Anaerobic ammonium oxidation in marine environments: contribution to biogeochemical cycles and biotechnological developments for wastewater treatment

  • E. Emilia Rios-Del Toro
  • Francisco J. CervantesEmail author
Review Paper


Microbial processes are responsible for most reactions involved in the nitrogen cycle in the oceans, which determine the fluxes of this crucial nutrient in these environments. The present review provides an overview of the contribution of anaerobic ammonium oxidation (Anammox) to marine biogeochemical processes. Besides the conventional Anammox process, anaerobic ammonium oxidation coupled to the microbial reduction of alternative electron acceptors, such as sulfate (Sulfammox), ferric iron (Feammox), and natural organic matter (NOM-dependent Anammox) is also described in the context of global marine biogeochemical cycles. Also, the complex interactions among the oceanic biogeochemical cycles of N, S and Fe are discussed at the light of the new findings available in the literature. The review also underlines the important role of the microbial processes performing the Anammox reaction in the development of wastewater treatment systems for the removal of nitrogen from saline effluents. Strategies to enrich and immobilize Anammox bacteria in different reactor configurations for the treatment of saline wastewaters are also described as well as future directions for novel biotechnological developments based on Anammox.


Anammox Feammox Sulfammox Marine Nitrogen removal Wastewater 



FJC thanks financial support from Council of Science and Technology of Mexico (CONACYT, Grant 1289 from the program Frontiers in Science). EERD thanks CONACYT for the Ph.D. fellowship 250305.


  1. Ali M, Okabe S (2015) Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues. Chemosphere 141:144–153Google Scholar
  2. Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshikawa H, Hira D, Kindaichi T, Satoh H, Fujii T, Okabe S (2015) Physiological characterization of anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia caeni’. Environ Microbiol 17:2172–2189Google Scholar
  3. Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355Google Scholar
  4. Bale NJ, Villanueva L, Fan H, Stal LJ, Hopmans EC, Schouten S, Sinninghe Damsté JS (2014) Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea. FEMS Microbiol Ecol 89:99–110Google Scholar
  5. Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, De Lange GJ, Reichart GJ, Schouten S, Jetten M, Daffonchio D (2013) Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles 17:289–299Google Scholar
  6. Bradley PM, Chapelle FH, Lovley DR (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64:3102–3105Google Scholar
  7. Brandsma J, van de Vossenberg J, Risgaard-Petersen N, Schmid MC, Engström P, Eurenius K, Hulth S, Jaeschke A, Abbas B, Hopmans EC, Strous M, Schouten S, Jetten MSM, Sinninghe Damsté JS (2011) A multi-proxy study of anaerobic ammonium oxidationin marine sediments of the Gullmar Fjord, Sweden. Environ Microbiol Rep 3:360–366Google Scholar
  8. Broda E (1977) Two kinds of lithotrophs missing in nature. Zeitschrift für Allg Mikrobiol 17:491–493Google Scholar
  9. Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242Google Scholar
  10. Cervantes FJ (2009) Environmental technologies to treat nitrogen pollution: principles and engineering. IWA Publishing, LondonGoogle Scholar
  11. Cervantes F, Monroy O, Gómez J (1999) Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions. Appl Biochem Biotechnol 81:13–21Google Scholar
  12. Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation 11:313–321Google Scholar
  13. Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67:4471–4478Google Scholar
  14. Cervantes FJ, Gutiérrez CH, López KY, Estrada-Alvarado MI, Meza-Escalante ER, Texier A-C, Cuervo F, Gómez J (2008) Contribution of quinone-reducing microorganisms on the anaerobic biodegradation of organic compounds under different redox conditions. Biodegradation 19:235–246Google Scholar
  15. Cervantes FJ, Mancilla AR, Rios-del Toro EE, Alpuche-Solis AG, Montoya-Lorenzana L (2011) Anaerobic benzene oxidation by enriched inocula with humic acids as terminal electron acceptors. J Hazard Mat 195:201–207Google Scholar
  16. Clément JC, Shrestha J, Ehrenfeld JG, Jaffé PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37:2323–2328Google Scholar
  17. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608Google Scholar
  18. Dapena-Mora A, Arrojo B, Campos JL, Mosquera-Corral A, Méndez R (2004) Improvement of the settling properties of anammox sludge in an SBR. J Chem Technol Biotechnol 79:1417–1420Google Scholar
  19. Dapena-Mora A, Vázquez-Padín JR, Campos JL, Mosquera-Corral A, Jetten MSM, Méndez R (2010) Monitoring the stability of an anammox reactor under high salinity conditions. Biochem Eng J 51:167–171Google Scholar
  20. Devol AH (2003) Nitrogen cycle: solution to a marine mystery. Nature 422:575–576Google Scholar
  21. Devol AH (2015) Denitrification, anammox, and N2 production in marine sediments. Annu Rev Mar Sci 7:403–423Google Scholar
  22. Dietl A, Ferousi C, Maalcke WJ, Menzel A, de Vries S, Keltjens JT, Jetten MSM, Kartal B, Barends TRM (2015) The inner workings of the hydrazine synthase mulitprotein complex. Nature 527:394–397Google Scholar
  23. Ding L-J, An XL, Li S, Zhang GL, Zhu YG (2014) Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ Sci Technol 48:10641–10647Google Scholar
  24. Doane TA (2017) The abiotic nitrogen cycle. ACS Earth Space Chem 1:411–421Google Scholar
  25. Dong LF, Sobey MN, Smith CJ, Rusmana I, Phillips W, Stott A, Osborn AM, Nedwell DB (2011) Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic benthic nitrate reduction in tropical estuaries. Limnol Oceanogr 56:279–291Google Scholar
  26. Engstrøm P, Dalsgaard T, Hulth S, Aller RC (2005) Anaerobic ammonium oxidation with nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta 69:2057–2065Google Scholar
  27. Engstrøm P, Penton CR, Devol AH (2009) Anaerobic ammonium oxidation in deep-sea sediments off the Washington margin. Limnol Oceanogr 54:1643–1652Google Scholar
  28. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275Google Scholar
  29. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206Google Scholar
  30. FAO (2004) The state of world fisheries and aquaculture 2004. Italy, RomeGoogle Scholar
  31. Fdz-Polanco F, Fdz-Polanco M, Fernandez N, Urueña MA, Garcia PA, Villaverde S (2001) New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions. Water Res 35:1111–1114Google Scholar
  32. Fernandes SO, Bharathi PA, Bonin PC, Michotey VS (2010) Denitrification: an important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India). J Envrion Qual 39:1507–1516Google Scholar
  33. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164Google Scholar
  34. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892Google Scholar
  35. Gihring TM, Lavik G, Kuypers MM, Kostka JE (2010) Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway). Limnol Oceanogr 55:43–54Google Scholar
  36. Gilch S, Vogel M, Lorenz MW, Meyer O, Schmidt I (2009) Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea. Microbiology 155:279–284Google Scholar
  37. Glud RN, Thamdrup B, Stahl H, Wenzhøefer F, Glud A, Nomaki H, Oguri K, Revsbech NP, Kitazato H (2009) Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan). Limnol Oceanogr 54:723–734Google Scholar
  38. Gonzalez-Silva B, Rønning AJ, Andreassen IK, Bakke I, Cervantes FJ, Østgaard K, Vadstein O (2017) Changes in the microbial community of an anammox consortium during adaptation to marine conditions revealed by 454 pyrosequencing. Appl Microbiol Biotechnol 101:5149–5162Google Scholar
  39. Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Sinninghe Damsté JS, Krüger S, Graco M, Gutiérrez D, Kuypers MMM (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52:923–933Google Scholar
  40. Hamm RE, Thompson TG (1941) Dissolved nitrogen in the sea water of the Northeast Pacific with notes on the total carbon dioxide and the dissolved oxygen. J Mar Res 11–27:iGoogle Scholar
  41. Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci 5:421–445Google Scholar
  42. He S, Niu Q, Ma H, Zhang Y, Li YY (2015) The treatment performance and the bacteria preservation of anammox: a review. Water Air Soil Pollut 226:163Google Scholar
  43. Hietanen S, Kuparinen J (2008) Seasonal and short-term variation in denitrification and anammox at a coastal station of the Gulf of Finland, Baltyic Sea. Hydrobiologia 596:67–77Google Scholar
  44. Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Anton Leeuw Int J G 71:59–67Google Scholar
  45. Hu Z, Lotti T, Van Loosdrecht M, Kartal B (2013) Nitrogen removal with the anaerobic ammonium oxidation process. Biotechnol Lett 35:1145–1154Google Scholar
  46. Huang S, Jaffé PR (2018) Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 10:2. Google Scholar
  47. Isobe K, Ohte N (2014) Ecological perspectives on microbes involved in N-cycling. Microbes Environ 29:4–16Google Scholar
  48. Jantti H, Stange F, Leskinen E, Hietanen S (2011) Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea. Aquat Microb Ecol 63:171–181Google Scholar
  49. Jetten MSM, van Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84Google Scholar
  50. Jetten MSM, Op de Camp HJM, Kuenen JG, Strous M (2010) Description of the order brocadiales. In: Krieg NR (ed) Bergey`s manual of systematic bacteriology, vol 4. Springer, Heidelberg, pp 506–603Google Scholar
  51. Jin RC, Ma C, Mahmood Q, Yang GF, Zheng P (2011) Anammox in a UASB reactor treating saline wastewater. Process Saf Environ Prot 89:342–348Google Scholar
  52. Kartal B, Koleva M, Arsov R, van der Star W, Jetten MSM, Strous M (2006) Adaptation of a freshwater anammox population to high salinity wastewater. J Biotechnol 126:546–553Google Scholar
  53. Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJM, Jetten MSM, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642Google Scholar
  54. Kartal B, van Niftrik L, Rattray J, van de Vossenberg JL, Schmid MC, Sinninghe Damsté J, Jetten MSM, Strous M (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55Google Scholar
  55. Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, Op den Camp HJM, Harhangi HR, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Keltjens JT, Jetten MSM, Strous M (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130Google Scholar
  56. Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT (2013) How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev 37:428–461Google Scholar
  57. Kawagoshi Y, Nakamura Y, Kawashima H, Fujisaki K, Furukawa K, Fujimoto A (2010) Enrichment of marine anammox bacteria from seawater-related samples and bacterial community study. Water Sci Technol 61:119–126Google Scholar
  58. Kim J, Lim J, Lee C (2013) Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations. Biotechnol Adv 31:1358–1373Google Scholar
  59. Kim T, An J, Lee H, Jang JK, Chang IS (2016) pH-dependent ammonia removal pathways in microbial fuel cell system. Bioresour Technol 215:290–295Google Scholar
  60. Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, Ohashi A (2011) Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ 26:67–73Google Scholar
  61. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, JØrgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611Google Scholar
  62. Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, JØrgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA 102:6478–6483Google Scholar
  63. Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276Google Scholar
  64. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, Van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303Google Scholar
  65. Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109Google Scholar
  66. Lam P, Lavik G, Jensen MM, van Vossenberg JD, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Nat Acad Sci USA 106:4752–4757Google Scholar
  67. Laufer K, Røy H, Jørgensen B (2016) Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment. Appl Environ Microbiol 82:6120–6131Google Scholar
  68. Li M, Gu JD (2011) Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Microbiol Biotechnol 90:1241–1252Google Scholar
  69. Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015) Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ Sci Technol 49:11560–11568Google Scholar
  70. Lipsewers YA, Bale NJ, Hopmans EC, Schouten S, Sinninghe Damsté JS, Villanueva L (2014) Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea). Front Microbiol 5:472Google Scholar
  71. Liu S, Yang F, Gong Z, Chen H, Xue Y, Furukawa K (2008) Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99:6817–6825Google Scholar
  72. Lüke C, Speth DR, Kox MAR, Villanueva L, Jetten MSM (2016) Metagenomic analusis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. Peer J 2016:e1924Google Scholar
  73. Martinez CM, Alvarez LH, Celis LB, Cervantes FJ (2013) Humus reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 97:10293–10308Google Scholar
  74. Moss FR, Shuken SR, Mercer JAM, Cohen CM, Weiss TM, Boxer SG, Burns NZ (2018) Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability. Proc Natl Acad Sci USA 115:9098–9103Google Scholar
  75. Mulder A, van de Graaf A, Robertson L, Kuenen J (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184Google Scholar
  76. Nakajima J, Sakka M, Kimura T, Furukawa K, Sakka K (2008) Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor. Appl Microbiol Biotechnol 77:1159–1166Google Scholar
  77. Neubacher EC, Parker RE, Trimmer M (2011) Short-term hypoxia alters the balance of the nitrogen cycle in coastal sediments. Limnol Oceanogr 56:651–665Google Scholar
  78. Ni BJ, Hu BL, Fang F, Xie WM, Kartal B, Liu XW, Sheng GP, Jetten M, Zheng P, Yu HQ (2010) Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 76:2652–2656Google Scholar
  79. Nicholls JC, Trimmer M (2009) Widespread occurence of the anammox reaction in estuarine sediments. Aquat Microb Ecol 55:105–113Google Scholar
  80. Nieto-Cid M, Álvarez-Salgado XA, Gago J, Pérez FF (2005) DOM fluorescence, a tracer for biogeochemical processes in a coastal upwelling system. Mar Ecol Prog Ser 297:33–50Google Scholar
  81. Nikolaev YA, Kozlov MN, Kevbrina MV, Dorofeev AG, Pimenov NV, Kallistova AY, Grachev VA, Kazakova EA, Zharkov AV, Kuznetsov BB, Patutina EO, Bumazhkin BK (2015) CandidatusJettenia moscovienalis’ sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation. Microbiology 84:256–262Google Scholar
  82. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157:1706–1713Google Scholar
  83. Oshiki M, Ishii S, Yoshida K, Fujii N, Ishiguro M, Satoh H, Okabe S (2013) Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Appl Environ Microbiol 79:4087–4093Google Scholar
  84. Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S (2016) Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environ Microbiol 18:3133–3143Google Scholar
  85. Otte S, Kuenen JG, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157Google Scholar
  86. Park H, Brotto AC, van Loosdrecht MCM, Chandran K (2017) Discovery and metagenomic analysis of an anammox bacterial enrichment related to CandidatusBrocadia caroliniensis” in a full-scale glycerol-fed nitritation-denitritation separate centrate treatment process. Water Res 111:265–273Google Scholar
  87. Peeters SH, van Niftrik L (2019) Trending topics and open questions in anaerobic ammonium oxidation. Curr Opin Chem Biol 49:45–52Google Scholar
  88. Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Sinninghe Damsté JS (2011) Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J 5:1896–1904Google Scholar
  89. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139Google Scholar
  90. Rich JJ, Dale OR, Song B, Ward BB (2008) Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microb Ecol 55:311–320Google Scholar
  91. Richards F (1965) Anoxic basins and fjords. In: Riley J, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 611–645Google Scholar
  92. Rikmann E, Zekker I, Tomingas M, Tenno T, Menert A, Loorits L, Tenno T (2012) Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater. Biodegradation 23:509–524Google Scholar
  93. Rikmann E, Zekker I, Tomingas M, Vabamäe P, Kroon K, Saluste A, Tenno T, Menert A, Loorits L, Rubin SS, Tenno T (2014) Comparison of sulfate-reducing and conventional anammox upflow anaerobic sludge blanket reactors. J Biosci Bioeng 118:426–433Google Scholar
  94. Rikmann E, Zekker I, Tomingas M, Tenno T, Loorits L, Vabamäe P, Mandel A, Raudkivi M, Daija L, Kroon K, Tenno T (2016) Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters. Desalin Water Treat 7:3132–3141Google Scholar
  95. Rios-Del Toro EE, Cervantes FJ (2016) Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments. Biodegradation 27:107–118Google Scholar
  96. Rios-del Toro EE, López-Lozano NE, Cervantes FJ (2017) Up-flow anaerobic sediment trapped (UAST) reactor as a new configuration for the enrichment of anammox bacteria from marine sediments. Bioresour Technol 238:528–533Google Scholar
  97. Rios-Del Toro EE, Cortés-Martínez MG, Sánchez-Rodríguez MA, Calvario-Martínez O, Sánchez-Carrillo S, Cervantes FJ (2018a) Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Biodegradation 29:429–442Google Scholar
  98. Rios-del Toro EE, Valenzuela EI, Ramírez JE, López-Lozano NE, Cervantes FJ (2018b) Anaerobic ammonium oxidation linked to microbial reduction of natural organic matter in marine sediments. Environ Sci Technol Lett 5:571–577Google Scholar
  99. Risgaard-Petersen N, Meyer RL, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech NP (2004) Anaerobic ammonium oxidation in an estuarine sediment. Aquat Microb Ecol 36:293–304Google Scholar
  100. Rooks C, Schmid MC, Mehsana W, Trimmer M (2012) The depth-specific significance and relative abundance of anaerobic ammonium-oxidizing bacteria in estuarine sediments (Medway Estuary, UK). FEMS Microbiol Ecol 80:19–29Google Scholar
  101. Rooze J, Meile C (2016) The effect of redox conditions and bioirrigation on nitrogen isotope fractionation in marine sediments. Geochim Cosmochim Acta 184:227–239Google Scholar
  102. Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the planctomycetes–cerrucomicrobia–chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e10000281Google Scholar
  103. Sawayama S (2006) Possibility of anoxic ferric ammonium oxidation. J Biosci Bioeng 101:70–72Google Scholar
  104. Schalk J, Oustad H, Kuenen JG, Jetten MSM (1998) The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiol Lett 158:61–67Google Scholar
  105. Schmid M, Walsh K, Webb R, Rijpstra WIC, Van De Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damsté JSS, Harris J, Shaw P, Jetten M, Strous M (2003) CandidatusScalindua brodae”, sp. nov., CandidatusScalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538Google Scholar
  106. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Sinninghe Damsté JS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684Google Scholar
  107. Schmid MC, Risgaard-Petersen N, Van De Vossenberg J, Kuypers MM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgeerd T, Rysgaard S, Sejr MK, Strous M, Op den Camp HJ, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:1476–1484Google Scholar
  108. Schrum HN, Spivack AJ, Kastner M, D’Hondt S (2009) Sulfate-reducing ammonium oxidation: a thermodynamically feasible metabolic pathway in subseafloor sediment. Geology 37:939–942Google Scholar
  109. Shimamura M, Nishiyama T, Shinya K, Kawahara Y, Furukawa K, Fujii T (2008) Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacteriumbesides the hydrazine-oxidizing enzyme. J Biosci Bioeng 105:243–248Google Scholar
  110. Sinninghe Damsté JS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JAJ, van Diun ACT, van Niftrik L, Jetten MSM (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712Google Scholar
  111. Sinninghe Damsté JS, Rijpstra WIC, Geenevasen JAJ, Strous M, Jetten MSM (2005) Structural identification of ladderane and other membrane lipids of plantomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J 272:4270–4283Google Scholar
  112. Sliekers AO, Third KA, Abma W, Kuenen JG, Jetten MSM (2003) CANON and anammox in a gas-lift reactor. FEMS Microbiol Lett 218:339–344Google Scholar
  113. Speth DR, Lagkouvardos I, Wang Y, Qian P-Y, Dutilh BE, Jetten MSM (2017) Draft genome of Scalindua rubra, obtained from the interface above the discovery deep brine in the Red Sea, sheds light on potential salt adaptation strategies in anammox bacteria. Microb Ecol 74:1–5Google Scholar
  114. Stevenson DS, Dentener FJ, Schultz MG, Ellingsen K, van Noije TPC, Wild O, Zeng G, Amann M, Atherton CS, Bell N, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drvet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque J-F, Lawrence MG, Montanaro V, Müller J-F, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Shindell DT, Strahan SE, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res Atmos 111:D08301Google Scholar
  115. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microb Biotechnol 50:589–596Google Scholar
  116. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449Google Scholar
  117. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Berbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op del Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794Google Scholar
  118. Tang CJ, Zheng P, Wang CH, Mahmood Q, Zhang JQ, Chen XG, Zhang L, Chen JW (2011) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res 45:135–144Google Scholar
  119. Teixeira C, Magalhaes C, Joye SB, Bordalo AA (2012) Potential rates and environmental controls of anaerobic ammonium oxidation in estuarine sediments. Aquat Micriob Ecol 66:23–32Google Scholar
  120. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318Google Scholar
  121. Trimmer M, Nicholls JC (2009) Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic. Limnol Oceanogr 54:577–589Google Scholar
  122. Trimmer M, Engstrøm P, Thamdrup B (2013) Stark contrast in denitrification and anammox across the deep Norwegian Trench in the Skagerrak. Appl Environ Microbiol 79:7381–7389Google Scholar
  123. Valenzuela EI, Prieto-Davó A, López-Lozano NE, Hernández-Eligio A, Vega-Alvarado L, Juárez K, García-González AS, López MG, Cervantes FJ (2017) Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol 83:e00645-17Google Scholar
  124. Valenzuela EI, Avendaño KA, Balagurusamy N, Arriaga S, Nieto-Delgado C, Thalasso F, Cervantes FJ (2019) Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments. Sci Total Environ 650:2674–2684Google Scholar
  125. Van de Graaf AA, Mulder A, de Bruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammoinium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251Google Scholar
  126. Van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196Google Scholar
  127. Van de Vossenberg J, Rattray JE, Geerts W, Kartal B, van Niftrik L, van Donselaar EG, Sinninghe Damsté JS, Strous M, Jetten MSM (2008) Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ Microbiol 10:3120–3129Google Scholar
  128. Van der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163Google Scholar
  129. Van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294Google Scholar
  130. Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618Google Scholar
  131. Van Niftrik L, Jetten MSM (2012) Anaerobic ammonium oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76:585–596Google Scholar
  132. Van Niftrik L, Fuerst JA, Sinninghe Damsté JS, Kuenen JG, Jetten MSM, Strous M (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233:7–13Google Scholar
  133. Van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L (2015) Anammox planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6878Google Scholar
  134. Wang Z, Ni S-Q, Zhang J, Zhu T, Ma Y, Liu X, Kong Q, Miao M (2016) Gene expression and biomarker discovery of anammox bacteria in different reactors. Biochem Eng J 115:108–114Google Scholar
  135. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Aman R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119Google Scholar
  136. Yang Z, Zhou S, Sun Y (2009) Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor. J Hazard Mater 169:113–118Google Scholar
  137. Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541Google Scholar
  138. Zandt MH, de Jong AEE, Slomp CP, Jetten MSM (2018) The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 94:fiy064Google Scholar
  139. Zhang L, Zheng P, YuHui H, RenCun J (2009) Performance of sulfate-dependent anaerobic ammonium oxidation. Sci China Ser B Chem 52:86–92Google Scholar
  140. Zhao R, Zhang H, Li Y, Jiang T, Yang F (2014) Research of iron reduction and the iron reductase localization of anammox bacteria. Curr Microbiol 69:880–887Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.División de Ciencias AmbientalesInstituto Potosino de Investigación Científica y Tecnológica (IPICYT)San Luis PotosíMexico

Personalised recommendations