Skip to main content

Advertisement

Log in

An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The deammonification process has been universally acknowledged as an energy-efficient technology for sewage disposal. In contrast with traditional biological nitrogen removal technology, the deammonification process is able to remove ammonia from wastewater with the simplest nitrogen removal process because of its advantages of lower operating expenses, no organic carbon consumption, lower biomass production, lower carbon dioxide and no nitrous oxide emissions. This review paper provides an overview of the current state of research and development of deammonification in terms of strategies for the process start-up and recovery after accidental failures as well as model-based developments of those strategies. The paper discusses the following issues: (1) current status of research and development of the deammonification process; (2) functional microbial groups involved in the process and their synergistic and competitive relationships; (3) influence of the operational factors, such as the substrates such as nitrite, ammonium and toxic compounds, dissolved oxygen (DO) concentration, aeration patterns temperature, inorganic carbon (IC), pH/free ammonia (FA)/free nitrous acid (FNA) and hydraulic retention time (HRT)/solids retention time (SRT); (4) strategies for the process start-up; (5) strategies for the process recovery after accidental failures; (6) model-based developments of the start-up and recovery strategies; and (7) perspectives on the future trends in the technological applications and developments of deammonification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali M, Okabe S (2015) Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues. Chemosphere 141:144–153. doi:10.1016/j.chemosphere.2015.06.094

    Article  CAS  Google Scholar 

  • Almstrand R, Persson F, Daims H et al (2014) Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox. Int J Mol Sci 15:2191–2206. doi:10.3390/ijms15022191

    Article  CAS  Google Scholar 

  • Al-Omari A, Wett B, Han H et al (2012) Full-plant deammonification based on NOB-repression, AOB seeding, anammox seeding and successful retention. In: Proc. IWA conf. on nutrient

  • Al-Omari A, Wett B, Nopens I et al (2015) Model-based evaluation of mechanisms and benefits of mainstream shortcut nitrogen removal processes. Water Sci Technol 71:840–847. doi:10.2166/wst.2015.022

    Article  CAS  Google Scholar 

  • Anjali G, Sabumon PC (2016) Development of simultaneous partial nitrification, anammox and denitrification (SNAD) in a non-aerated SBR. Int Biodeterior Biodegradation. doi:10.1016/j.ibiod.2016.10.047

    Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TB, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid on JSTOR. Water Environ Fed 48:835–852

    CAS  Google Scholar 

  • Attard E, Poly F, Commeaux C et al (2010) Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol 12:315–326. doi:10.1111/j.1462-2920.2009.02070.x

    Article  CAS  Google Scholar 

  • Awata T, Oshiki M, Kindaichi T et al (2013) Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus scalindua” group. Appl Environ Microbiol 79:4145–4148. doi:10.1128/AEM.00056-13

    Article  CAS  Google Scholar 

  • Bae W, Baek S, Chung J, Lee Y (2001) Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation 12:359–366. doi:10.1023/A:1014308229656

    Article  CAS  Google Scholar 

  • Bae H, Park K-S, Chung Y-C, Jung J-Y (2010) Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR. Process Biochem 45:323–334. doi:10.1016/j.procbio.2009.10.004

    Article  CAS  Google Scholar 

  • Bettazzi E, Caffaz S, Vannini C, Lubello C (2010) Nitrite inhibition and intermediates effects on anammox bacteria: a batch-scale experimental study. Process Biochem 45:573–580. doi:10.1016/j.procbio.2009.12.003

    Article  CAS  Google Scholar 

  • Bi Z, Qiao S, Zhou J et al (2014) Inhibition and recovery of anammox biomass subjected to short-term exposure of Cd, Ag, Hg and Pb. Chem Eng J 244:89–96. doi:10.1016/j.cej.2014.01.062

    Article  CAS  Google Scholar 

  • Blackburne R, Yuan Z, Keller J (2008) Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19:303–312. doi:10.1007/s10532-007-9136-4

    Article  CAS  Google Scholar 

  • Cai Q, Zhang DJ, Ding JJ (2014) The cultivation of completely autotrophic nitrogen removal over nitrite granular sludge and the recovery and enhancement of nitrogen removal. China Environ Sci 34:2805–2812

    CAS  Google Scholar 

  • Cao Y, Kwok B, Yong W et al (2013) Mainstream partial nitritation–ANAMMOX nitrogen removal in the largest full-scale activated sludge process in Singapore: process analysis. In: Proc. WEF/IWA nutrient removal and recovery conference 2013 Jul (pp 28–31)

  • Cao Y, Kwok BH, van Loosdrecht MCM et al (2017) The occurrence of enhanced biological phosphorus removal in a 200,000 m3/day partial nitration and anammox activated sludge process at the Changi water reclamation plant, Singapore. Water Sci Technol 75:741–751. doi:10.2166/wst.2016.565

    Article  Google Scholar 

  • Carvajal-Arroyo JM, Sun W, Sierra-Alvarez R, Field JA (2013) Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 91:22–27. doi:10.1016/j.chemosphere.2012.11.025

    Article  CAS  Google Scholar 

  • Cema G, Wiszniowski J, Żabczyński S et al (2007) Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Sci Technol 55(8–9):35–42

    Article  CAS  Google Scholar 

  • Chamchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour Technol 99:3331–3336. doi:10.1016/j.biortech.2007.08.029

    Article  CAS  Google Scholar 

  • Chang X, Li D, Liang Y et al (2013) Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature. J Environ Sci (China) 25:688–697. doi:10.1016/S1001-0742(12)60094-1

    Article  CAS  Google Scholar 

  • Chao Y, Mao Y, Yu K, Zhang T (2016) Erratum to: novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach (Appl Microbiol Biotechnol, (2016), DOI: 10.1007/s00253-016-7655-9). Appl Microbiol Biotechnol 100:8239. doi:10.1007/s00253-016-7752-9

    Article  CAS  Google Scholar 

  • Chen Y-P, Li S, Fang F et al (2012) Effect of inorganic carbon on the completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor. Environ Technol 33:2611–2617. doi:10.1080/09593330.2012.672474

