Ferrates for water remediation

  • Stefania Mura
  • Luca Malfatti
  • Gianfranco Greppi
  • Plinio Innocenzi
Review paper


The availability of safe drinking-water at the global level is one of the biggest challenges of our century. At present, toxins and pathogens in fresh waters are responsible for more than two million deaths per year. This scenario allows understanding how the development of effective and sustainable technologies for water treatment is of pivotal importance for future generations. A number of different agents and methods are used for water purification and environmental remediation, however they all show main drawbacks, revealing the need for a major technological advancement. Iron-based materials are earning a particular interest due to the effectiveness in water purification, the environmental friendly and earth-abundant nature. Moreover, some iron-containing materials are magnetic, allowing for an easy removal of the materials after water sanitizations. In the present review, the state of the art of iron based nanomaterials for water remediation is presented, with a special attention on ferrates, their synthesis, stability, mechanism of action and analytical determination. More in details, the review focuses on the following environmental applications of iron based nanomaterials: wastewater disinfection, organic matter removal, treatment of pharmaceuticals, inactivation of bacteria and viruses, removal of heavy metals and arsenic, degradation of fluoro-compounds and inactivation of cyanobacteria.


Ferrates Environmental remediation Nanomaterials Emerging contaminants 



This work was financed by Legge 7, Regione autonoma della Sardegna, a grant of the master and back program.


  1. Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662CrossRefGoogle Scholar
  2. Anquandah GAK, Sharma VK, Knight DA, Batchu SR, Gardinali PR (2011) Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity. Environ Sci Technol 45:10575–10581 dx.doi.org/ 10.1021/es202237g
  3. Anquandah GAK, Sharma VK, Panditi VR, Gardinali PR, Kim H, Oturand MA (2013) Ferrate(VI) oxidation of propranolol: kinetics and products. Chemosphere 91:105–109. doi: 10.1016/j.chemosphere.2012.12.001 CrossRefGoogle Scholar
  4. Baby Sudha Lakshmi P, Ramchandran D, Rambabu C (2010) Spectrophotometric determination of ezetimibe. E-J Chem 7:101–104CrossRefGoogle Scholar
  5. Bagheri S, Julkapli NM (2016) Modified iron oxide nanomaterials: functionalization and application. J Magn Magn Mater 416:117–133. doi: 10.1016/j.jmmm.2016.05.042 CrossRefGoogle Scholar
  6. Bandala ER, Miranda J, Beltran M, Vaca M, Lopez R, Torres LG (2009) Wastewater disinfection and organic matter removal using ferrate (VI) oxidation. J Water Health 7:507–513. doi: 10.2166/wh.2009.003 CrossRefGoogle Scholar
  7. Bandala ER, Alfaro MAQ, Cerro-López M, Méndez-Rojas MA (2015) Nanostructured metal oxides for wastewater disinfection. Nanomater Environ Prot. doi: 10.1002/9781118845530.ch2 Google Scholar
  8. Bandpei AM, Fakhri Y, Khodadadi R, Mohammadi H, Mirzaei N, Alinejad AA, Bahmani Z (2015) The evaluation of the application efficiency of potassium ferrate for advanced treatment of municipal wastewater. Int J Pharm Technol 7:9887–9897Google Scholar
  9. Barisci S, Ulu F, Sillanpää M, Dimoglo A (2015) Evaluation of flurbiprofen removal from aqueous solution by electrosynthesized ferrate(VI) ion and electrocoagulation process. Chem Eng J 262:1218–1225. doi: 10.1016/j.cej.2014.10.083 CrossRefGoogle Scholar
  10. Bruce GM, Pleus RC, Snyder SA (2010) Toxicological relevance of pharmaceuticals in drinking water. Environ Sci Technol 44:5619–5626. doi: 10.1021/es1004895 CrossRefGoogle Scholar
  11. Carpenter AW, De Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287. doi: 10.1021/es506351r CrossRefGoogle Scholar
  12. Cekerevac MI, Nikolić-Bujanović LN, Simičić MV (2009) Istraživanje elektrohemijskog postupka sinteze ferata. Deo 1. Elektrohemijsko ponašanje gvožda i nekih njegovih legura u koncentrovanim alkalnim rastvorima 63:387–395. doi: 10.2298/HEMIND0905387C Google Scholar
