Skip to main content

Advertisement

Log in

Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology?

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Anaerobic fermentation of biodegradable organic materials is usually carried out to obtain the final product, methane, a valuable energy source. However, it is also well known that various intermediates are produced in this process, e.g. ethanol, volatile organic acids and hydrogen. All these species have applications and value as fuels or chemicals. This paper shows a critical analysis of the potential of using anaerobic fermentation by mixed cultures to produce intermediates, e.g. ethanol, acetic, lactic and butyric acid and hydrogen, rather than methane. This paper discusses the current processes to produce these chemicals and compares them with the alternative approach of using open mixed cultures to produce them simultaneously via fermentation from renewable resources. None of these chemicals is currently produced via mixed culture fermentation: ethanol and lactic acid are usually produced in pure culture fermentation using food crops, e.g. corn or sugar cane, as starting materials; hydrogen, acetic and butyric acids are mainly produced via chemical synthesis from fossil fuel derived starting materials. A possible flow-sheet for the production of these chemicals from organic waste using mixed culture fermentation is proposed and the advantages and disadvantages of this process compared to current processes are critically discussed. The paper also discusses the research challenges which need to be addressed to make this process feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78

    Article  CAS  Google Scholar 

  • Alfenore S, Molina-Jouve C, Guillouet S et al (2002) Improving ethanol production and viability of saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    Article  CAS  Google Scholar 

  • Alvarado-Cuevas Z, López-Hidalgo A, Ordoñeza LG (2015) Biohydrogen production using psychrophilic bacteria isolated from Antarctica. Int J Hydrog Energy 40:7586–7592

    Article  CAS  Google Scholar 

  • Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH et al (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV et al (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  Google Scholar 

  • Appels L, Lauwers J, Degreve J et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295–4301

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS, Varzakas TH (2008) Vegetable waste treatment: comparison and critical presentation of methodologies. Crit Rev Food Sci Nutr 48:205–247

    Article  CAS  Google Scholar 

  • Aybeke M, Sidal U (2011) Effects of olive oil mill wastewater used as irrigation water on in vitro pollen germination. Pak J Biol Sci 14:703–708

    Article  CAS  Google Scholar 

  • Azman S, Khadem AF, Van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45(23):2523–2564

  • Balasubramanian B, Ortiz AL, Kaytakoglu S, Harrison D (1999) Hydrogen from methane in a single-step process. Chem Eng Sci 54:3543–3552

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I et al (2002) The IWA anaerobic digestion model no 1 (ADM 1). Water Sci Technol 45(10):65–73

    CAS  Google Scholar 

  • Beccari M, Bonemazzi F, Majone M, Riccardi C (1996) Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res 30:183–189

    Article  CAS  Google Scholar 

  • Ben Sassi A, Boularbah A, Jaouad A et al (2006) A comparison of olive oil mill wastewaters (OMW) from three different process in morocco. Proc Biochem 41:74–78

    Article  CAS  Google Scholar 

  • Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499

    Article  CAS  Google Scholar 

  • Bonrath W, Medlock J, Schutz J et al (2012) Hydrogenation in the vitamins and fine chemicals industry-an overview. Intech. doi:10.5772/48751

    Google Scholar 

  • Brown SD, Guss AM, Karpinets TV et al (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA 108:13752–13757

    Article  CAS  Google Scholar 

  • Buhr H, Andrews J (1977) The thermophilic anaerobic digestion process. Water Res 11:129–143

    Article  CAS  Google Scholar 

  • Cardona CA, Sanchez OJ, Gutierrez LF (2010) Process synthesis for fuel ethanol production. CRC Press, Boca Raton

    Google Scholar 

  • Carioca J, Leal MRLV (2011) Ethanol production from sugar-based feedstocks. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 27–35

    Chapter  Google Scholar 

  • Cavinato C, Bolzonella D, Fatone F et al (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611

    Article  CAS  Google Scholar 

  • Cavinato C, Bolzonella D, Pavan P, Cecchi F (2016) Two-phase anaerobic digestion of food wastes for hydrogen and methane production. In: Marcello De Falco, Angelo Basile (eds) Enriched methane, green energy and technology. Springer, Switzerland. doi:10.1007/978-3-319-22192-2_5

  • Chatzipaschali AA, Stamatis AG (2012) Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current status and prospects. Energies 5:3492–3525

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Cheung H, Tanke RS, Torrence GP (2000) Acetic acid. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, New York