    Article  CAS  Google Scholar 

  • Chen X, Guo J, Shi Y et al (2014) Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor. Environ Sci Technol 48:9540–9547. doi:10.1021/es502608s

    Article  CAS  Google Scholar 

  • Chen X, Guo J, Xie GJ et al (2016) Achieving complete nitrogen removal by coupling nitritation-anammox and methane-dependent denitrification: a model-based study. Biotechnol Bioeng 113:1035–1045. doi:10.1002/bit.25866

    Article  CAS  Google Scholar 

  • Chini A, Kunz A, Viancelli A et al (2016) Recirculation and aeration effects on deammonification activity. Water Air Soil Pollut. doi:10.1007/s11270-016-2765-7

    Google Scholar 

  • Chung J, Shim H, Lee YW, Bae W (2005) Comparison of influence of free ammonia and dissolved oxygen on nitrite accumulation between suspended and attached cells. Environ Technol 26:21–33. doi:10.1080/09593332608618587

    Article  CAS  Google Scholar 

  • Chung J, Shim H, Park SJ et al (2006) Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process. Bioprocess Biosyst Eng 28:275–282. doi:10.1007/s00449-005-0035-y

    Article  CAS  Google Scholar 

  • Daigger GT (2014) Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environ Res 86:204–209. doi:10.2175/106143013X13807328849459

    Article  CAS  Google Scholar 

  • Daija L, Selberg A, Rikmann E et al (2016) The influence of lower temperature, influent fluctuations and long retention time on the performance of an upflow mode laboratory-scale septic tank. Desalin Water Treat 57:18679–18687. doi:10.1080/19443994.2015.1094421

    Article  CAS  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH et al (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284. doi:10.1128/AEM.67.11.5273-5284.2001

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. doi:10.1038/nature16461

    CAS  Google Scholar 

  • Dapena-Mora A, Van Hulle SWH, Campos JL et al (2004) Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results. J Chem Technol Biotechnol 79:1421–1428. doi:10.1002/jctb.1148

    Article  CAS  Google Scholar 

  • Dapena-Mora A, Fernández I, Campos JL et al (2007) Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40:859–865. doi:10.1016/j.enzmictec.2006.06.018

    Article  CAS  Google Scholar 

  • De Clippeleir H, Yan X, Verstraete W, Vlaeminck SE (2011) OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Appl Microbiol Biotechnol 90:1537–1545. doi:10.1007/s00253-011-3222-6

    Article  CAS  Google Scholar 

  • De Clippeleir H, Vlaeminck SE, De Wilde F et al (2013) One-stage partial nitritation/anammox at 15 °C on pretreated sewage: feasibility demonstration at lab-scale. Appl Microbiol Biotechnol 97:10199–10210. doi:10.1007/s00253-013-4744-x

    Article  CAS  Google Scholar 

  • De Mulder C (2014) Impact of intrinsic and extrinsic parameters on the oxygen kinetic parameters of ammonia and nitrite oxidizing bacteria. LabMET Master, p 104

  • De Prá MC, Kunz A, Bortoli M et al (2016) Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature. Bioresour Technol 202:33–41. doi:10.1016/j.biortech.2015.11.048

    Article  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez P, Siegrist H et al (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175(3):198–207

    Article  CAS  Google Scholar 

  • Eugster J, Roger KO, Rottermann K et al (2009) Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol 43(14):5301–5306. doi:10.1021/es900107w

    Article  CAS  Google Scholar 

  • Fernandes H, Jungles MK, Hoffmann H et al (2013) Full-scale sequencing batch reactor (SBR) for domestic wastewater: performance and diversity of microbial communities. Bioresour Technol 132:262–268. doi:10.1016/j.biortech.2013.01.027

    Article  CAS  Google Scholar 

  • Fernández I, Dosta J, Fajardo C et al (2012) Short- and long-term effects of ammonium and nitrite on the Anammox process. J Environ Manage 95:S170–S174. doi:10.1016/j.jenvman.2010.10.044

    Article  CAS  Google Scholar 

  • Furukawa K, Lieu PK, Tokitoh H, Fujii T (2006) Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Sci Technol 53(6):83–90

    Article  CAS  Google Scholar 

  • Gao D-W, Hu Q, Yao C, Ren N-Q (2014a) Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresour Technol 159:193–198. doi:10.1016/j.biortech.2014.02.086

    Article  CAS  Google Scholar 

  • Gao H, Scherson YD, Wells GF (2014b) Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci Process Impacts 16:1223–1246. doi:10.1039/c4em00069b

    Article  CAS  Google Scholar 

  • Gaul T, Märker S, Kunst S (2005) Start-up of moving bed biofilm reactors for deammonification: the role of hydraulic retention time, alkalinity and oxygen supply. Water Sci Technol 52:127–133

    CAS  Google Scholar 

  • Ge S, Peng Y, Qiu S et al (2014) Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res 55:95–105. doi:10.1016/j.watres.2014.01.058

    Article  CAS  Google Scholar 

  • Gilbert EM, Agrawal S, Brunner F et al (2014) Response of different Nitrospira species to anoxic periods depends on operational DO. Environ Sci Technol 48:2934–2941. doi:10.1021/es404992g

    Article  CAS  Google Scholar 

  • Gonzalez-Martinez A, Osorio F, Morillo JA et al (2015a) Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions. Biotechnol Prog 31:1464–1472. doi:10.1002/btpr.2151

    Article  CAS  Google Scholar 

  • Gonzalez-Martinez A, Rodriguez-Sanchez A, Muñoz-Palazon B et al (2015b) Microbial community analysis of a full-scale DEMON bioreactor. Bioprocess Biosyst Eng 38:499–508. doi:10.1007/s00449-014-1289-z

    Article  CAS  Google Scholar 

  • Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MCM et al (2016) Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ Sci Pollut Res 23:25501–25511. doi:10.1007/s11356-016-7914-4

    Article  CAS  Google Scholar 

  • Gruber-Dorninger C, Pester M, Kitzinger K et al (2015) Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J 9:643–655. doi:10.1038/ismej.2014.156

