Advertisement

Challenges in the measurement of emissions of nitrous oxide and methane from livestock sector

  • Araceli D. Larios
  • Satinder Kaur BrarEmail author
  • Antonio Avalos Ramírez
  • Stéphane Godbout
  • Fabiola Sandoval-Salas
  • Joahnn H. Palacios
Review paper

Abstract

Over the past two decades, the interest to decrease the emission levels of greenhouse gases (GHGs) has increased. The livestock sector has been put under continuous supervision and regulation because it is an important source of GHG emissions. In 2012, it was estimated that 3.46 Gton CO2-eq was released from this sector, methane (CH4) being the gas with the highest contribution (43 %), followed by nitrous oxide (21 %). In order to determine real emissions, it is necessary to use precise and reproducible measuring methods which can be complex and expensive. The challenges in these methods are focused on achieving an accurate assessment and monitoring of gas emissions, developing monitoring systems for the continuous measurement and implementation of methodologies for their validation in field in order to understand the complex nature of environmental variables affecting gas production. Different techniques for the measurement of CH4 and nitrous oxide (N2O) emissions are reviewed and discussed in this research. The passive flux sampling to measure emissions of these GHGs has been identified as an interesting alternative technique because it is practical, low cost and robust. This kind of sampler is highly adequate to measure emissions of N2O and CH4 originating from some sources of the livestock sector, but at this moment, no prototypes are commercially available and thus more research is necessary in this field.

Keywords

Greenhouse gas emissions Measuring techniques Livestock sector Methane Nitrous oxide Passive flux sampler 

Notes

Acknowledgments

Our sincere thanks go to Agriculture and Agri-Food Canada for the economic support by means of the Agricultural Greenhouse Gases Program (AGGP), and INRS-ETE to the Instituto Tecnológico Superior de Perote (ITSPe) for the support and collaboration in the research stage of main author, and to the Program for the Professional development of Professors (Prodep-Mexico) for the grant that let to perform this research stage.

References

  1. Amon B, Kryvoruchko V, Fröhlich M, Amon T, Pöllinger A, Mösenbacher I, Hausleitner A (2007) Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: housing and manure storage. Livest Sci 112(3):199–207CrossRefGoogle Scholar
  2. Anderson MC, Norman J, Mecikalski JR, Torn RD, Kustas WP, Basara JB (2004) A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J Hydrometeorol 5(2):343–363CrossRefGoogle Scholar
  3. Aneja VP, Blunden J, Claiborn CS, Rogers HH (2006) Dynamic chamber system to measure gaseous compounds emissions and atmospheric-biospheric interactions. In: Environmental simulation chambers: application to atmospheric chemical processes. Springer, Netherlands, pp 97–109. ISSN:1568–1238CrossRefGoogle Scholar
  4. Arogo J, Westerman P, Heber A (2003) A review of ammonia emissions from confined swine feeding operations. Trans ASAE 46(3):805–817CrossRefGoogle Scholar
  5. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–299CrossRefGoogle Scholar
  6. Barton L, Wolf B, Rowlings D, Scheer C, Kiese R, Grace P, Stefanova K, Butterbach-Bahl K (2015) Sampling frequency affects estimates of annual nitrous oxide fluxes. Sci Rep 5. doi: 10.1038/srep15912 Google Scholar
  7. Bonifacio HF, Rotz CA, Leytem AB, Waldrip HM, Todd RW (2015) Process-based modeling of ammonia and nitrous oxide emissions from open-lot beef and dairy facilities. Trans ASABE 58(3):827–846Google Scholar
  8. Chastain JP (2000) Design and management of natural ventilation systems. Proceedings Dairy Housing and Equipment Systems: Managing and Planning for Profitability (NRAES-129), Plant and Life Sciences Publishing, Ithaca, pp 147–163Google Scholar
  9. Crutzen P, Sanhueza E, Brenninkmeijer C (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6:3093–3097CrossRefGoogle Scholar
  10. Detto M, Verfaillie J, Anderson F, Xu L, Baldocchi D (2011) Comparing laser-based open-and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agric For Meteorol 151(10):1312–1324CrossRefGoogle Scholar
  11. Dore C, Jones B, Scholtens R, Huis J, Burgess L, Phillips V (2004) Measuring ammonia emission rates from livestock buildings and manure stores—Part 2: comparative demonstrations of three methods on the farm. Atmos Environ 38(19):3017–3024CrossRefGoogle Scholar
  12. FAO (2014) Agriculture’s greenhouse gas emissions on the rise. http://www.fao.org/news/story/en/item/216137/icode/. February 2014
  13. FAOSTAT F (2014) Food and Agricultural Organization of the United Nations. 2014Google Scholar
  14. FAOSTAT (2015) Agricultural statistics database. Rome: Word Agricultural Information Centre. June 2015Google Scholar
  15. Felber R, Münger A, Neftel A, Ammann C (2015) Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources. Biogeosci Discuss 12(4):3419–3468CrossRefGoogle Scholar
  16. Fonollosa J, Rodríguez-Luján I, Trincavelli M, Vergara A, Huerta R (2014) Chemical discrimination in turbulent gas mixtures with mox sensors validated by gas chromatography-mass spectrometry. Sensors 14(10):19336–19353CrossRefGoogle Scholar
  17. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities, Food and Agriculture Organization of the United Nations (FAO)Google Scholar
  18. Godbout S, Pelletier F, Palacios JH, Feddes JJR, Larouche JP, Belzile M, Fournel S, Lemay SP (2012) Greenhouse Gas Emissions Non-Cattle Confinement Buildings: Monitoring, Emission Factors and Mitigation. INTECH Open Access Publisher, RijekaGoogle Scholar
  19. Grainger C, Clarke T, Mcginn S, Auldist M, Beauchemin K, Hannah M, Waghorn G, Clark H, Eckard R (2007) Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J Dairy Sci 90(6):2755–2766CrossRefGoogle Scholar
  20. Grutter M (2003) Multi-Gas analysis of ambient air using FTIR spectroscopy over Mexico City. Atmosfera 16(1):1–14Google Scholar
  21. Hafla AN, Macadam JW, Soder KJ (2013) Sustainability of US organic beef and dairy production systems: soil, plant and cattle interactions. Sustainability 5:3009–3034CrossRefGoogle Scholar
  22. Hammond K, Humphries D, Crompton L, Green C, Reynolds C (2015) Methane emissions from cattle: estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim Feed Sci Technol 203:41–52CrossRefGoogle Scholar
  23. Harper L, Denmead O, Flesch T (2011) Micrometeorological techniques for measurement of enteric greenhouse gas emissions. Anim Feed Sci Technol 166:227–239CrossRefGoogle Scholar
  24. Hensen A, Skiba U, Famulari D (2013) Low cost and state of the art methods to measure nitrous oxide emissions. Environ Res Lett 8(2):025022CrossRefGoogle Scholar
  25. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, Steeg J, Lynam J (2010) Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science. doi: 10.1126/science.1183725 Google Scholar
  26. Hristov AN, Oh J, Giallongo F, Frederick T, Weeks H, Zimmerman PR, Harper MT, Hristova RA, Zimmerman RS, Branco AF (2015) The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J Vis Exp 103:8Google Scholar
  27. Husted S (1993) An open chamber technique for determination of methane emission from stored livestock manure. Atmos Environ Part A: Gen Top 27(11):1635–1642CrossRefGoogle Scholar
  28. Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009) Comparison of net CO2 fluxes measured with open-and closed-path infrared gas analyzers in an urban complex environment. Boreal Environ Res 14:499–514Google Scholar
  29. Kamieniak J, Randviir EP, Banks CE (2015) The latest developments in the analytical sensing of methane. TrAC Trends Anal Chem 73:146–157CrossRefGoogle Scholar
  30. Kang S, Kim S, Kang S, Lee J, Cho C-S, Sa J-H, Jeon E-C (2014) A study on N2O measurement characteristics using photoacoustic spectroscopy (PAS). Sensors 14(8):14399CrossRefGoogle Scholar
  31. Khan RZ, Müller C, Sommer SG (1997) Micrometeorological mass balance technique for measuring CH4 emission from stored cattle slurry. Biol Fertil Soils 24(4):442–444CrossRefGoogle Scholar
  32. Khan N, Su Y, Riffat SB (2008) A review on wind driven ventilation techniques. Energy Build 40(8):1586–1604CrossRefGoogle Scholar
  33. Köhring M, Böttger S, Willer U, Schade W (2015) LED-absorption-QEPAS sensor for biogas plants. Sensors 15(5):12092CrossRefGoogle Scholar
  34. Kroon P, Hensen A, Jonker H, Zahniser M, Van’t Veen W, Vermeulen A (2007) Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements. Biogeosciences 4(5):2007CrossRefGoogle Scholar
  35. Kroon P, Schrier-Uijl A, Hensen A, Veenendaal E, Jonker H (2010) Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. Eur J Soil Sci 61(5):773–784CrossRefGoogle Scholar
  36. Laguë C, Gaudet E, Agnew J, Fonstad T (2005) Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. Trans ASAE 48(6):2289–2296CrossRefGoogle Scholar
  37. Laville P, Neri S, Continanza D, Vero LF, Bosco S, Virgili G (2015) Cross-validation of a mobile N2O flux prototype (IPNOA) using micrometeorological and chamber methods. J Energy Power Eng 9:375–385Google Scholar
  38. Lodge JP Jr (1988) Methods of air sampling and analysis. CRC Press, Boca RatonGoogle Scholar
  39. Losada JM, Ogink NWM, Scholtens R (2003) Using passive flux samplers to determine the ammonia emission from mechanically ventilated animal houses. In: 2003 ASAE annual international meeting, Las Vegas, p 20Google Scholar
  40. Maia GD, Ramirez BC, Green AR, Rodríguez LF, Segers JR, Shike DW, Gates RS (2015) A novel ruminant emission measurement system: Part I. Design evaluation and description. Trans ASABE 58(3):749–762Google Scholar
  41. Mammarella I, Werle P, Pihlatie M, Eugster W, Haapanala S, Kiese R, Markkanen T, Rannik Ü, Vesala T (2010) A case study of eddy covariance flux of N2O measured within forest ecosystems: quality control and flux error analysis. Biogeosciences 7(2):427–440CrossRefGoogle Scholar
  42. McDermitt D, Burba G, Xu L, Anderson T, Komissarov A, Riensche B, Schedlbauer J, Starr G, Zona D, Oechel W (2011) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl Phys B 102(2):391–405CrossRefGoogle Scholar
  43. McGinn S (2013) Developments in micrometeorological methods for methane measurements. Animal 7(s2):386–393CrossRefGoogle Scholar
  44. McWilliams J (2002) Review of air flow measurement techniques. Lawrence Berkeley National Laboratory. LBNL-49747, BerkeleyGoogle Scholar
  45. Misselbrook TH, Nicholson FA, Chambers BJ, Johnson RA (2005) Measuring ammonia emissions from land applied manure: an intercomparison of commonly used samplers and techniques. Environ Pollut 135(3):389–397. doi: 10.1016/j.envpol.2004.11.012 CrossRefGoogle Scholar
  46. Monteny G-J, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112(2):163–170CrossRefGoogle Scholar
  47. Murray P, Moss A, Lockyer D, Jarvis S (1999) A comparison of systems for measuring methane emissions from sheep. J Agric Sci 133(04):439–444CrossRefGoogle Scholar
  48. Ngwabie N, Jeppsson K-H, Nimmermark S, Swensson C, Gustafsson G (2009) Multi-location measurements of greenhouse gases and emission rates of methane and ammonia from a naturally-ventilated barn for dairy cows. Biosyst Eng 103(1):68–77CrossRefGoogle Scholar
  49. Nicoloso RDS, Bayer C, Denega GL, Oliveira PAVD, Higarashi MM, Corrêa JC, Lopes LDS (2013) Gas chromatography and photoacoustic spectroscopy for the assessment of soil greenhouse gases emissions. Ciênc Rural 43(2):262–269CrossRefGoogle Scholar
  50. Parkin TB, Venterea RT, Hargreaves SK (2012) Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J Environ Qual 41(3):705–715CrossRefGoogle Scholar
  51. Peu P, Beline F, Martinez J (1999) A floating chamber for estimating nitrous oxide emissions from farm scale treatment units for livestock wastes. J Agric Eng Res 73(1):101–104CrossRefGoogle Scholar
  52. Ramin M, Huhtanen P (2015) Nordic dairy cow model Karoline in predicting methane emissions: 2. Model evaluation. Livest Sci 178:81–93CrossRefGoogle Scholar
