholar
  103. Lundqvist J, Jacobs A, Palm M, Zacchi G, Dahlman O, Stalbrand H (2003) Characterization of galactoglucomannan extracted from spruce (Picea abies) by heat-fractionation at different conditions. Carbohydr Polym 51:203–211.  https://doi.org/10.1016/s0144-8617(02)00111-x CrossRefGoogle Scholar
  104. Malik S, Dixit VA, Bharatam PV, Kartha KPR (2010) A simple, mild, and regioselective method for the benzylation of carbohydrate derivatives promoted by silver carbonate. Carbohydr Res 345:559–564.  https://doi.org/10.1016/j.carres.2009.12.012 CrossRefGoogle Scholar
  105. Mamman AS et al (2010) Furfural: hemicellulose/xylose-derived biochemical. Biofuels, Bioprod Biorefin 2:438–454CrossRefGoogle Scholar
  106. Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Technol 28:90–102.  https://doi.org/10.1016/j.tifs.2012.06.012 CrossRefGoogle Scholar
  107. Mikkonen KS, Yadav MP, Cooke P, Willfӧr S, Hicks KB, Tenkanen M (2008) Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan. BioResources 3:178–191Google Scholar
  108. Mikkonen KS et al (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466.  https://doi.org/10.1002/app.30513 CrossRefGoogle Scholar
  109. Mikkonen KS, Heikkilä MI, Helén H, Hyvӧnen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112.  https://doi.org/10.1016/j.carbpol.2009.10.049 CrossRefGoogle Scholar
  110. Mikkonen KS, Laine C, Kontro I, Talja RA, Serimaa R, Tenkanen M (2015) Combination of internal and external plasticization of hydroxypropylated birch xylan tailors the properties of sustainable barrier films. Eur Polym J 66:307–318.  https://doi.org/10.1016/j.eurpolymj.2015.02.034 CrossRefGoogle Scholar
  111. Millane RP, Hendrixson TL (1994) Crystal-sructures of mannan and glucomannans. Carbohydr Polym 25:245–251.  https://doi.org/10.1016/0144-8617(94)90050-7 CrossRefGoogle Scholar
  112. Minjares-Fuentes R, Femenia A, Garau MC, Candelas-Cadillo MG, Simal S, Rossello C (2016) Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr Polym 138:180–191.  https://doi.org/10.1016/j.carbpol.2015.11.045 CrossRefGoogle Scholar
  113. Mobarak F, Elkalyoubi SF, Shukry N (1992) Hemicelluloses as additive in papermaking. 5. Rice straw and bagasse hemicelluloses as retention aid for fillers. Cellul Chem Technol 26:125–130Google Scholar
  114. Mohamad NL, Kamal SMM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Rev Int 31:74–89.  https://doi.org/10.1080/87559129.2014.961077 CrossRefGoogle Scholar
  115. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597.  https://doi.org/10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  116. Nilsson M, Saulnier L, Andersson R, Åman P (1996) Water unextractable polysaccharides from three milling fractions of rye grain. Carbohydr Polym 30:229–237.  https://doi.org/10.1016/s0144-8617(96)00071-9 CrossRefGoogle Scholar
  117. Northcote DH (1972) Chemistry of the plant cell wall. Ann Rev Plant Physiol 23:113–132CrossRefGoogle Scholar
  118. Nypelo T, Laine C, Aoki M, Tammelin T, Henniges U (2016) Etherification of wood-based hemicelluloses for interfacial activity. Biomacromolecules 17:1894–1901.  https://doi.org/10.1021/acs.biomac.6b00355 CrossRefGoogle Scholar
  119. Oinonen P, Areskogh D, Henriksson G (2013) Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Carbohydr Polym 95:690–696.  https://doi.org/10.1016/j.carbpol.2013.03.016 CrossRefGoogle Scholar