  13. Chandanshive VV, Rane NR, Gholave AR, Patil SM, Jeon BH, Govindwar SP (2016) Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environ Res 150:88–96. doi: 10.1016/j.envres.2016.05.047 CrossRefGoogle Scholar
  14. Cho M, Lee Y, Choi W, Chung H, Yoon J (2006) Study of Fe(VI) species as a disinfectant: quantitative evaluation and modeling for inactivating Escherichia coli. Water Res 40:3580–3586CrossRefGoogle Scholar
  15. Coelho LM, Rezende HC, Coelho LM, de Sousa PAR, Melo DFO, Coelho NMM (2015) Bioremediation of polluted waters using microorganisms. Advances in bioremediation of wastewater and polluted soil. Prof. Naofumi Shiomi (Ed.), InTech Doi: 10.5772/60770
  16. Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41CrossRefGoogle Scholar
  17. Cui X, Zhou D, Fan W, Huo M, Crittenden JC, Yu Z, Ju P, Wang Y (2016) The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: a case study. Chemosphere 57:224–231. doi: 10.1016/j.chemosphere.2016.05.009 CrossRefGoogle Scholar
  18. Da Sacco L, Masotti A (2010) Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and As2O3 delivery in tumor therapy. Mar Drugs 8:1518–1525. doi: 10.3390/md8051518 CrossRefGoogle Scholar
  19. Darko B, Jiang JQ, Kim H, Machala L, Zboril R, Sharma VK (2014) Advances made in understanding the interaction of ferrate(VI) with natural organic matter in water. Water Reclam Sustain. doi: 10.1016/B978-0-12-411645-0.00008-0 Google Scholar
  20. Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22:18333–18344. doi: 10.1007/s11356-015-5491-6 CrossRefGoogle Scholar
  21. Dasary SSR, Saloni J, Fletcher A, Anjaneyulu Y, Yu H (2010) Photodegradation of selected PCBs in the presence of Nano-TiO2 as catalyst and H2O2 as an oxidant. Int J Environ Res Public Health 7:3987–4001. doi: 10.3390/ijerph7113987 CrossRefGoogle Scholar
  22. De Luca SJ, Pegorer MG, De Luca MA (2010) Aqueous oxidation of microcystin-LR by ferrate(VI) (Oxidação de microcistinas-LR em águas pelo íon ferrato(VI)). Engenharia Sanitaria e Ambiental 15:5–10CrossRefGoogle Scholar
  23. Defever RS, Geitner NK, Bhattacharya P, Ding F, Ke PC, Sarupria S (2015) PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water. Environ Sci Technol 49:4490–4497. doi: 10.1021/es505518r CrossRefGoogle Scholar
  24. Devi R, Dahiya RP (2006) Chemical oxygen demand (COD) reduction in domestic wastewater by fly ash and brick kiln ash. Water Air Soil Pollut 174:33–46. doi: 10.1007/s11270-005-022-9 CrossRefGoogle Scholar
  25. Dodgen LK, Zheng W (2016) Effects of reclaimed water matrix on fate of pharmaceuticals and personal care products in soil. Chemosphere 156:286–293. doi: 10.1016/j.chemosphere.2016.04.109 CrossRefGoogle Scholar
  26. Etale A, Tutu H, Drake DC (2016) The effect of silica and maghemite nanoparticles on remediation of Cu(II), Mn(II) and U(VI)-contaminated water by Acutodesmus sp. J Appl Phycol 28:251–260. doi: 10.1007/s10811-015-0555-z CrossRefGoogle Scholar
  27. Fan M, Brown RC, Huang CP (2002) Preliminary studies of the oxidation of arsenic(III) by potassium ferrate. Int J Environ Pollut 18:91–96. doi: 10.1504/IJEP.2002.000698 CrossRefGoogle Scholar
  28. Fekete-Kertész I, Kunglné-Nagy Z, Molnár M (2016) Ecological impact of micropollutants on aquatic life determined by an innovative sublethal endpoint Daphnia Magna heartbeat rate. Carpath J Earth Environ Sci 11:345–354Google Scholar
  29. Feng C, Sugiura N, Masaoka Y, Maekawa T (2005) Electrochemical degradation of microcystin-LR. J Environ Sci Health—A Tox/Hazard Subst Environ Eng 40:453–465. doi: 10.1081/ESE-200045648 CrossRefGoogle Scholar
  30. Formoso P, Muzzalupo R, Tavano L, De Filpo G, Nicoletta FP (2016) Nanotechnology for the environment and medicine. Mini-Rev Med Chem 16:668–675Google Scholar
  31. Fulekar MH, Pathak B, Kale RK (2011) Energy. Environ and Sustain Dev. doi: 10.1007/978-81-322-1166-2 Google Scholar
  32. Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:1–12. doi: 10.1007/s11783-014-0654-0 CrossRefGoogle Scholar
  33. Ghernaout D, Naceur MW (2011) Ferrate(VI): in situ generation and water treatment—A review. Desal Water Treat 30:319–332. doi: 10.5004/dwt.2011.2217 CrossRefGoogle Scholar