    Article  CAS  Google Scholar 

  • Guisasola A, Jubany I, Baeza JA et al (2005) Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation. J Chem Technol Biotechnol 80:388–396. doi:10.1002/jctb.1202

    Article  CAS  Google Scholar 

  • Guisasola A, Petzet S, Baeza JA et al (2007) Inorganic carbon limitations on nitrification: experimental assessment and modelling. Water Res 41:277–286. doi:10.1016/j.watres.2006.10.030

    Article  CAS  Google Scholar 

  • Gustavsson DJI (2010) Biological sludge liquor treatment at municipal wastewater treatment plants—a review. Vatten 66:179–192

    CAS  Google Scholar 

  • Gut (2006) Assessment of a partial nitritation/Anammox system for nitrogen removal. Luiza Kungliga tekniska högskolan

  • Han M, De Clippeleir H, Al-Omari A et al (2016) Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification. Water Sci Technol 74:375–384. doi:10.2166/wst.2016.202

    Article  CAS  Google Scholar 

  • Hao XD, van Loosdrecht MCM (2004) Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process. Water Sci Technol 49:83–90

    CAS  Google Scholar 

  • Hao X, Heijnen JJ, van Loosdrecht MCM (2002a) Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng 77:266–277. doi:10.1002/bit.10105

    Article  CAS  Google Scholar 

  • Hao X, Heijnen JJ, Van Loosdrecht MCM (2002b) Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process. Water Res 36:4839–4849. doi:10.1016/S0043-1354(02)00219-1

    Article  CAS  Google Scholar 

  • Hao XD, Cao XQ, Picioreanu C, van Loosdrecht MCM (2005) Model-based evaluation of oxygen consumption in a partial nitrification—anammox biofilm process. Water Sci Technol 52:155–160

    CAS  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW et al (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37:135–142. doi:10.1016/S0273-1223(98)00281-9

    CAS  Google Scholar 

  • Hendrickx TLG, Wang Y, Kampman C et al (2012) Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res 46:2187–2193. doi:10.1016/j.watres.2012.01.037

    Article  CAS  Google Scholar 

  • Henze M, Gujer W, Mino T, Van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publ, London, p 121. doi:10.1007/s13398-014-0173-7.2

    Google Scholar 

  • Hernando Z, Martínez S (2010) Evaluation of deammonification process performance for supernatant treatment (Master of Science Thesis). Royal Instiute of Technology

  • Hu B, Zheng P, Tang C et al (2010) Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 44:5014–5020. doi:10.1016/j.watres.2010.07.021

    Article  CAS  Google Scholar 

  • Hu Z, Speth DR, Francoijs K-J et al (2012) Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium “Candidatus Jettenia asiatica”. Front Microbiol 3:366. doi:10.3389/fmicb.2012.00366

    Article  Google Scholar 

  • Hu Z, Lotti T, de Kreuk M et al (2013) Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microbiol 79:2807–2812. doi:10.1128/AEM.03987-12

    Article  CAS  Google Scholar 

  • Hüpeden J, Wegen S, Off S et al (2016) Relative abundance of Nitrotoga spp. in a biofilter of a cold-freshwater aquaculture plant appears to be stimulated by slightly acidic pH. Appl Environ Microbiol 82:1838–1845. doi:10.1128/AEM.03163-15

    Article  CAS  Google Scholar 

  • Isaka K, Date Y, Sumino T et al (2006) Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl Microbiol Biotechnol 70:47–52. doi:10.1007/s00253-005-0046-2

    Article  CAS  Google Scholar 

  • Isaka K, Date Y, Kimura Y et al (2008) Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS Microbiol Lett 282:32–38. doi:10.1111/j.1574-6968.2008.01095.x

    Article  CAS  Google Scholar 

  • Isaka K, Kimura Y, Yamamoto T et al (2013) Complete autotrophic denitrification in a single reactor using nitritation and anammox gel carriers. Bioresour Technol 147:96–101. doi:10.1016/j.biortech.2013.07.095

    Article  CAS  Google Scholar 

  • Ismail Al-Alawi A, Yousif Al-Marzooqi N, Fraidoon Mohammed Y (2007) Organizational culture and knowledge sharing: critical success factors. J Knowl Manag 11:22–42. doi:10.1108/13673270710738898

    Article  Google Scholar 

  • Jardin N, Hennerkes J (2012) Full-scale experience with the deammonification process to treat high strength sludge water—a case study. Water Sci Technol 65:447–455. doi:10.2166/wst.2012.867

    Article  CAS  Google Scholar 

  • Jaroszynski LW, Cicek N, Sparling R, Oleszkiewicz JA (2011) Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors. Bioresour Technol 102:7051–7056. doi:10.1016/j.biortech.2011.04.069

    Article  CAS  Google Scholar 

  • Jaroszynski LW, Cicek N, Sparling R, Oleszkiewicz JA (2012) Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere 88:188–195. doi:10.1016/j.chemosphere.2012.02.085

    Article  CAS  Google Scholar 

  • Jenni S, Vlaeminck SE, Morgenroth E, Udert KM (2014) Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Res 49:316–326. doi:10.1016/j.watres.2013.10.073

    Article  CAS  Google Scholar 

  • Jetten M, Schmid M, Van De Pas-Schoonen K et al (2005) Anammox organisms: enrichment, cultivation, and environmental analysis. Methods Enzymol 397:34–57. doi:10.1016/S0076-6879(05)97003-1

    Article  CAS  Google Scholar 

  • Jin R-C, Yang G-F, Zhang Q-Q et al (2013) The effect of sulfide inhibition on the ANAMMOX process. Water Res 47:1459–1469. doi:10.1016/j.watres.2012.12.018

    Article  CAS  Google Scholar 

  • Jones RM, Dold PL, Takács I et al (2007) Simulation for operation and control of reject water treatment processes. Proc Water Environ Fed 2007:4357–4372. doi:10.2175/193864707787974599

    Article  Google Scholar 

  • Joss A, Salzgeber D, Eugster J et al (2009) Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol 43:5301–5306. doi:10.1021/es900107w

    Article  CAS  Google Scholar 

  • Joss A, Derlon N, Cyprien C et al (2011) Combined nitritation-anammox: advances in understanding process stability. Environ Sci Technol 45:9735–9742. doi:10.1021/es202181v

    Article  CAS  Google Scholar 

  • Kanders L, Areskoug T, Schneider Y et al (2014) Impact of seeding on the start-up of one-stage deammonification MBBRs. Environ Technol 35:2767–2773. doi:10.1080/09593330.2014.920421

    Article  CAS  Google Scholar 

  • Kartal B, Kuenen JG, van Loosdrecht MCM (2010) Sewage treatment with anammox. Science (80-) 328:702–703. doi: 10.1126/science.1185941

  • Kartal B, Maalcke WJ, de Almeida NM et al (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130. doi:10.1038/Nature10453

    Article  CAS  Google Scholar 

  • Katsogiannis AN, Kornaros M, Lyberatos G (2003) Enhanced nitrogen removal in SBRs bypassing nitrate generate accomplished by multiple aerobic/anoxic phase pairs. Water Sci Technol 47:53–59

    CAS  Google Scholar 

  • Keluskar R, Nerurkar A, Desai A (2013) Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresour Technol 130:390–397. doi:10.1016/j.biortech.2012.12.066

    Article  CAS  Google Scholar 

  • Kim JH, Guo X, Park HS (2008) Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem 43:154–160. doi:10.1016/j.procbio.2007.11.005

    Article  CAS  Google Scholar 

  • Kimura Y, Isaka K (2014) Evaluation of inhibitory effects of heavy metals on anaerobic ammonium oxidation (anammox) by continuous feeding tests. Appl Microbiol Biotechnol 98:6965–6972. doi:10.1007/s00253-014-5735-2

    Article  CAS  Google Scholar 

  • Kimura Y, Isaka K, Kazama F, Sumino T (2010) Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl Microbiol Biotechnol 86:359–365. doi:10.1007/s00253-009-2359-z

    Article  CAS  Google Scholar 

  • Kimura Y, Isaka K, Kazama F (2011) Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity. Bioresour Technol 102:4390–4394. doi:10.1016/j.biortech.2010.12.101

    Article  CAS  Google Scholar 

  • Klaus S, McLee P, Schuler AJ, Bott C (2016) Methods for increasing the rate of anammox attachment in a sidestream deammonification MBBR. Water Sci Technol 74:110–117. doi:10.2166/wst.2016.183

    Article  Google Scholar 

  • Koch G, Egli K, Van Der Meer JR, Siegrist H (2000) Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci Technol 41:191–198

    CAS  Google Scholar 

  • Kruse M, Zumbrägel S, Bakker E et al (2013) The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing. Syst Appl Microbiol 36:517–524. doi:10.1016/j.syapm.2013.06.007

    Article  CAS  Google Scholar 

  • Kumar M, Lin JG (2010) Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-strategies and issues. J Hazard Mater 178:1–9. doi:10.1016/j.jhazmat.2010.01.077

    Article  CAS  Google Scholar 

  • Kwak W, McCarty PL, Bae J et al (2012) Efficient single-stage autotrophic nitrogen removal with dilute wastewater through oxygen supply control. Bioresour Technol 123:400–405. doi:10.1016/j.biortech.2012.07.076

    Article  CAS  Google Scholar 

  • Lackner S, Terada A, Smets BF (2008) Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study. Water Res 42:1102–1112. doi:10.1016/j.watres.2007.08.025

    Article  CAS  Google Scholar 

  • Lackner S, Gilbert EM, Vlaeminck SE et al (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303. doi:10.1016/j.watres.2014.02.032

    Article  CAS  Google Scholar 

  • Lackner S, Thoma K, Gilbert EM et al (2015) Start-up of a full-scale deammonification SBR-treating effluent from digested sludge dewatering. Water Sci Technol 71:553–559. doi:10.2166/wst.2014.421

    Article  CAS  Google Scholar 

  • Langone M, Yan J, Haaijer SCM et al (2014) Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor. Front Microbiol 5:28. doi:10.3389/fmicb.2014.00028

    Article  Google Scholar 

  • Langone M, Ferrentino R, Cadonna M, Andreottola G (2016) Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters. Chemosphere 164:488–498. doi:10.1016/j.chemosphere.2016.08.094

    Article  CAS  Google Scholar 

  • Lemaire R, Liviano I, Ekström S et al (2015) 1-stage deammonification MBBR process for reject water sidestream treatment:investigation of start-up strategy and carriers design. Statew Agric L Use Baseline 1:1–12

    Google Scholar 

  • Li X, Zen G, Rosenwinkel KH et al (2004) Start up of deammonification process in one single SBR system. Water Sci Technol 50:1–8

    Google Scholar 

  • Li S, Chen YP, Li C et al (2012) Influence of free ammonia on completely autotrophic nitrogen removal over nitrite (CANON) process. Appl Biochem Biotechnol 167:694–704. doi:10.1007/s12010-012-9726-4

    Article  CAS  Google Scholar 

  • Li Dong, Tian Haicheng, Liang Yuhai et al (2016a) Effect of inorganic carbon for sewage SNAD process nitrate accumulation restore problems. J Harbin Inst Technol 48:17–23

    CAS  Google Scholar 

  • Li X, Sun S, Badgley BD et al (2016b) Nitrogen removal by granular nitritation? Anammox in an upflow membrane-aerated biofilm reactor. Water Res 94:23–31. doi:10.1016/j.watres.2016.02.031

    Article  CAS  Google Scholar 

  • Liao D, Li X, Yang Q et al (2008) Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor. J Environ Sci 20:940–944. doi:10.1016/S1001-0742(08)62190-7

    Article  CAS  Google Scholar 

  • Liu S, Yang F, Gong Z, Su Z (2008) Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process. Appl Microbiol Biotechnol 80:339–348. doi:10.1007/s00253-008-1536-9

    Article  CAS  Google Scholar 

  • Liu T, Li D, Zeng H et al (2012) Distribution and genetic diversity of functional microorganisms in different CANON reactors. Bioresour Technol 123:574–580. doi:10.1016/j.biortech.2012.07.114

    Article  CAS  Google Scholar 

  • Liu X, Kim M, Nakhla G (2017) Operational conditions for successful partial nitrification in a sequencing batch reactor (SBR) based on process kinetics. Environ Technol 38:694–704. doi:10.1080/09593330.2016.1209246

    Article  CAS  Google Scholar 

  • Lotti T, Cordola M, Kleerebezem R et al (2012a) Inhibition effect of swine wastewater heavy metals and antibiotics on anammox activity. Water Sci Technol 66(7):1519–1526

    Article  CAS  Google Scholar 

  • Lotti T, Van Der Star WRL, Kleerebezem R et al (2012b) The effect of nitrite inhibition on the anammox process.pdf. Water Res 46:2559–2569. doi:10.1016/j.watres.2012.02.011

    Article  CAS  Google Scholar 

  • Lotti T, Kleerebezem R, Hu Z et al (2014) Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Res 66:111–121. doi:10.1016/j.watres.2014.07.047

    Article  CAS  Google Scholar 

  • Lotti T, Kleerebezem R, van Loosdrecht MCM (2015) Effect of temperature change on anammox activity. Biotechnol Bioeng 112:98–103. doi:10.1002/bit.25333

    Article  CAS  Google Scholar 

  • Lu X, Yin Z, Sobotka D et al (2017) Modeling the pH effects on nitrogen removal in the anammox-enriched granular sludge. Water Sci Technol 75:378–386. doi:10.2166/wst.2016.530

    Article  Google Scholar 

  • Lücker S, Schwarz J, Gruber-Dorninger C et al (2015) Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants. ISME J 9:708–720. doi:10.1038/ismej.2014.158

    Article  CAS  Google Scholar 

  • Ludwig W, Euzéby J, Whitman WB (2010) Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), -Acidobacteria, Fibrobacteres, Fusobacteria, -Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Bergey’s Manual® of systematic bacteriology. Springer, New York, pp 21–24

  • Ma B, Bao P, Wei Y et al (2015a) Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci Rep 5:13048. doi:10.1038/srep13048

    Article  Google Scholar 

  • Ma Y, Sundar S, Park H, Chandran K (2015b) The effect of inorganic carbon on microbial interactions in a biofilm nitritation-anammox process. Water Res 70:246–254. doi:10.1016/j.watres.2014.12.006

    Article  CAS  Google Scholar 

  • Ma B, Wang S, Cao S et al (2016) Biological nitrogen removal from sewage via anammox: recent advances. Bioresour Technol 200:981–990. doi:10.1016/j.biortech.2015.10.074

    Article  CAS  Google Scholar 

  • Magrí A, Béline F, Dabert P (2013) Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing—an overview. J Environ Manage 131:170–184. doi:10.1016/j.jenvman.2013.09.021

    Article  CAS  Google Scholar 

  • Malamis S, Katsou E, Frison N et al (2013) Start-up of the completely autotrophic nitrogen removal process using low activity anammox inoculum to treat low strength UASB effluent. Bioresour Technol 148:467–473. doi:10.1016/j.biortech.2013.08.134

    Article  CAS  Google Scholar 

  • Miao Y, Zhang L, Yang Y et al (2016) Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation. Bioresour Technol 218:771–779. doi:10.1016/j.biortech.2016.06.125

    Article  CAS  Google Scholar 

  • Morales N, Val del Río Á, Vázquez-Padín JR et al (2015) Integration of the Anammox process to the rejection water and main stream lines of WWTPs. Chemosphere 140:99–105. doi:10.1016/j.chemosphere.2015.03.058

    Article  CAS  Google Scholar 

  • Ni BJ, Yuan Z (2013) A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems. J Memb Sci 428:163–171. doi:10.1016/j.memsci.2012.10.049

    Article  CAS  Google Scholar 

  • Ni B-J, Ruscalleda M, Pellicer-Nàcher C, Smets BF (2011) Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models. Environ Sci Technol 45:7768–7776. doi:10.1021/es201489n

    Article  CAS  Google Scholar 

  • Ni BJ, Smets BF, Yuan Z, Pellicer-Nàcher C (2013) Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor. J Memb Sci 446:332–340. doi:10.1016/j.memsci.2013.06.047

    Article  CAS  Google Scholar 

  • Noophan PL, Sripiboon S, Damrongsri M, Munakata-Marr J (2009) Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor. J Environ Manage 90:967–972. doi:10.1016/j.jenvman.2008.03.003

    Article  CAS  Google Scholar 

  • Nowak O, Svardal K, Schweighofer P (1995) The dynamic behaviour of nitrifying activated sludge systems influenced by inhibiting wastewater compounds. Water Sci Technol 31:115–124. doi:10.1016/0273-1223(95)00185-P

    CAS  Google Scholar 

  • Nowka B, Daims H, Spieck E (2015) Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol 81:745–753. doi:10.1128/AEM.02734-14

    Article  CAS  Google Scholar 

  • Oshiki M, Shimokawa M, Fujii N et al (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiology 157:1706–1713. doi:10.1099/mic.0.048595-0

    Article  CAS  Google Scholar 

  • Palomo A, Jane Fowler S, Gülay A et al (2016) Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp. ISME J 10:2569–2581. doi:10.1038/ismej.2016.63

    Article  CAS  Google Scholar 

  • Park S, Chung J, Rittmann BE, Bae W (2015) Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor. Biotechnol Bioeng 112:43–52. doi:10.1002/bit.25326

    Article  CAS  Google Scholar 

  • Perez J, Lotti T, Kleerebezem R et al (2014) Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study. Water Res 66:208–218. doi:10.1016/j.watres.2014.08.028

    Article  CAS  Google Scholar 

  • Persson F, Sultana R, Suarez M et al (2014) Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation–anammox at low temperatures. Bioresour Technol 154:267–273. doi:10.1016/j.biortech.2013.12.062

    Article  CAS  Google Scholar 

  • Pinto AJ, Marcus DN, Ijaz Z et al (2015) Metagenomic evidence for the presence of comammox nitrospira-like bacteria in a drinking water system. mSphere 1:e00054-15. doi:10.1128/mSphere.00054-15

    Article  Google Scholar 

  • Puyol D, Carvajal-Arroyo JM, Sierra-Alvarez R, Field JA (2014) Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnol Lett 36:547–551. doi:10.1007/s10529-013-1397-x

    Article  CAS  Google Scholar 

  • Qiao S, Matsumoto N, Shinohara T et al (2010) High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures. Bioresour Technol 101:111–117. doi:10.1016/j.biortech.2009.08.003

    Article  CAS  Google Scholar 

  • Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641. doi:10.1016/j.biortech.2013.06.030

    Article  CAS  Google Scholar 

  • Raudkivi M, Zekker I, Rikmann E, Vabamäe P, Kroon K, Tenno T (2017) Nitrite inhibition and limitation—the effect of nitrite spiking on anammox biofilm, suspended and granular biomass. Water Sci Technol. doi:10.2166/wst.2016.456

    Google Scholar 

  • Regmi P, Miller MW, Holgate B et al (2014) Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res 57:162–171. doi:10.1016/j.watres.2014.03.035

    Article  CAS  Google Scholar 

  • Regmi P, Bunce R, Miller MW et al (2015) Ammonia-based intermittent aeration control optimized for efficient nitrogen removal. Biotechnol Bioeng 112:2060–2067. doi:10.1002/bit.25611

    Article  CAS  Google Scholar 

  • Rikmann E, Zekker I, Tomingas M, Tenno T, Loorits L, Vabamäe P, Mandel A, Raudkivi M, Daija L, Kroon K, Tenno T (2016) Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters. Desalin Water Treat 57:3132–3141

    Article  CAS  Google Scholar 

  • Rongsayamanont C, Limpiyakorn T, Law B, Khan E (2010) Relationship between respirometric activity and community of entrapped nitrifying bacteria: implications for partial nitrification. Enzyme Microb Technol 46:229–236. doi:10.1016/j.enzmictec.2009.10.014

    Article  CAS  Google Scholar 

  • Rosenwinkel K, Cornelius A, Thöle D (2005) Full scale application of the deammonification process for the treatment of sludge water. In: Proceeding of the IWA specialized conference: nutrient

  • Schaubroeck T, Bagchi S, De Clippeleir H et al (2012) Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale. Microb Biotechnol 5:403–414. doi:10.1111/j.1751-7915.2011.00326.x

    Article  CAS  Google Scholar 

  • Shanahan JW, Semmens MJ (2015) Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: an experimental and model analysis. Water Res 74:10–22

    Article  CAS  Google Scholar 

  • Sobotka D, Czerwionka K, Makinia J (2016) Influence of temperature on the activity of anammox granular biomass. Water Sci Technol 73:2518–2525. doi:10.2166/wst.2016.103

    Article  CAS  Google Scholar 

  • Sobotka D, Tuszynska A, Kowal P, Ciesielski S, Czerwionka K, Makinia J (2017) Long-term performance and microbial characteristics of the anammox-enriched granular sludge cultivated in a bench-scale sequencing batch reactor. Biochem Eng J 120:125–135

    Article  CAS  Google Scholar 

  • Spieck E, Keuter S, Wenzel T et al (2014) Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum “Nitrospinae”. Syst Appl Microbiol 37:170–176. doi:10.1016/j.syapm.2013.12.005

    Article  CAS  Google Scholar 

  • Stinson B, Murthy S, Bott C et al (2013) Roadmap toward energy neutrality & chemical optimization at enhanced nutrient removal facilities. Proc Water Environ Fed 2013:702–731. doi:10.2175/193864713813525888

    Article  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-wxidizing microorganisms. Appl Micorbial Biotechnol 50:589–596. doi:10.1007/s002530051340

    Article  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250

    CAS  Google Scholar 

  • Sun H, Peng Y, Wang S, Ma J (2015) Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate. J Environ Sci (China) 30:157–163. doi:10.1016/j.jes.2014.09.029

    Article  Google Scholar 

  • Tang C, Zheng P, Mahmood Q, Chen J (2009) Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. J Ind Microbiol Biotechnol 36:1093–1100. doi:10.1007/s10295-009-0593-0

    Article  CAS  Google Scholar 

  • Tenno T, Rikmann E, Zekker I, Tenno T, Daija L, Mashirin A (2016) Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3-water-gas. Proc Estonian Acad Sci 65:68–77

    Article  Google Scholar 

  • Tenno T, Uiga K, Mashirin A, Zekker I, Rikmann E (2017) Modelling closed equilibrium systems of H2O-dissolved CO2 -solid CaCO3. J Phys Chem A. doi:10.1021/acs.jpca.7b00237

    Google Scholar 

  • Terada A, Lackner S, Tsuneda S, Smets BF (2007) Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co-versus counter-diffusion on reactor performance. Biotechnol Bioeng 97:40–51. doi:10.1002/bit

    Article  CAS  Google Scholar 

  • Tokutomi T, Shibayama C, Soda S, Ike M (2010) A novel control method for nitritation: the domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor. Water Res 44:4195–4203. doi:10.1016/j.watres.2010.05.021

    Article  CAS  Google Scholar 

  • Torà JA, Lafuente J, Baeza JA, Carrera J (2010) Combined effect of inorganic carbon limitation and inhibition by free ammonia and free nitrous acid on ammonia oxidizing bacteria. Bioresour Technol 101:6051–6058. doi:10.1016/j.biortech.2010.03.005

    Article  CAS  Google Scholar 

  • Trigo C, Campos JL, Garrido JM, Méndez R (2006) Start-up of the Anammox process in a membrane bioreactor. J Biotechnol 126:475–487. doi:10.1016/j.jbiotec.2006.05.008

    Article  CAS  Google Scholar 

  • Vadivelu VM, Keller J, Yuan Z (2006) Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture. Biotechnol Bioeng 95:830–839. doi:10.1002/bit.21018

    Article  CAS  Google Scholar 

  • van der Star WRL, Abma WR, Blommers D et al (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163. doi:10.1016/j.watres.2007.03.044

    Article  CAS  Google Scholar 

  • Van Der Star WRL, Miclea AI, Van Dongen UGJM et al (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294. doi:10.1002/bit.21891

    Article  CAS  Google Scholar 

  • Van Hulle SWH, Vandeweyer HJP, Meesschaert BD et al (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162:1–20. doi:10.1016/j.cej.2010.05.037

    Article  CAS  Google Scholar 

  • van Kessel MAHJ, Speth DR, Albertsen M et al (2015) Complete nitrification by a single microorganism. Nature 528:555–559. doi:10.1038/nature16459

    Google Scholar 

  • van Niftrik L, Geerts WJC, van Donselaar EG et al (2008) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190:708–717. doi:10.1128/JB.01449-07

    Article  CAS  Google Scholar 

  • Vázquez-Padín JR, Pozo MJ, Jarpa M et al (2009) Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J Hazard Mater 166:336–341. doi:10.1016/j.jhazmat.2008.11.055

    Article  CAS  Google Scholar 

  • Vázquez-Padín JR, Fernández I, Morales N et al (2011) Autotrophic nitrogen removal at low temperature. Water Sci Technol 63(6):1282–1288

    Article  CAS  Google Scholar 

  • Veuillet F, Lacroix S, Bausseron A et al (2014) Integrated fixed-film activated sludge ANITA™ Mox process—a new perspective for advanced nitrogen removal. Water Sci Technol 69(5):915–922

    Article  CAS  Google Scholar 

  • Villegas JD, de Laclos HF, Dovat J et al (2011) Nitrogen removal from digested manure in a simple one-stage process. Water Sci Technol 63(9):1991–1996

    Article  CAS  Google Scholar 

  • Vlaeminck SE, De Clippeleir H, Verstraete W (2012) Microbial resource management of one-stage partial nitritation/anammox. Microb Biotechnol 5:433–448. doi:10.1111/j.1751-7915.2012.00341.x

    Article  CAS  Google Scholar 

  • Volcke EIP, Picioreanu C, De Baets B, van Loosdrecht MCM (2010) Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor. Environ Technol 31:1271–1280. doi:10.1080/09593330.2013.859711

    Article  CAS  Google Scholar 

  • Volcke EIP, Picioreanu C, De Baets B, van Loosdrecht MCM (2012) The granule size distribution in an anammox-based granular sludge reactor affects the conversion-implications for modeling. Biotechnol Bioeng 109:1629–1636. doi:10.1002/bit.24443

    Article  CAS  Google Scholar 

  • Wang CC, Lee PH, Kumar M et al (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J Hazard Mater 175:622–628. doi:10.1016/j.jhazmat.2009.10.052

    Article  CAS  Google Scholar 

  • Wang B, Zhao J, Guo Z et al (2015a) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075. doi:10.1038/ismej.2014.194

    Article  CAS  Google Scholar 

  • Wang Y, Wang Y, Wei Y, Chen M (2015b) In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up. Biochem Eng J 98:127–136. doi:10.1016/j.bej.2015.02.028

    Article  CAS  Google Scholar 

  • Wang D, Wang Q, Laloo A et al (2016a) Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation. Sci Rep 6:25547. doi:10.1038/srep25547

    Article  CAS  Google Scholar 

  • Wang X, Gao D, Van de Graaf AA et al (2016b) In-situ restoration of one-stage partial nitritation-anammox process deteriorated by nitrate build-up via elevated substrate levels. Sci Rep 6:37500. doi:10.1038/srep37500

    Article  CAS  Google Scholar 

  • Wantawin C, Juateea J, Noophan PL, Munakata-Marr J (2008) Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes. Water Sci Technol 58:1889. doi:10.2166/wst.2008.527

    Article  CAS  Google Scholar 

  • Wett B, Murthy S, Takács I, Hell M (2007) Key parameters for control of DEMON deammonification process. Water 1:1–12. doi:10.2175/INTRODUCTION

    Google Scholar 

  • Wett B, Hell M, Nyhuis G et al (2010a) Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Sci Technol 61:1915–1922. doi:10.2166/wst.2010.969

    Article  CAS  Google Scholar 

  • Wett B, Nyhuis G, Takács I, Murthy S (2010b) Development of enhanced deammonification selector. Proc Water Environ Fed 2010:5917–5926. doi:10.2175/193864710798194139

    Article  Google Scholar 

  • Wett B, Nyhuis G, Podmirseg S et al (2013) Population dynamics at the limits of DEMON plant operations. In: 13th world congress on anaerobic digestion

  • Wiesmann U (1994) Biological nitrogen removal from wastewater. Springer, Berlin, pp 113–154

    Google Scholar 

  • Woebken D, Lam P, Kuypers MMM et al (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119. doi:10.1111/j.1462-2920.2008.01640.x

    Article  CAS  Google Scholar 

  • Wu L, Peng Y, Ma Y et al (2012) The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system. Chin J Chem Eng 20:1016–1023. doi:10.1016/S1004-9541(12)60431-5

    Article  CAS  Google Scholar 

  • Xu G, Zhou Y, Yang Q et al (2015) The challenges of mainstream deammonification process for municipal used water treatment. Appl Microbiol Biotechnol 99:2485–2490. doi:10.1007/s00253-015-6423-6

    Article  CAS  Google Scholar 

  • Yang J, Zhang L, Fukuzaki Y et al (2010) High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source. Bioresour Technol 101:9471–9478. doi:10.1016/j.biortech.2010.07.087

    Article  CAS  Google Scholar 

  • Yang J, Trela J, Płaza E (2011) Influence of aeration strategy on behaviour of different microorganisms in deammonification process. In: Proc. of Polish-Swedish-Ukrainian seminar future urban sanitation to meet new requirements for water quality in the Baltic Sea Region 2011 Oct (pp 17–19)

  • Yang J, Trela J, Zubrowska-Sudol M, Plaza E (2015) Intermittent aeration in one-stage partial nitritation/anammox process. Ecol Eng 75:413–420. doi:10.1016/j.ecoleng.2014.11.016

    Article  Google Scholar 

  • Yao ZB, Cai Q, Zhang DJ et al (2013) The enhancement of completely autotrophic nitrogen removal over nitrite (CANON) by N2H4 addition. Bioresour Technol 146:591–596. doi:10.1016/j.biortech.2013.07.121

    Article  CAS  Google Scholar 

  • Yin Z, dos Santos CED, Vilaplana JG et al (2016) Importance of the combined effects of dissolved oxygen and pH on optimization of nitrogen removal in anammox-enriched granular sludge. Process Biochem 51:1274–1282. doi:10.1016/j.procbio.2016.05.025

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T et al (2011) Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration. J Environ Sci 23:1113–1121. doi:10.1016/S1001-0742(10)60523-2

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T et al (2012) Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation 23:547–560. doi:10.1007/s10532-011-9532-7

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T et al (2013) Deammonification process start-up after enrichment of anammox microorganisms from reject water in a moving-bed biofilm reactor. Environ Technol 34:3107–3113. doi:10.1080/09593330.2013.803134

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T et al (2015) Nitric oxide for anammox recovery in a nitrite-inhibited deammonification system. Environ Technol 36:2477–2487. doi:10.1080/09593330.2015.1034791

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Mandel A, Kroon K, Seiman A, Mihkelson J, Tenno T, Tenno T (2016) Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9 °C in short-term anammox biofilm tests. Environ Technol 37:1933–1946. doi:10.1080/09593330.2015.1135995

    Article  CAS  Google Scholar 

  • Zekker I, Rikmann E, Kroon K, Mandel A, Mihkelson J, Tenno T, Tenno T (2017) Ameliorating nitrite inhibition in a low-temperature nitritation-anammox MBBR using bacterial intermediate nitric oxide. Int J Environ Sci Technol. doi:10.1007/s13762-017-1321-3

    Google Scholar 

  • Zhang J, Fu K, Cao X, Li D, Meng X (2009) Performance of CANON process in a sequencing batch biofilm reactor and influence of temperature. China Environ Sci 29(8):850–855

    CAS  Google Scholar 

  • Zhang X, Li D, Liang Y et al (2013) Autotrophic nitrogen removal from domestic sewage in MBR-CANON system and the biodiversity of functional microbes. Bioresour Technol 150:113–120. doi:10.1016/j.biortech.2013.09.067

    Article  CAS  Google Scholar 

  • Zhang X, Li D, Liang Y, Zeng H, He Y, Fan D, Zhang J (2014a) Start-up, influence factors, and the microbial characteristics of partial nitrification in membrane bioreactor. Desalin Water Treat 54:581–589

    Article  CAS  Google Scholar 

  • Zhang X, Li D, Liang Y et al (2014b) Performance and microbial community of completely autotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors (MBR) fed with different substrate levels. Bioresour Technol 152:185–191. doi:10.1016/j.biortech.2013.10.110

    Article  CAS  Google Scholar 

  • Zhang C, Zhang S, Zhang L et al (2015a) Effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment. Appl Microbiol Biotechnol 99:3707–3713. doi:10.1007/s00253-014-6340-0

    Article  CAS  Google Scholar 

  • Zhang X, Zhang H, Ye C et al (2015b) Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors. Bioresour Technol 189:302–308. doi:10.1016/j.biortech.2015.04.006

    Article  CAS  Google Scholar 

  • Zhang Z-Z, Deng R, Cheng Y-F et al (2015c) Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation. J Hazard Mater 300:838–846. doi:10.1016/j.jhazmat.2015.08.024

    Article  CAS  Google Scholar 

  • Zhang Q, De Clippeleir H, Su C et al (2016a) Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization. Appl Microbiol Biotechnol 100:5595–5606. doi:10.1007/s00253-016-7368-0

    Article  CAS  Google Scholar 

  • Zhang Q, Vlaeminck SE, DeBarbadillo C et al (2016b) Mechanistic understanding of microbial activity inhibition: case study on sidestream deammonification for digester supernatant pretreated by thermal hydrolysis. Proc Water Environ Fed 2016:6073–6088. doi:10.2175/193864716819707102

    Article  Google Scholar 

  • Zhang X, Zhang H, Ye C et al (2016c) Effect of inorganic carbon on nitrogen removal and microbial communities of CANON process in a membrane bioreactor. Bioresour Technol 202:113–118. doi:10.1016/j.biortech.2015.11.083

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang Q, Xu J et al (2016d) Evaluation of the inhibitory effects of heavy metals on anammox activity: a batch test study. Bioresour Technol 200:208–216. doi:10.1016/j.biortech.2015.10.035

    Article  CAS  Google Scholar 

  • Zhang F, Peng Y, Miao L et al (2017) A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate. Chem Eng J 313:619–628. doi:10.1016/j.cej.2016.12.105

    Article  CAS  Google Scholar 

  • Zheng Z, Li J, Ma J et al (2016) Nitrogen removal via simultaneous partial nitrification, anammox and denitrification (SNAD) process under high DO condition. Biodegradation 27:195–208. doi:10.1007/s10532-016-9766-5

    Article  CAS  Google Scholar 

  • Zhou Y, Oehmen A, Lim M et al (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 45:4672–4682. doi:10.1016/j.watres.2011.06.025

    Article  CAS  Google Scholar 

  • Zubrowska-Sudol M, Yang J, Trela J, Plaza E (2011) Evaluation of deammonification process performance at different aeration strategies. Water Sci Technol 63:1168–1176. doi:10.2166/wst.2011.356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the Jinan University Teachers’ Study Abroad Program. This work was funded by the National Natural Science Foundation of China (NSFC51508227, NSFC51278225, and NSFC51178207), Shandong Natural Science Foundation (ZR2014EL033) A Project of Shandong Province Higher Educational Science and Technology Program (No. J14LG02), Shandong Province Science and Technology Development Plan-Policy Guidance Project (No. 2013YD17003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Lu, X., Al-Hazmi, H. et al. An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev Environ Sci Biotechnol 16, 541–568 (2017). https://doi.org/10.1007/s11157-017-9441-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-017-9441-2

Keywords

Navigation