  120. Oinonen P, Krawczyk H, Ek M, Henriksson G, Moriana R (2016) Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: thermal, mechanical and oxygen barrier properties. Carbohydr Polym 136:146–153.  https://doi.org/10.1016/j.carbpol.2015.09.038 CrossRefGoogle Scholar
  121. Peleteiro S, Garrote G, Santos V, Parajó JC (2014) Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. J Clean Prod 76:200–203.  https://doi.org/10.1016/j.jclepro.2014.04.034 CrossRefGoogle Scholar
  122. Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC (2016a) Furfural production using ionic liquids: a review. Biores Technol 202:181–191.  https://doi.org/10.1016/j.biortech.2015.12.017 CrossRefGoogle Scholar
  123. Peleteiro S, Santos V, Parajo JC (2016b) Furfural production in biphasic media using an acidic ionic liquid as a catalyst. Carbohydr Polym 153:421–428.  https://doi.org/10.1016/j.carbpol.2016.07.093 CrossRefGoogle Scholar
  124. Peng X, Ren J, Sun R (2011a) An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohydr Polym 83:1922–1928.  https://doi.org/10.1016/j.carbpol.2010.10.064 CrossRefGoogle Scholar
  125. Peng X, Ren J, Zhong L, Sun R (2011b) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329CrossRefGoogle Scholar
  126. Peng XW, Ren JL, Zhong LX, Cao XF, Sun RC (2011c) Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties. J Agric Food Chem 59:570–576.  https://doi.org/10.1021/jf1036239 CrossRefGoogle Scholar
  127. Peng XW, Ren JL, Zhong LX, Sun RC (2011d) Homogeneous synthesis of hemicellulosic succinates with high degree of substitution in ionic liquid. Carbohydr Polym 86:1768–1774.  https://doi.org/10.1016/j.carbpol.2011.07.018 CrossRefGoogle Scholar
  128. Peng P, Zhai MZ, She D, Gao YF (2015) Synthesis and characterization of carboxymethyl xylan-g-poly(propylene oxide) and its application in films. Carbohydr Polym 133:117–125.  https://doi.org/10.1016/j.carbpol.2015.07.009 CrossRefGoogle Scholar
  129. Persson T, Nordin AK, Zacchi G, Jonssӧn AS (2007) Economic evaluation of isolation of hemicelluloses from process streams from thermomechanical pulping of spruce. Appl Biochem Biotechnol 137:741–752.  https://doi.org/10.1007/s12010-007-9094-7 Google Scholar
  130. Persson T, Ren JL, Joelsson E, Jonsson A-S (2009) Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Biores Technol 100:3906–3913.  https://doi.org/10.1016/j.biortech.2009.02.063 CrossRefGoogle Scholar
  131. Petzold-Welcke K, Schwikal K, Daus S, Heinze T (2014) Xylan derivatives and their application potential—mini-review of own results. Carbohydr Polym 100:80–88.  https://doi.org/10.1016/j.carbpol.2012.11.052 CrossRefGoogle Scholar
  132. Pitkänen L, Tuomainen P, Virkki L, Tenkanen M (2011) Molecular characterization and solution properties of enzymatically tailored arabinoxylans. Int J Biol Macromol 49:963–969.  https://doi.org/10.1016/j.ijbiomac.2011.08.020 CrossRefGoogle Scholar
  133. Postma D, Chimphango AFA, Gӧrgens JF (2014) Cationization of Eucalyptus grandis 4-O-methyl glucuronoxylan for application as a wet-end additive in a papermaking process. Holzforschung 68:519–527.  https://doi.org/10.1515/hf-2013-0100 CrossRefGoogle Scholar
  134. Qi XM et al (2016a) Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension. Sci Rep 6:33603CrossRefGoogle Scholar
  135. Qi XM et al (2016b) Preparation and characterization of blended films from quaternized hemicelluloses and carboxymethyl cellulose. Materials.  https://doi.org/10.3390/ma9010004 Google Scholar