  34. Giannakis S, López MIP, Spuhler D, Pérez JAS, Ibáñez PF, Pulgarin C (2016) Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction-Part 2: a review of the applications for drinking water and wastewater disinfection. Appl Catal B 198:431–446. doi: 10.1016/j.apcatb.2016.06.007 CrossRefGoogle Scholar
  35. Gilbert MB, Waite TD, Hare C (1976) Analytical notes. An investigation of the applicability of ferrate ion for disinfection. J Am Water Works Assoc 68:495–497Google Scholar
  36. Glaze WH, Kang JW, Chaplin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335CrossRefGoogle Scholar
  37. Gombos E, Felföldi T, Barkács K, Vértes C, Vajna B, Záray G (2012) Ferrate treatment for inactivation of bacterial community in municipal secondary effluent. Bioresour Technol 107:116–121. doi: 10.1016/j.biortech.2011.12.053 CrossRefGoogle Scholar
  38. Gombos E, Barkács K, Felföldi T, Vértes C, Makó M, Palkó G, Záray G (2013) Removal of organic matters in wastewater treatment by ferrate (VI)-technology. Microchem J 107:115–120. doi: 10.1016/j.microc.2012.05.019 CrossRefGoogle Scholar
  39. Goyal KA, Johal SE, Rath G (2011) Nanotechnology for water treatment. Curr Nanosci 7:640CrossRefGoogle Scholar
  40. Grassi M, Rizzo L, Farina A (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 20:3616–3628. doi: 10.1007/s11356-013-1636-7 CrossRefGoogle Scholar
  41. Gui M, Papp JK, Colburn AS, Meeks ND, Weaver B, Wilf I, Bhattacharyya D (2015) Engineered iron/iron oxide functionalized membranes for selenium and other toxic metal removal from power plant scrubber water. J Membr Sci 488:79–91. doi: 10.1016/j.memsci.2015.03.089 CrossRefGoogle Scholar
  42. Gunnarsdottir MG, Gardarsson SM, Elliott M, Sigmundsdottir G, Bartram J (2012) Benefits of water safety plans: microbiology, compliance, and public health. Environ Sci Technol 46:7782–7789. doi: 10.1021/es3003 CrossRefGoogle Scholar
  43. Hatamie A, Parham H, Zargar B, Heidari Z (2016) Evaluating magnetic nano-ferrofluid as a novel coagulant for surface water treatment. J Mol Liq 219:694–702. doi: 10.1016/j.molliq.2016.04.020 CrossRefGoogle Scholar
  44. He C, Li XZ, Sharma VK, Li SY (2009) Elimination of sludge odor by oxidizing sulfur- containing compounds with ferrate(VI). Environ Sci Technol 43:5890–5895. doi: 10.1021/es900397y CrossRefGoogle Scholar
  45. He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res 22:8124–8147. doi: 10.1007/s11356-015-4316-y CrossRefGoogle Scholar
  46. Horst C, Sharma VK, Baum JC, Sohn M (2013) Organic matter source discrimination by humic acid characterization: synchronous scan fluorescence spectroscopy and Ferrate(VI). Chemosphere 90:2013–2019. doi: 10.1016/j.chemosphere.2012.10.076 CrossRefGoogle Scholar
  47. Horst MF, Lassalle V, Ferreira ML (2015) Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Front Environ Sci Eng 9:746–769. doi: 10.1007/s11783-015-0814-x CrossRefGoogle Scholar
  48. Howard A (2010) On the challenge of quantifying man-made nanoparticles in the aquatic environment. J Environ Monit 12:135–142. doi: 10.1039/b913681a CrossRefGoogle Scholar
  49. Hu L, Page M, Mariñas B, Shisler JL, Strathmann TJ (2008) Treatment of emerging pathogens and micropollutants with potassium ferrate(VI). Water Quality Technology Conference and Exposition 3485–3492Google Scholar
  50. Hu L, Page MA, Sigstam T, Kohn T, Mariñas BJ, Strathmann TJ (2012) Inactivation of bacteriophage MS2 with potassium ferrate(VI). Environ Sci Technol 46:12079–12087. doi: 10.1021/es3031962 CrossRefGoogle Scholar
  51. Jain A, Sharma VK, Mbuya OS (2009) Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions. J Hazard Mater 169:339–344. doi: 10.1016/j.jhazmat.2009.03.101 CrossRefGoogle Scholar
  52. Jiang JQ (2014) Advances in the development and application of ferrate(VI) for water and wastewater treatment. J Chem Technol Biotechnol 89:165–177. doi: 10.1002/jctb.4214 CrossRefGoogle Scholar
  53. Jiang JQ, Wang S, Panagoulopoulos A (2006) The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere 63:212–219CrossRefGoogle Scholar
  54. Jiang JQ, Wang S, Panagoulopoulos A (2007) The role of potassium ferrate(VI) in inactivation of Escherichia coli and in the reduction of COD for water remediation. Desalination 210:266–273CrossRefGoogle Scholar
  55. Jiang GM, Wang YY, Chai LY, Shu YD, Wang QW, Chen RH (2009) Treatment of arsenic- containing wastewater by potassium ferrate. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering 9:1109–1114Google Scholar
  56. Jiang JQ, Zhou Z, Pahl O (2012) Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(VI). Sep Purif Technol 88:95–98. doi: 10.1016/j.seppur.2011.12.021 CrossRefGoogle Scholar
  57. Jiang JQ, Zhou Z, Patibandla S, Shu X (2013) Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model. Microchem J 110:239–245. doi: 10.1016/j.microc.2013.04.002 CrossRefGoogle Scholar
  58. Jiang W, Chen L, Batchu SR, Gardinali PR, Jasa L, Marsalek B, Zboril R, Dionysiou DD, O’Shea KE, Sharma VK (2014) Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. Environ Sci Technol 48:12164–12172. doi: 10.1021/es5030355 CrossRefGoogle Scholar
  59. Jiang Y, Goodwill JE, Tobiason JE, Reckhow DA (2016) Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors. Water Res 96:114–125. doi: 10.1016/j.watres.2016.03.052 CrossRefGoogle Scholar
  60. Kassim T (2005) Waste Minimization and Molecular Nanotechnology: toward Total Environmental Sustainability. Water Pollut 5:191–229. doi: 10.1007/b98267 Google Scholar
  61. Kazama F (1995) Viral inactivation by potassium ferrate. Water Sci Tech 31:165–168CrossRefGoogle Scholar
  62. Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS ONE 7:1–10. doi: 10.1371/journal.pone.0043983 Google Scholar
  63. Kim JW, Jang HS, Kim JG, Ishibashi H, Hirano M, Nasu K, Ichikawa N, Takao Y, Shinohara R, Arizono K (2009) Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung river. South Korea J Health Sci 55:249–258CrossRefGoogle Scholar
  64. Kim C, Panditi VR, Gardinali PR, Varma RS, Kim H, Sharma VK (2015) Ferrate promoted oxidative cleavage of sulfonamides: kinetics and product formation under acidic conditions. Chem Eng J 279:307–316CrossRefGoogle Scholar
  65. Kwon JH, Kim IK, Park KY, Kim YD, Cho YH (2014) Removal of phosphorus and coliforms from secondary effluent using ferrate(VI). KSCE J Civil Eng 18:81–85. doi: 10.1007/s12205-013-0024-7 CrossRefGoogle Scholar
  66. Lacina P, Goold S (2015) Use of the ferrates (FeIV-VI) in combination with hydrogen peroxide for rapid and effective remediation of water—Laboratory and pilot study. Water Sci Technol 72:1869–1878. doi: 10.2166/wst.2015.414 CrossRefGoogle Scholar
  67. Lan B, Wang Y, Wang X, Zhou X, Kang Y, Li L (2016) Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate. Chem Eng J 292:389–397. doi: 10.1016/j.cej.2016.02.019 CrossRefGoogle Scholar
  68. Lee Y, von Gunten U (2010) Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Res 44:555–566. doi: 10.1016/j.watres.2009.11.045 CrossRefGoogle Scholar
  69. Lee Y, Um I, Yoon J (2003) Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ Sci Technol 37:5750–5756CrossRefGoogle Scholar
  70. Lee Y, Cho M, Kim JY, Yoon J (2004) Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J. Industrial Eng. Chem. 10:161–171Google Scholar
  71. Lee Y, Yoon J, Gunten UV (2005) Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water Res 25:1946–1953CrossRefGoogle Scholar
  72. Lee Y, Zimmermann SG, Kieu AT, Von Gunten U (2009) Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. Environ Sci Technol 43:3831–3838CrossRefGoogle Scholar
  73. Li C, Li XZ, Graham N (2005) A study of the preparation and reactivity of potassium ferrate. Chemosphere 61:537–543CrossRefGoogle Scholar
  74. Lim M, Kim MJ (2009) Removal of natural organic matter from river water using potassium ferrate(VI). Water Air Soil Pollut 200:181–189. doi: 10.1007/s11270-008-9902-x CrossRefGoogle Scholar
  75. Lim M, Kim MJ (2010) Effectiveness of Potassium ferrate (K2FeO4) for simultaneous removal of heavy metals and natural organic matters from river water 211:313-322. DOI:10.1007/s11270- 009-0302-7Google Scholar
  76. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224CrossRefGoogle Scholar
  77. Liu L, Li L, Wu Z, Song L (2011) Physiological responses to ferrate (VI) stress in Microcystis aeruginosa. International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2011 - Proceedings, art. no. 5965475, 5153- 5156. DOI:  10.1109/RSETE.2011.5965475
  78. Liu D, Xiu Z, Liu F, Wu G, Adamson D, Newell C, Vikesland P, Tsai AL, Alvarez PJ (2013) Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight. J Hazard Mater 262:456–463. doi: 10.1016/j.jhazmat.2013.09.001 CrossRefGoogle Scholar
  79. Luo Z, Strouse M, Jiang JQ, Sharma VK (2011) Methodologies for the analytical determination of ferrate(VI): a review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 46:453–460. doi: 10.1080/10934529.2011.551723 CrossRefGoogle Scholar
  80. Ma J, Liu W, Zhang Y, Li C (2008) Enhanced removal of cadmium and lead from water by ferrate preoxidation in the process of coagulation. In: American Chemical Society, vol 985. pp 456–465. doi: 10.1021/bk-2008-0985.ch029
  81. Mackuľak T, Birošová L, Bodík I, Grabic R, Takáčová A, Smolinská M, Hanusová A, Híveš J, Gál M (2016) Zerovalent iron and iron(VI): effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters. Sci Total Environ 539:420–426. doi: 10.1016/j.scitotenv.2015.08.138 CrossRefGoogle Scholar
  82. Makky EA, Park GS, Choi IW, Cho SI, Kim H (2011) Comparison of Fe(VI) (FeO4 2−) and ozone in inactivating Bacillus subtilis spores. Chemosphere 83:1228–1233. doi: 10.1016/j.chemosphere.2011.03.030 CrossRefGoogle Scholar
  83. Mariani MA, Padedda BM, Kaštovský J, Buscarinu P, Sechi N, Virdis T, Lugliè A (2015) Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Sci Rep. 5:17964. doi: 10.1038/srep17964 CrossRefGoogle Scholar
  84. Mastroianni N, Bleda MJ, López de Alda M, Barceló D (2016) Occurrence of drugs of abuse in surface water from four Spanish river basins: spatial and temporal variations and environmental risk assessment. J Hazard Mater 316:134–142. doi: 10.1016/j.jhazmat.2016.05.025 CrossRefGoogle Scholar
  85. Mottaleb MA, Meziani MJ, Matin MA, Arafat MM, Wahab MA (2015) Emerging micro- pollutants pharmaceuticals and personal care products (PPCPs) contamination concerns in aquatic organisms—LC/MS and GC/MS analysis. Emerg Micro-Pollut Environ Occur Fate Distrib. doi: 10.1021/bk-2015-1198.ch003 Google Scholar
  86. Nakata K, Kagawa T, Sakai M, Liu S, Ochiai T, Sakai H, Murakami T, Abe M, Fujishima A (2013) Preparation and photocatalytic activity of robust titania monoliths for water remediation. ACS Appl Mater Interf 5:500–504. doi: 10.1021/am302654r CrossRefGoogle Scholar
  87. Nikolic-Bujanovic L, Cekerevac M, Tomic M, Zdravkovic M (2016) Ibuprofen removal from aqueous solution by in situ electrochemically generated ferrate (VI): proof-of- principle. Water Sci Technol 73:389–395. doi: 10.2166/wst.2015.474 CrossRefGoogle Scholar
  88. Nogueira V, Lopes I, Rocha-Santos TAP, Rasteiro MG, Abrantes N, Gonçalves F, Soares AMVM, Pereira AC (2015) Assessing the ecotoxicity of metal nano- oxides with potential for wastewater treatment. Environ Sci Pollut Res 22:13212–13224. doi: 10.1007/s11356-015-4581-9 CrossRefGoogle Scholar
  89. Nursam NM, Wang X, Caruso RA (2015) High-throughput synthesis and screening of titania-based photocatalysts. ACS Comb Sci 17:548–569. doi: 10.1021/acscombsci.5b00049 CrossRefGoogle Scholar
  90. O’Shea KE, Dionysiou DD (2012) Advanced oxidation processes for water treatment. J Phys Chem Lett 3:2112–2113. doi: 10.1021/jz300929x CrossRefGoogle Scholar
  91. Pang YL, Lim S, Ong HC, Chong WT (2016) Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram Int 42:9–34. doi: 10.1016/j.ceramint.2015.08.144 CrossRefGoogle Scholar
  92. Prucek R, Tuček J, Kolařík J, Filip J, Marušák Z, Sharma VK, Zbořil R (2013) Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environ Sci Technol 47:3283–3292. doi: 10.1021/es3042719 Google Scholar
  93. Prucek R, Tuček J, Kolařík J, Huskova I, Filip J, Varma RS, Sharma VK, Zbořil R (2015) Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides. Environ Sci Technol 49:2319–2327. doi: 10.1021/es5048683 CrossRefGoogle Scholar
  94. Purwajanti S, Zhou L, Ahmad Nor Y, Zhang J, Zhang H, Huang X, Yu C (2015) Synthesis of Magnesium Oxide Hierarchical Microspheres: a Dual-Functional Material for Water Remediation. ACS Appl Mater Interfaces 7:21278–21286. doi: 10.1021/acsami.5b05553 CrossRefGoogle Scholar
  95. Qu X, Brame J, Li Q, Alvarez PJJ (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843. doi: 10.1021/ar300029v CrossRefGoogle Scholar
  96. Rambabu C, Ravi Kumar D, Vardhan SVM, Ramachandran D (2013) Estimation of betamethasone in pharmaceutical dosage forms by visible spectrophotometry. Asian J Chem 25:2153–2155Google Scholar
  97. Ren B, Han C, Anazi AH, Nadagouda MN, Dionysiou DD (2013) Iron-based nanomaterials for the treatment of emerging environmental contaminants. ACS Symp Ser 1150:135–146. doi: 10.1021/bk-2013-1150.ch008 CrossRefGoogle Scholar
  98. Romeyn TR, Harijanto W, Sandoval S, Delagah S, Sharbatmaleki M (2016) Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications. Water Sci Technol 73:236–250. doi: 10.2166/wst.2015.480 CrossRefGoogle Scholar
  99. Schink T, Waite TD (1980) Inactivation of f2 virus with ferrate (VI). Water Res 14:1705–1717. doi: 10.1016/0043-1354(80)90106-2 CrossRefGoogle Scholar
  100. Seymour MB, Su C, Gao Y, Lu Y, Li Y (2012) Characterization of carbon nano-Onions for heavy metal ion remediation. J Nanopart Res. doi: 10.1007/s11051-012-1087-y Google Scholar
  101. Sharma VK (2007) Disinfection performance of Fe(VI) in water and wastewater: a review. Water Sci Technol 55:225–232. doi: 10.2166/wst.2007.019 CrossRefGoogle Scholar
  102. Sharma VK (2010) Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: a review. Journal of Environmental Science and Health - Part A. Toxic/Hazardous Substances and Environmental Engineering 45:645–667. doi: 10.1080/10934521003648784 CrossRefGoogle Scholar
  103. Sharma VK (2011a) Oxidation of inorganic compounds by Ferrate (VI) and Ferrate(V): One- electron and two-electron transfer steps 44:5148-5152 DOI: 10.1021/es1005187
  104. Sharma VK (2011b) Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: a review. J Environ Manage 92:1051–1073. doi: 10.1016/j.jenvman.2010.11.026 CrossRefGoogle Scholar
  105. Sharma VK (2011c) Disinfection performance of Fe(VI) in water and wastewater: a review. Water Sci Technol 55:225–232CrossRefGoogle Scholar
  106. Sharma VK (2011d) Apparatus and method for producing liquid ferrate. Patent US 20110076223 A1, March 31, 2011Google Scholar
  107. Sharma VK (2013) Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord Chem Rev 257:495–510. doi: 10.1016/j.ccr.2012.04.014 CrossRefGoogle Scholar
  108. Sharma VK, Chenay BVN (2005a) Heterogeneous photocatalytic reduction of Fe(VI) in UV- irradiated titania suspensions: Effect of ammonia 35:775-781 DOI: 10.1007/s10800-005-5169-8
  109. Sharma VK, Burnett CR, Rivera W, Joshi VN (2001) Heterogeneous photocatalytic reduction of ferrate (VI) in UV-irradiated titania suspensions. Langmuir 17:4598–4601. doi: 10.1021/la010242s CrossRefGoogle Scholar
  110. Sharma VK, Winkelmann K, Krasnova Y, Lee C, Sohn M (2003) Heterogeneous photocatalytic reduction of ferrate(VI) in UV-irradiated titania suspensions: role in enhancing destruction of nitrogen-containing pollutants. Int J Photoenergy 5:183–190CrossRefGoogle Scholar
  111. Sharma VK, Kazama F, Jiangyong H, Ray AK (2005) Ferrates (iron (VI) and iron (V)): environmentally friendly oxidants and disinfectants. J Water Health 3:45–58Google Scholar
  112. Sharma VK, Dutta PK, Ray AK (2007) Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH. J Environ Sci Health A Tox Hazard Subst Environ Eng. 42:997–1004. doi: 10.1080/10934520701373034 CrossRefGoogle Scholar
  113. Sharma VK, Graham NJD, Li XZ, Yuan BL (2010) Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions Environ Sci Pollut Res 17:453-461 DOI: 10.1007/s11356-009-0170-0
  114. Sharma VK, Luther GW III, Millero FJ (2011) Mechanisms of oxidation of organosulfur compounds by ferrate(VI). Chemosphere 82:1083–1089. doi: 10.1016/j.chemosphere.2010.12.053 CrossRefGoogle Scholar
  115. Sharma VK, Jiang J, Kim H (2013a) Ferrate(VI): novel compound for removal of natural organic matter in water. Functions of Natural Organic Matter in Changing Environment. doi: 10.1007/978-94-007-5634-2-166 Google Scholar
  116. Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA (2013b) Oxidation of β-lactam antibiotics by ferrate(VI). Chem Eng J 221:446–451CrossRefGoogle Scholar
  117. Sharma VK, Zboril R, Varma RS (2015a) Ferrates Greener oxidants with multimodal action in water treatment technologies. Acc Chem Res 48:182–191. doi: 10.1021/ar5004219 CrossRefGoogle Scholar
  118. Sharma VK, McDonald TJ, Kim H, Garg VK (2015b) Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv Colloid Interface Sci 225:229–240. doi: 10.1016/j.cis.2015.10.006 CrossRefGoogle Scholar
  119. Sharma VK, Chen L, Zboril R (2016) Review on High Valent FeVI (Ferrate): a Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. ACS Sustain Chem Eng. 4:18–34. doi: 10.1021/acssuschemeng.5b01202 CrossRefGoogle Scholar
  120. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270. doi: 10.1016/j.ecoenv.2014.10.009 CrossRefGoogle Scholar
  121. Siva Ramakrishna V, Ravi Kumar D, Malleswara Rao NVN, Ram Babu C (2012) Method development and determination of valacyclovir HCl in pharmaceutical dosage forms by visible spectrophotometry. Int J PharmTech Res 4:1009–1014Google Scholar
  122. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon 91:122-143, ISSN 0008-6223, http://dx.doi.org/10.1016/j.carbon.2015.04.043
  123. Sohn M (2009) Sustainable water supplies: Reducing the organic matter content of potable water AIP Conference Proceedings 1157:138–146. doi: 10.1063/1.3208016 Google Scholar
  124. Song YR, Ma JW (2013a) Application of ferrate for the treatment of organic matters in wastewater. Appl Mech Mater 361–363:654–657. doi: 10.4028/www.scientific.net/AMM.361-363.654 CrossRefGoogle Scholar
  125. Song YR, Ma JW (2013b) A review of ferrates (VI) oxidation of organic compounds. Adv Mater Res 774–776:556–559. doi: 10.4028/www.scientific.net/AMR.774-776 CrossRefGoogle Scholar
  126. Sudarshan K, Struckhoff G, Mishra P, Modha N, Murga E, Amaral B, Machado G, Gomes N (2015) Modeling Fate and Transport of Emerging Micro-Pollutants in the Environment. Emerging Micro-Pollutants in the Environment: Occurrence, Fate, and Distribution. doi: 10.1021/bk-2015-1198.ch005 Google Scholar
  127. Sun CY, Chen CC, Ma WH, Zhao JC (2011) Photodegradation of Organic Pollutants Catalyzed by Iron Species under Visible Light Irradiation. Phys Chem Chem Phys 13:1957–1969CrossRefGoogle Scholar
  128. Sun X, Zhang Q, Liang H, Ying L, Xiangxu M, Sharma VK (2015) Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol. Journal of Hazardous Materials. Article in Press. DOI:  10.1016/j.jhazmat.2015.12.020
  129. Tandon PK, Singh SB, Shukla RC (2013) Antimicrobial and oxidative properties of sodium ferrate for the combined removal of arsenic in drinking water with shell ash of Unio. Ind Eng Chem Res 52:17038–17046. doi: 10.1021/ie402485x CrossRefGoogle Scholar
  130. Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76. doi: 10.1016/j.microc.2014.04.001 CrossRefGoogle Scholar
  131. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69. doi: 10.1080/10408410701710442 CrossRefGoogle Scholar
  132. Thomé A, Reddy KR, Reginatto C, Cecchin I (2015) Review of nanotechnology for soil and groundwater remediation: brazilian perspectives. Water Air Soil Pollut 226:1–20. doi: 10.1007/s11270-014-2243-z CrossRefGoogle Scholar
  133. Turek M, Korolewicz T, Ciba J (2005) Removal of heavy metals from sewage sludge used as soil fertilizer 14:143–154. doi: 10.1080/15320380590911797 Google Scholar
  134. Waite TD (2013) Eliminating drugs from drinking and waste waters. Pollution Engineering 45:4Google Scholar
  135. Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347. doi: 10.1016/j.cej.2013.04.070 CrossRefGoogle Scholar
  136. Wei L, Yong-Mei L (2004) Use of ferrate pre-oxidation in enhancing the treatment of NOM- rich lake waters. Water Science and Technology: Water Supply 4:121–128Google Scholar
  137. Wilde ML, Mahmoud WMM, Kümmerer K, Martins AF (2013) Oxidation-coagulation of β- blockers by K2FeVIO4 in hospital wastewater: assessment of degradation products and biodegradability. Sci Total Environ 452–453:137–147. doi: 10.1016/j.scitotenv.2013.01.059 CrossRefGoogle Scholar
  138. (WWDR1) United Nations Educational, Scientific, and Cultural Organization. Water for People, Water for Life; The United Nations World Water Development Report, Berghahn Books: Barcelona, 2003; World Water Assessment ProgramGoogle Scholar