  53. Rannik Ü, Haapanala S, Shurpali N, Mammarella I, Lind S, Hyvönen N, Peltola O, Zahniser M, Martikainen P, Vesala T (2015) Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions. Biogeosciences 12(2):415–432CrossRefGoogle Scholar
  54. Rapson TD, Dacres H (2014) Analytical techniques for measuring nitrous oxide. TrAC Trends Anal Chem 54:65–74CrossRefGoogle Scholar
  55. Rearte D, Pordomingo A (2014) The relevance of methane emissions from beef production and the challenges of the Argentinean beef production platform. Meat Sci 98(3):355–360CrossRefGoogle Scholar
  56. Ro KS, Johnson MH, Hunt PG, Flesch TK (2011) Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques. Atmosphere 2(3):553–566CrossRefGoogle Scholar
  57. Rocha MV, Sthel MS, Silva MG, Paiva LB, Pinheiro FW, Miklos A, Vargas H (2012) Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines. Appl Phys B-Lasers Opt 106(3):701–706CrossRefGoogle Scholar
  58. Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci Soc Am J 72(2):331–342CrossRefGoogle Scholar
  59. Samer M, Muller HJ, Fiedler M, Berg W, Brunsch R (2014) Measurement of ventilation rate in livestock buildings with radioactive tracer gas technique: theory and methodology. Indoor Built Environ 23(5):692–708CrossRefGoogle Scholar
  60. Scholtens R, Dore C, Jones B, Lee D, Phillips V (2004) Measuring ammonia emission rates from livestock buildings and manure stores—part 1: development and validation of external tracer ratio, internal tracer ratio and passive flux sampling methods. Atmos Environ 38(19):3003–3015CrossRefGoogle Scholar
  61. Sherman MH (1990) Tracer-gas techniques for measuring ventilation in a single zone. Build Environ 25(4):365–374CrossRefGoogle Scholar
  62. Sneath R, Beline F, Hilhorst M, Peu P (2006) Monitoring GHG from manure stores on organic and conventional dairy farms. Agric Ecosyst Environ 112(2):122–128CrossRefGoogle Scholar
  63. Solomon S (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  64. Storm IMLD, Hellwing ALF, Nielsen NI, Madsen J (2012) Methods for measuring and estimating methane emission from rumiants. Animals 2:160–183CrossRefGoogle Scholar
  65. Stubbs M (2010) Renewable Energy Programs in the 2008 Farm BillGoogle Scholar
  66. Tao L, Sun K, Miller DJ, Pan D, Golston LM, Zondlo MA (2015) Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants. Appl Phys B-Lasers Opt 119(1):153–164CrossRefGoogle Scholar
  67. Tsugawa W, Shimizu H, Tatara M, Ueno Y, Kojima K, Sode K (2012) Nitrous oxide sensing using oxygen-insensitive direct-electron-transfer-type nitrous oxide reductase. Electrochemistry 80(5):371–374CrossRefGoogle Scholar
  68. Van Beek CL, Meerburg BG, Schils RL, Verhagen J, Kuikman PJ (2010) Feeding the world’s increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. Environ Sci Policy 13(2):89–96CrossRefGoogle Scholar
  69. Van Buggenhout S, Van Brecht A, Özcan SE, Vranken E, Van Malcot W, Berckmans D (2009) Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosyst Eng 104(2):216–223CrossRefGoogle Scholar
  70. Vergé XPC, Dyer JA, Worth DE, Smith WN (2012) A greenhouse gas and soil carbon model for estimating the carbon footprint of livestock production in Canada. Animals 2:437–454CrossRefGoogle Scholar
  71. Viguria M, Sanz-Cobeña A, López DM, Arriaga H, Merino P (2015) Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil. Agric Ecosyst Environ 199:261–271CrossRefGoogle Scholar
  72. Wu W, Zhang G, Kai P (2012) Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions. Atmos Environ 61:232–243CrossRefGoogle Scholar
  73. Zhang G, Strøm JS, Li B, Rom HB, Morsing S, Dahl P, Wang C (2005) Emission of ammonia and other contaminant gases from naturally ventilated dairy cattle buildings. Biosyst Eng 92(3):355–364CrossRefGoogle Scholar
  74. Zhou Y, Wang C, Firor R (2003) Analysis of permanent gases and methane with the Agilent 6820 gas chromatograph. Agilent Technologies, publication, Santa ClaraGoogle Scholar
  75. Zhu G, Ma X, Gao Z, Ma W, Li J, Cai Z (2014) Characterizing CH4 and N2O emissions from an intensive dairy operation in summer and fall in China. Atmos Environ 83:245–253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Araceli D. Larios
    • 1
    • 4
  • Satinder Kaur Brar
    • 1
    Email author
  • Antonio Avalos Ramírez
    • 1
    • 2
  • Stéphane Godbout
    • 3
  • Fabiola Sandoval-Salas
    • 1
    • 4
  • Joahnn H. Palacios
    • 3
  1. 1.Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre & EnvironnementQuébecCanada
  2. 2.Centre National en Électrochimie et en Technologies Environnementales (CNETE)ShawiniganCanada
  3. 3.Institut de Recherche et de Développement en Agroenvironnement (IRDA)QuébecCanada
  4. 4.Instituto Tecnológico Superior de PerotePerote, VeracruzMexico

Personalised recommendations