  136. Ren H, Omori S (2014) Comparison of hemicelluloses isolated from soda cooking black liquor with commercial and bacterial xylan. Cellul Chem Technol 48:675–681Google Scholar
  137. Ren JL, Sun RC, Peng F (2008) Carboxymethylation of hemicelluloses isolated from sugarcane bagasse. Polym Degrad Stab 93:786–793.  https://doi.org/10.1016/j.polymdegradstab.2008.01.011 CrossRefGoogle Scholar
  138. Ren JL, Peng XW, Zhong LX, Peng F, Sun RC (2012) Novel hydrophobic hemicelluloses: synthesis and characteristic. Carbohydr Polym 89:152–157.  https://doi.org/10.1016/j.carbpol.2012.02.064 CrossRefGoogle Scholar
  139. Rena JL, Peng F, Sun RC, Kennedy JF (2009) Influence of hemicellulosic derivatives on the sulfate kraft pulp strength. Carbohydr Polym 75:338–342.  https://doi.org/10.1016/j.carbpol.2008.08.011 CrossRefGoogle Scholar
  140. Root DF, Saeman JF, Harris JF (1959) Kinetics of the acid-catalyzed conversion of xylose to furfural. For Prod J 9:158–168Google Scholar
  141. Ryabova O, Vrsanská M, Kaneko S, van Zyl WH, Biely P (2009) A novel family of hemicellulolytic alpha-glucuronidase. FEBS Lett 583:1457–1462.  https://doi.org/10.1016/j.febslet.2009.03.057 CrossRefGoogle Scholar
  142. Saadatmand S, Edlund U, Albertsson AC, Danielsson S, Dahlman O, Karlstrom K (2013) Turning hardwood dissolving pulp polysaccharide residual material into barrier packaging. Biomacromolecules 14:2929–2936.  https://doi.org/10.1021/bm400844b CrossRefGoogle Scholar
  143. Saxena A, Elder TJ, Kenvin J, Ragauskas AJ (2010) High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano Micro Lett 2:235–241.  https://doi.org/10.3786/nml.v2i4.p235-241 CrossRefGoogle Scholar
  144. Scherbukhin VD, Anulov OV (1999) Legume seed galactomannans (review). Appl Biochem Microbiol 35:229–244Google Scholar
  145. Sedlmeyer FB (2011) Xylan as by-product of biorefineries: characteristics and potential use for food applications. Food Hydrocolloids 25:1891–1898.  https://doi.org/10.1016/j.foodhyd.2011.04.005 CrossRefGoogle Scholar
  146. Sierra R, Holtzapple MT, Granda CB (2011) Long-term lime pretreatment of poplar wood. AIChE J 57:1320–1328.  https://doi.org/10.1002/aic.12350 CrossRefGoogle Scholar
  147. Šimkovic I, Gedeon O, Uhliariková I, Mendichi R, Kirschnerová S (2011a) Positively and negatively charged xylan films. Carbohydr Polym 83:769–775.  https://doi.org/10.1016/j.carbpol.2010.08.047 CrossRefGoogle Scholar
  148. Šimkovic I, Gedeon O, Uhliariková I, Mendichi R, Kirschnerová S (2011b) Xylan sulphate films. Carbohydr Polym 86:214–218.  https://doi.org/10.1016/j.carbpol.2011.04.034 CrossRefGoogle Scholar
  149. Šimkovic I, Kelnar I, Uhliariková I, Mendichi R, Mandalika A, Elder T (2014) Carboxymethylated-, hydroxypropylsulfonated- and quaternized xylan derivative films. Carbohydr Polym 110:464–471.  https://doi.org/10.1016/j.carbpol.2014.04.055 CrossRefGoogle Scholar
  150. Sipponen MH, Pihlajaniemi V, Sipponen S, Pastinen O, Laakso S (2014) Autohydrolysis and aqueous ammonia extraction of wheat straw: effect of treatment severity on yield and structure of hemicellulose and lignin. RSC Adv 4:23177–23184.  https://doi.org/10.1039/c4ra03236e CrossRefGoogle Scholar
  151. Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci.  https://doi.org/10.1155/2012/302029 Google Scholar
  152. Sjӧstrӧm E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  153. Smart CL, Whistler RL (1949) Films from hemicellulose acetates. Science 110:713–714CrossRefGoogle Scholar