  139. Xing H, Yuan B, Wang Y, Qu J (2002) Photocatalytic detoxification of microcystins combined with ferrate pretreatment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 37:641–649. doi: 10.1081/ESE-120003243 CrossRefGoogle Scholar
  140. Xu GR, Zhang YP, Li GB (2009) Degradation of azo dye active brilliant red X-3B by composite ferrate solution. J Hazard Mater 161:1299–1305. doi: 10.1016/j.jhazmat.2008.04.090 CrossRefGoogle Scholar
  141. Yang W, Wang J, Yang Z, Pan T, Zhang J (2005) Physical properties, electrochemical performance and stability of several kinds of Fe(VI) compounds. Chin J Chem Phys 18:105–112Google Scholar
  142. Yang B, Ying GG, Zhao JL, Liu S, Zhou LJ, Chen F (2012) Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate (VI) treatment of secondary wastewater effluents. Water Res 46:2194–2204. doi: 10.1016/j.watres.2012.01.047 CrossRefGoogle Scholar
  143. Yang H, Bain R, Bartram J, Gundry S, Pedley S, Wright J (2013) Water Safety and Inequality in Access to Drinking-water between Rich and Poor Households. Environ Sci Technol 47:1222–1230. doi: 10.1021/es303345p CrossRefGoogle Scholar
  144. Yates BJ, Zboril R, Sharma VK (2014a) Engineering aspects of ferrate in water and wastewater treatment-a review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 49:1603–1614. doi: 10.1080/10934529.2014.950924 CrossRefGoogle Scholar
  145. Yates BJ, Darlington R, Zboril R, Sharma VK (2014b) High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water. Environ Chem Lett. doi: 10.1007/s10311-014-0463-5 Google Scholar
  146. Yee KF, Yeang QW, Ong YT, Vadivelu VM, Tan SH (2015) Water Remediation Using Nanoparticle and Nanocomposite Membranes. Nanomaterials for Environmental Protection. doi: 10.1002/9781118845530.ch17 Google Scholar
  147. Yu W, Yang Y, Graham N (2016) Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment. Chem Eng J 298:234–242. doi: 10.1016/j.cej.2016.03.080 CrossRefGoogle Scholar
  148. Yuan BL, Qu JH, Fu ML (2002) Removal of cyanobacterial microcystin-LR by ferrate oxidation-coagulation. Toxicon 40:1129–1134. doi: 10.1016/S0041-0101(02)00112-5 CrossRefGoogle Scholar
  149. Yuan B, Li Y, Huang X, Liu H, Qu J (2005) Fe(VI)-assisted photocatalytic degradating of microcystin-LR using titanium dioxide. J Photochem Photobiol A Chem. 178:106–111. doi: 10.1016/j.jphotochem.2005.07.017 CrossRefGoogle Scholar
  150. Yuan BL, Li KL, Deng LL, Zhang ZD (2006a) Removal of arsenic (III) by ferrate oxidation- coagulation from drinking water. Huanjing Kexue/Environmental Science 27:281–284Google Scholar
  151. Yuan B, Li Y, Huang X, Liu H, Qu J (2006b) Ferrate-assisted photocatalytic degradating of microcystin- LR using titanium dioxide. J Photochem Photobiol A Chem. 178:106–111CrossRefGoogle Scholar
  152. Zhang W, Cao J, Elliott D (2004) Iron Nanoparticles for Site Remediation. Nanotechnology and the Environment. doi: 10.1021/bk-2005-0890.ch033 Google Scholar
  153. Zhang Y, Zhou X, Liu Z, Li B, Liu Q, Li X (2016a) Monodispersed hierarchical γ- AlOOH/Fe(OH)3 micro/nanoflowers for efficient removal of heavy metal ions from water. RSC Advances 6:6695–6701. doi: 10.1039/c5ra23915j CrossRefGoogle Scholar
  154. Zhang LH, Cheng JH, You X, Liang XY, Hu YY (2016b) Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe0/GAC micro-electrolysis and VUV-Fenton photolysis. Environ Sci Pollut Res 23:13531–13542. doi: 10.1007/s11356-016-6539-y CrossRefGoogle Scholar
  155. Zhou Z, Jiang JQ (2015) Treatment of selected pharmaceuticals by ferrate(VI): performance, kinetic studies and identification of oxidation products. J Pharm Biomed Anal 106:37–45. doi: 10.1016/j.jpba.2014.06.032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Stefania Mura
    • 1
    • 2
  • Luca Malfatti
    • 2
  • Gianfranco Greppi
    • 2
  • Plinio Innocenzi
    • 2
  1. 1.Nucleo di Ricerca sulla DesertificazioneUniversità degli Studi di SassariSassariItaly
  2. 2.Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, DADU, Dipartimento di Architettura Design e UrbanisticaUniversità di SassariAlgheroItaly

Personalised recommendations