    Book  Google Scholar 

  • Chung KT (1976) Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl Environ Microbiol 31:342–348

    CAS  Google Scholar 

  • Cirne D, Paloumet X, Björnsson L, Alves M, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975

    Article  CAS  Google Scholar 

  • Corbitt RA (1998) Standard handbook of environmental engineering, vol 2. Mc Graw-Hill, Pennsylvania

    Google Scholar 

  • Dahiya S, Sarkar O, Swamy YV, Venkata Mohan S (2015) Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour Technol 182:103–113

    Article  CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  • Davidsson Å, Gruvberger C, Christensen TH et al (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag 27:406–414

    Article  CAS  Google Scholar 

  • Davila-Vazquez G, de León-Rodríguez A, Alatriste-Mondragón F, Razo-Floresa E (2011) The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass Bioenergy 25:3174–3181

    Article  CAS  Google Scholar 

  • de Almeida EF, Bomtempo JV, De Souza e Silva C (2007) The performance of Brazilian biofuels: an economic, environmental and social analysis. OECD/ITF Joint Transport Research Centre Discussion Papers, No. 2007/05, OECD Publishing, Paris. doi:10.1787/234818225330

  • De Bere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290

    Google Scholar 

  • De la Rubia M, Perez M, Romero L, Sales D (2006) Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Process Biochem 41:79–86

    Article  CAS  Google Scholar 

  • Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755

    Article  CAS  Google Scholar 

  • Denac M, Miguel A, Dunn I (1988) Modeling dynamic experiments on the anaerobic degradation of molasses wastewater. Biotechnol Bioeng 31:1–10

    Article  CAS  Google Scholar 

  • Department for Environment Food and Rural Affair (Defra) (2012) Wastewater treatment in the United Knigdom-2012. Crown Copyright 2012

  • Dias JM, Lemos PC, Serafim LS et al (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906

    Article  CAS  Google Scholar 

  • Dionisi D, Majone M, Vallini G et al (2006) Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng 93:76–88

    Article  CAS  Google Scholar 

  • Dionisi D, Anderson JA, Aulenta F et al (2015) The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90:366–383

    Article  CAS  Google Scholar 

  • Dwidar M, Park J, Mitchell RJ, Sang B (2012) The future of butyric acid in industry. Sci World J. http://dx.doi.org/10.1100/2012/471417

  • Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed 53:352–366

    CAS  Google Scholar 

  • Ethanol Producer Magazine (2015) US Ethanol Production. http://www.ethanolproducer.com/plants/listplants/US/Existing/Sugar-Stach. Accessed Dec 2015

  • European Commission (2014) Large scale demonstration of refuelling infrastructure for road vehicles. Call FCH-01.7-2014

  • Fan Y, Zhang Y, Zhang S et al (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505

    Article  CAS  Google Scholar 

  • Fang HH, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrog Energy 31:683–692

    Article  CAS  Google Scholar 

  • Feng L, Chen Y, Zheng X (2009) Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environ Sci Technol 43:4373–4380

    Article  CAS  Google Scholar 

  • Fillaudeau L, Blanpain-Avet P, Daufin G (2006) Water, wastewater and waste management in brewing industries. J Clean Prod 14:463–471

    Article  Google Scholar 

  • Frohning CD, Kohlpaintner CW, Bohnen H-W (2002) Carbon monoxide and synthesis gas chemistry. In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, 2nd edn. Wiley, Weinheim. doi:10.1002/9783527618231.ch2a

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  • Gerin PA, Vliegen F, Jossart JM (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99:2620–2627

    Article  CAS  Google Scholar 

  • Gilroyed BH, Chang C, Chu A, Hao X (2008) Effect of temperature on anaerobic fermentative hydrogen gas production from feedlot cattle manure using mixed microflora. Int J Hydrog Energy 33:4301–4308

    Article  CAS  Google Scholar 

  • Global Methane Initiative (2013) Successful applications of anaerobic digestion from across the world. https://www.globalmethane.org/documents/GMI%20Benefits%20Report.pdf

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer J (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673

    Article  CAS  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  • Helsel RW (1977) Removing carboxylic acids from aqueous wastes. Chem Eng Progr 73:55–59

    CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste. A global review of solid waste management. No. Urban Development Series. Knowledge papers. World Bank

  • Huang YL, Wu Z, Zhang L et al (2002) Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresour Technol 82:51–59

    Article  CAS  Google Scholar 

  • Inamdar STA (2012) Biochemical engineering: principles and concepts. PHI Learning Pvt. Ltd, New Delhi

    Google Scholar 

  • Joseck F, Sutherland E (2014) Early market hydrogen cost target calculation. DOE Fuel Cell Technologies Office Record. Report No. 14013, Department of Energy, USA

  • Jung K, Kim D, Shin H (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35:13370–13378

    Article  CAS  Google Scholar 

  • Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy 33:953–962

    Article  CAS  Google Scholar 

  • Kawabata N, Yasuda S, Yamazaki T (1982) Process for Recovering a Carboxylic Acid. Patent US4323702 A

  • Kent JA (2010) Kent and Riegel’s Handbook of industrial chemistry and biotechnology, vol 1. Springer, Berlin

    Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  CAS  Google Scholar 

  • Kleerebezem R, Joosse B, Rozendal R, van Loosdrecht MCM (2015) Anaerobic digestion without biogas? Rev Environ Sci Biotechnol. doi:10.10007/s11157-015-9374-6

    Google Scholar 

  • Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 & #xB0;C) by mixed culture fermentation. Water Res 43:1414–1424

    Article  CAS  Google Scholar 

  • Kongjan P, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105:899–908

    CAS  Google Scholar 

  • Koopmans A, Koppejan J (1997) Agricultural and forest residues. Generation, utilization and availability. Paper presented at the Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 January

  • Kubitschke J, Lange H, Strutz H (1986) Carboxylic acids, aliphatic. Ullmann’s Encyclopaedia of Industrial Chemistry, Wiley, New York

    Google Scholar 

  • Kumar S (2011) Composting of municipal solid waste. Crit Rev Biotechnol 31:112–136

    Article  CAS  Google Scholar 

  • Kumar S, Babu B (2008) Propionic acid production via fermentation route using renewable sources. Chem Ind Dig 9:76–81

    Google Scholar 

  • Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB (2006) Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crops Prod 23:288–296

    Article  CAS  Google Scholar 

  • Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J Water Pollut Control Fed 41:R1–R17

    CAS  Google Scholar 

  • Lay J, Li Y, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524

    Article  CAS  Google Scholar 

  • Lay C, Wu J, Hsiao C et al (2010) Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. Int J Hydrog Energy 35:13445–13451

    Article  CAS  Google Scholar 

  • Lee G, McCain J, Bhasin M (2007) Synthetic organic chemicals. In: James A Kent (ed) Kent and Riegel’s handbook of industrial chemistry and biotechnology. Springer, Berlin

  • Levy PF, Sanderson JE, Kispert RG, Wise DL (1981) Biorefining of biomass to liquid fuels and organic chemicals. Enzyme Microbial Technol 3:207–215

    Article  CAS  Google Scholar 

  • Li C, Fang HH (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  CAS  Google Scholar 

  • Licht FO (2008) World fuel ethanol production. Renew Fuels Assoc. http://www.ethanolrfa.org/resource/facts/trade/

  • Lin C, Lay C, Sen B et al (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642

    Article  CAS  Google Scholar 

  • Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95

    Article  CAS  Google Scholar 

  • Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236

    Article  CAS  Google Scholar 

  • Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70° C). Biotechnol Bioeng 100:1108–1114

    Article  CAS  Google Scholar 

  • Ma Q, Lu H (2011) Wind energy technologies integrated with desalination systems: review and state-of-the-art. Desalination 277:274–280

    Article  CAS  Google Scholar 

  • Majone M, Aulenta F, Dionisi D et al (2010) High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor. Water Res 44:2745–2752

    Article  CAS  Google Scholar 

  • Martinez FAC, Balciunas EM, Salgado JM et al (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Miller C, Fosmer A, Rush B et al (2011) Industrial production of lactic acid. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 179–188

    Chapter  Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR et al (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65

    Article  CAS  Google Scholar 

  • NASDAQ stock market (2015). Retrieved February 2015. www.nasdaq.com

  • National Hydrogen Association (2010) Hydrogen and fuel cells. The U.S. market report. http://www.hydrogenassociation.org/market report

  • Newsome DS (1980) The water-gas shift reaction. Catal Rev Sci Eng 21:275–318

    Article  CAS  Google Scholar 

  • Nges IA, Liu J (2010) Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew Energy 35:2200–2206

    Article  CAS  Google Scholar 

  • Ogilvie D (1998) National study of the composition of sewage sludge. New Zealand Water and Wastes Association, Wellington

    Google Scholar 

  • Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, bacterial biodegradable polymers. Afr J Biotechnol 3:18–24

    Article  CAS  Google Scholar 

  • Olson DG, McBride JE, Joe Shaw A, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  CAS  Google Scholar 

  • Orbichem Tecnon (2013) Chem-net facts-acetic acid. Chemical market insight and foresight. http://www.orbichem.com/userfiles/CNF%20Samples/aac_13_11.pdf

  • Rajendran K, Taherzadeh MJ (2014) Pretreatment of lignocellulosic materials. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken. doi:10.1002/9781118845394.ch3

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12(4):247–256

    Article  CAS  Google Scholar 

  • Randhawa MA, Ahmed A, Akram K (2012) Optimization of lactic acid production from cheap raw material: sugarcane molasses. Pak J Bot 44:333–338

    Google Scholar 

  • Ren N, Li J, Li B et al (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31:2147–2157

    Article  CAS  Google Scholar 

  • Rogers P, Lee K, Skotnicki M, Tribe D (1982) Ethanol production by Zymomonas mobilis. In: Fiechter A (ed) Microbial reactions. Springer, Berlin, pp 37–84

  • Rosales-Colunga LM, de León Rodríguez A (2015) Escherichia coli and its application to biohydrogen production. Rev Environ Sci Biotechnol 14:123–135

    Article  CAS  Google Scholar 

  • Rostrup-Nielsen T (2005) Manufacture of hydrogen. Catal Today 106:293–296

    Article  CAS  Google Scholar 

  • Roychowdhury S, Cox D, Levandowsky M (1988) Production of hydrogen by microbial fermentation. Int J Hydrog Energy 13:407–410

    Article  CAS  Google Scholar 

  • Ruzicka M (1996) The effect of hydrogen on acidogenic glucose cleavage. Water Res 30:2447–2451

    Article  CAS  Google Scholar 

  • Sans C, Mata-Alvarez J, Cecchi F et al (1995) Volatile fatty acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor. Bioresour Technol 51:89–96

    Article  CAS  Google Scholar 

  • Satchatippavarn S, Martinex-Hernandez E, Leung Pah Hang MY et al (2015) Urban biorefinery for waste processing. Chem Eng Res Design. doi:10.1016/j.cherd.2015.09.022

    Google Scholar 

  • Scottish Environmental Protection Agency (SEPA) (2014). Household waste summary data and commentary text. http://sepa.org.uk/environment/waste/waste-data/waste-data-reporting/household-waste-data/. Accessed Dec 2015

  • Sebastiani E, Lacquaniti L (1967) Acetic acid—water system thermodynamical correlation of vapor—liquid equilibrium data. Chem Eng Sci 22:1155–1162

    Article  CAS  Google Scholar 

  • Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263

    Article  CAS  Google Scholar 

  • Shea TG, Pretorius W, Cole R, Pearson E (1968) Kinetics of hydrogen assimilation in the methane fermentation. Water Res 2:833–848

    Article  CAS  Google Scholar 

  • Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40:3412–3418

    Article  CAS  Google Scholar 

  • Siso MG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  • Smejkal Q, Linke D, Baerns M (2005) Energetic and economic evaluation of the production of acetic acid via ethane oxidation. Chem Eng Process 4:421–428

    Article  Google Scholar 

  • Sousa DZ, Pereira MA, Stams AJ et al (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73:1054–1064

    Article  CAS  Google Scholar 

  • Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. Report No. 1998-09-30 Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna

  • Sunley GJ, Watson DJ (2000) High productivity methanol carbonylation catalysis using iridium: the cativa™ process for the manufacture of acetic acid. Catal Today 58:293–307

    Article  CAS  Google Scholar 

  • Tang G, Huang J, Sun Z et al (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106:80–87

    Article  CAS  Google Scholar 

  • Temudo MF, Kleerebezem R, van Loosdrecht M (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostst study. Biotechnol Bioeng 98:69–79

    Article  CAS  Google Scholar 

  • Temudo MF, Mato T, Kleerebezem R, van Loosdrecht MC (2009) Xylose anaerobic conversion by open-mixed cultures. Appl Microbiol Biotechnol 82:231–239

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  • Timmer J, Kromkamp J, Robbertsen T (1994) Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration. J Membr Sci 92:185–197

    Article  CAS  Google Scholar 

  • Traverso P, Pavan P, Bolzonella D et al (2000) Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 11:407–414

    Article  CAS  Google Scholar 

  • Turick CE, Peck MW, Chynoweth DP (1991) Methane fermentation of woody biomass. Bioresour Technol 37:141–147

    Article  CAS  Google Scholar 

  • Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B (2000) Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126:1076–1081

    Article  CAS  Google Scholar 

  • Villano M, Beccari M, Dionisi D et al (2010) Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochem 45:714–723

    Article  CAS  Google Scholar 

  • Visser A, Gao Y, Lettinga G (1993) Effects of pH on methanogenesis and sulphate reduction in thermophilic (55 & #xB0;C) UASB reactors. Bioresour Technol 44:113–121

    Article  CAS  Google Scholar 

  • Wadhwa M, Bakshi MPS (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. FAO RAP Publication 2013/04

  • Wardell JM, King CJ (1978) Solvent equilibriums for extraction of carboxylic acids from water. J Chem Eng Data 23:144–148

    Article  CAS  Google Scholar 

  • Wee Y, Kim J, Ryu H (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  • Weimer PJ (2015) Ruminal fermentations to produce liquid and gaseous fuels. In: Anil Kumar Puniya, Rameshwar Singh, Devki Nandan Kamra (eds) Rumen microbiology: from evolution to revolution, vol 18. Springer India, pp 265–280

  • Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experentia 36:1434–1446

    Article  CAS  Google Scholar 

  • Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile clostridium thermohydrosulfuricum. J Bacteriol 139:800–810

    CAS  Google Scholar 

  • Williams TI, Combs JC, Lynn BC, Strobel HJ (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432

    Article  CAS  Google Scholar 

  • Winter C (2009) Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrog Energy 34:S1–S52

    Article  CAS  Google Scholar 

  • Wu H, Yang D, Zhou Q, Song Z (2009) The effect of pH on anaerobic fermentation of primary sludge at room temperature. J Hazard Mater 172:196–201

    Article  CAS  Google Scholar 

  • Xu Z, Jiang L (2011) Butyric acid. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic press, Burlington, pp 207–215

    Chapter  Google Scholar 

  • Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 32:4761–4771

    Article  CAS  Google Scholar 

  • Yang S, El-Ensashy H, Thongchul N (2013) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New York

    Book  Google Scholar 

  • Yang F, Liu Z, Afzal W et al (2015) Pretreatment of miscanthus giganteus with lime and oxidants for biofuels. Energy Fuels 29:1743–1750

    Article  CAS  Google Scholar 

  • Yokoyama H, Waki M, Moriya N et al (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483

    Article  CAS  Google Scholar 

  • Yoneda N, Kusano S, Yasui M et al (2001) Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A 221:253–265

    Article  CAS  Google Scholar 

  • Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27:1359–1365

    Article  CAS  Google Scholar 

  • Zacharof MP, Lovitt RW (2013) Complex effluent streams as a potential source of volatile fatty acids. Waste Biomass Valorisation 4:557–581

    Article  CAS  Google Scholar 

  • Zero Waste Scotland, Natural Scotland. (2010). The composition of municipal solid waste in Scotland. Final Report, Project Code EVA098-001

  • Zhang B, Zhang L, Zhang S et al (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26:329–340

    Article  Google Scholar 

  • Zhang M, Fan Y, Xing Y et al (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254

    Article  CAS  Google Scholar 

  • Zhang Y, Banks CJ, Heaven S (2012a) Anaerobic digestion of two biodegradable municipal waste streams. J Environ Manag 104:166–174

    Article  CAS  Google Scholar 

  • Zhang Y, Banks CJ, Heaven S (2012b) Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol 114:168–178

    Article  CAS  Google Scholar 

  • Zoetemeyer RJ, Vandenheuvel JC, Cohen A (1982a) pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Res 16:303–311

    Article  CAS  Google Scholar 

  • Zoetemeyer RJ, Arnoldy P, Cohen A, Boelhouwer C (1982b) Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Water Res 16:313–321

    Article  CAS  Google Scholar 

  • Zong W, Yu R, Zhang P et al (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Dionisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dionisi, D., Silva, I.M.O. Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology?. Rev Environ Sci Biotechnol 15, 213–242 (2016). https://doi.org/10.1007/s11157-016-9393-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9393-y

Keywords

Navigation