  154. Stepan AM, Hӧije A, Schols HA, de Waard P, Gatenholm P (2012) Arabinose content of arabinoxylans contributes to flexibility of acetylated arabinoxylan films. J Appl Polym Sci 125:2348–2355.  https://doi.org/10.1002/app.36458 CrossRefGoogle Scholar
  155. Stepan AM, Anasontzis GE, Matama T, Cavaco-Paulo A, Olsson L, Gatenholm P (2013a) Lipases efficiently stearate and cutinases acetylate the surface of arabinoxylan films. J Biotechnol 167:16–23.  https://doi.org/10.1016/j.jbiotec.2013.06.004 CrossRefGoogle Scholar
  156. Stepan AM, King AWT, Kakko T, Toriz G, Kilpelainen I, Gatenholm P (2013b) Fast and highly efficient acetylation of xylans in ionic liquid systems. Cellulose 20:2813–2824.  https://doi.org/10.1007/s10570-013-0028-y CrossRefGoogle Scholar
  157. Stepan AM, Ansari F, Berglund L, Gatenholm P (2014) Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Compos Sci Technol 98:72–78.  https://doi.org/10.1016/j.compscitech.2014.04.010 CrossRefGoogle Scholar
  158. Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83:1–11.  https://doi.org/10.1016/s0960-8524(01)00212-7 CrossRefGoogle Scholar
  159. Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366.  https://doi.org/10.1016/j.carbpol.2012.10.032 CrossRefGoogle Scholar
  160. Sun QN, Mandalika A, Elder T, Nair SS, Meng XZ, Huang F, Ragauskas AJ (2014) Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix. Green Chem 16:3458–3462.  https://doi.org/10.1039/c4gc00793j CrossRefGoogle Scholar
  161. Svärd A, Brännvall E, Edlund U (2015) Rapeseed straw as a renewable source of hemicelluloses: extraction, characterization and film formation. Carbohydr Polym 133:179–186.  https://doi.org/10.1016/j.carbpol.2015.07.023 CrossRefGoogle Scholar
  162. Testova L, Borrega M, Tolonen LK, Penttilä PA, Serimaa R, Larsson PT, Sixta H (2014) Dissolving-grade birch pulps produced under various prehydrolysis intensities: quality, structure and applications. Cellulose 21:2007–2021.  https://doi.org/10.1007/s10570-014-0182-x CrossRefGoogle Scholar
  163. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRefGoogle Scholar
  164. Toukoniitty B, Kuusisto J, Mikkola JP, Salmi T, Murzin DY (2005) Effect of ultrasound on catalytic hydrogenation of d-fructose to d-mannitol. Ind Eng Chem Res 44:9370–9375.  https://doi.org/10.1021/ie050190s CrossRefGoogle Scholar
  165. Uchida Y, Kizara Y, Sasaki T (2013) Method for continuously producing saccharide and furfural from biomass. JP 2013220058 AGoogle Scholar
  166. Van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap Can 107:38–43Google Scholar
  167. Velkova N, Doliška A, Zemljič LF, Vesel A, Saake B, Strnad S (2015) Influence of Carboxymethylation on the surface physical–chemical properties of glucuronoxylan and arabinoxylan films. Polym Eng Sci 55:2706–2713.  https://doi.org/10.1002/pen.24059 CrossRefGoogle Scholar
  168. Vena PF, Garcia-Aparicio MP, Brienzo M, Goergens JF, Rypstra T (2013) Effect of alkaline hemicellulose extraction on kraft pulp fibers from Eucalyptus grandis. J Wood Chem Technol 33:157–173.  https://doi.org/10.1080/02773813.2013.773040 CrossRefGoogle Scholar
  169. Wang M, He WT, Wang S, Song XL (2015) Carboxymethylated glucomannan as paper strengthening agent. Carbohydr Polym 125:334–339.  https://doi.org/10.1016/j.carbpol.2015.02.060 CrossRefGoogle Scholar
  170. Willfӧr S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32Google Scholar
  171. Willfӧr S, Sundberg A, Hemming J, Holmbom B (2005a) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–258.  https://doi.org/10.1007/s00226-004-0280-2 CrossRefGoogle Scholar
  172. Willfӧr S, Sundberg A, Pranovich A, Holmbom B (2005b) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617.  https://doi.org/10.1007/s00226-005-0039-4 CrossRefGoogle Scholar
  173. Willfӧr S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans—a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210.  https://doi.org/10.1016/j.carbpol.2007.08.006 CrossRefGoogle Scholar
  174. Xiang ZY, Anthony R, Lan W, Runge T (2016) Glutaraldehyde crosslinking of arabinoxylan produced from corn ethanol residuals. Cellulose 23:307–321CrossRefGoogle Scholar
  175. Xu F, Jiang JX, Sun RC, She D, Peng B, Sun J, Kennedy JF (2008) Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohydr Polym 73:612–620.  https://doi.org/10.1016/j.carbpol.2008.01.002 CrossRefGoogle Scholar
  176. Xu CL, Eckerman C, Smeds A, Reunanen M, Eklund PC, Sjoholm R, Willfӧr S (2011) Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nord Pulp Pap Res J 26:167–178CrossRefGoogle Scholar
  177. Yamabhai M, Sak-Ubol S, Srila W, Haltrich D (2016) Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 36:32–42.  https://doi.org/10.3109/07388551.2014.923372 CrossRefGoogle Scholar
  178. Yang H, Yan R, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRefGoogle Scholar
  179. Yevlampieva NP, Gubarev AS, Gorshkova MY, Okrugin BM, Ryumtsev EI (2015) Hydrodynamic behavior of quaternized chitosan at acidic and neutral pH. J Polym Res.  https://doi.org/10.1007/s10965-015-0802-7 Google Scholar
  180. Zhang LM, Yuan TQ, Xu F, Sun RC (2013a) Enhanced hydrophobicity and thermal stability of hemicelluloses by butyrylation in [BMIM]Cl ionic liquid. Ind Crops Prod 45:52–57CrossRefGoogle Scholar
  181. Zhang YJ, Li JB, Lindstrom ME, Stepan A, Gatenholm P (2013b) Spruce glucomannan: preparation, structural characteristics and basic film forming ability. Nord Pulp Pap Res J 28:323–330CrossRefGoogle Scholar
  182. Zhang XD, Liu X, Cao MZ, Xia K, Zhang YQ (2015) Preparation of hydroxypropyl agars and their properties. Carbohydr Polym 129:87–91.  https://doi.org/10.1016/j.carbpol.2015.04.056 CrossRefGoogle Scholar
  183. Zhong LX, Peng XW, Yang D, Cao XF, Sun RC (2013) Long-chain anhydride modification: a new strategy for preparing xylan films. J Agric Food Chem 61:655–661.  https://doi.org/10.1021/jf304818f CrossRefGoogle Scholar
  184. Zhu Ryberg YZ, Edlund U, Albertsson AC (2011) Conceptual approach to renewable barrier film design based on wood hydrolysate. Biomacromolecules 12:1355–1362.  https://doi.org/10.1021/bm200128s CrossRefGoogle Scholar
  185. Zhu Ryberg YZ, Edlund U, Albertsson AC (2012) Retrostructural model to predict biomass formulations for barrier performance. Biomacromolecules 13:2570–2577.  https://doi.org/10.1021/bm300821d CrossRefGoogle Scholar
  186. Zinbo M, Timell TE (1965) The degree of branching of hardwood xylans. Sven Papperstidning 68:647–662Google Scholar
  187. Zoldners J, Kiseleva T (2013) Modification of hemicelluloses with polycarboxylic acids. Holzforschung 67:567–571.  https://doi.org/10.1515/hf-2012-0183 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Paper Science and Technology of Ministry of EducationQilu University of TechnologyJinanChina
  2. 2.Department of Biological Systems EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations