Advertisement

Microalgae potential as a biogas source: current status, restraints and future trends

  • David U. Santos-Ballardo
  • Sergio Rossi
  • Cuauhtémoc Reyes-Moreno
  • Angel Valdez-Ortiz
Review paper

Abstract

In recent years, the world energy demands have had a recurrent increase. For this reason the alternative to the fossil fuel resources are trend topics in investigation. Microalgae have been extensively studied as a source of biofuels and as one of the most promising alternatives in this new framework. One of the possibilities of obtaining renewable energy from microalgae is biogas production using anaerobic digestion process. This process is considered a significant component for biofuels and waste management, since represent an opportunity for energy generation using different wastewater products; also, the economic viability of microalgae liquid biofuel production could be improved. However, the anaerobic digestion of microalgae biomass is still not optimized because of the numerous technical limitations such as the microalgae characteristics, low carbon:nitrogen ratio, ammonia toxicity and even salinity. The present review summarizes and compares information concerning to anaerobic digestion of microalgal biomass and future directions for research. Besides, specific operational factors and potential inhibitory parameters of the process are analyzed and compared. Additionally, the paper covers the state or art concerning in methane production enhancement from algal biomass.

Keywords

Microalgae biomass Biogas Production enhancement Pre-treatments Biorefineries Co-digestions 

References

  1. Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494CrossRefGoogle Scholar
  2. Andrade-Nascimento I, Izabel-Marques SS, Dominguez-Cabanelas IT, Andrade-Pereira S, Druzian JI, Oliveira de Souza C, Vital-Vich D, Correia de Carvalho G, Andrade-Nascimento M (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profile as selective criteria. Bioenergy Resour 6(1):1–13CrossRefGoogle Scholar
  3. Asam ZUZ, Poulsen TG, Nizami AS, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants? Appl Energy 88:2013–2018CrossRefGoogle Scholar
  4. Asinari CMADS, Legros A, Naveau HP, Nyns EJ (1982) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1:263–272Google Scholar
  5. Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing, Oxford, pp 312–351Google Scholar
  6. Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 873–975CrossRefGoogle Scholar
  7. Bohutskyi P, Betenbaugh MJ, Bouwer EJ (2014) The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour Technol 155:366–372CrossRefGoogle Scholar
  8. Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FC, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour Technol 183:229–239Google Scholar
  9. Burczyk J, Dworzanski J (1988) Comparison if sporopollenin like algal resistant polymer from cell-wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis. Phytochemistry 27:2151–2153CrossRefGoogle Scholar
  10. Carballa M, Duran C, Hospido A (2011) Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost. Environ Sci Technol 45:10306–10314CrossRefGoogle Scholar
  11. Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manage 32:1634–1650CrossRefGoogle Scholar
  12. Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897CrossRefGoogle Scholar
  13. Chen WH, Han SK, Sung S (2003) Sodium inhibition of thermophilic methanogens. J Environ Eng 129(6):506–512CrossRefGoogle Scholar
  14. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestions process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  15. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  16. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefGoogle Scholar
  17. Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336CrossRefGoogle Scholar
  18. Climent M, Ferrer I, Baeza MM, Artola A, Vázquez F, Font X (2007) Effects on termal and mechanical pretreatments of secondary sludge on biogás production under thermophilic conditions. Chem Eng J 133:335–342CrossRefGoogle Scholar
  19. Dalrymple OK, Halfhide T, Udom I, Gilles B, Wolan J, Zhang Q, Ergas S (2013) Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat Biosyst 9:2–11CrossRefGoogle Scholar
  20. De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304CrossRefGoogle Scholar
  21. De Vrieze J, Raport L, Willems B, Verbrugge S, Volcke E, Meers E, Angenent LT, Boon N (2015) Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microbial Biotechnol 8(5):776–786CrossRefGoogle Scholar
  22. Dębowski M (2013) Algae biomass application as a substrate in the methane fermentation process, dissertations and monographs. Publishing House UWM, Olsztyn. ISBN: 978-83-7299-792-0Google Scholar
  23. Dębowski M, Zieliński M, Grala A, Dudek M (2013) Algae biomass as an alternative substrate in biogas production technologies—review. Renew Sust Energy Rev 27:596–604CrossRefGoogle Scholar
  24. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3(82):1–7Google Scholar
  25. Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. Glob Change Biol Bioenergy 1:371–381CrossRefGoogle Scholar
  26. Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88:3454–3463CrossRefGoogle Scholar
  27. Ehimen EA, Holm-Nielsen JB, Poulsen M, Boelsmand JE (2013) Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew Energy 50:476–480CrossRefGoogle Scholar
  28. El-Mashad HM (2013) Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour Technol 132:305–312CrossRefGoogle Scholar
  29. Ferrer I, Ponsá S, Vázquez F, Font X (2008) Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 42:186–192CrossRefGoogle Scholar
  30. Frigon JC, Matteu-Lebrun F, Abdou RH, McGinn PJ, O’Leary SJB, Guiot SR (2013) Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl Energy 108:100–107CrossRefGoogle Scholar
  31. Gelin F, Volkman JK, Largeau C, Derenne S, Sinninghe-Damsté JS, De Leeuw JW (1999) Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Org Chem 30:147–159Google Scholar
  32. Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48(2):126–144CrossRefGoogle Scholar
  33. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55Google Scholar
  34. González-Fernández C, Molinuevo-Salces B, García-González MC (2011) Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl Energy 88:3448–3453CrossRefGoogle Scholar
  35. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012a) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefining 6:205–218CrossRefGoogle Scholar
  36. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012b) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111CrossRefGoogle Scholar
  37. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012c) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616CrossRefGoogle Scholar
  38. Gűnerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260CrossRefGoogle Scholar
  39. Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35:741–747CrossRefGoogle Scholar
  40. Heaven S, Milledge J, Zhang Y (2011) Comments on “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable”. Biotechnol Adv 29:164–167CrossRefGoogle Scholar
  41. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484CrossRefGoogle Scholar
  42. Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5:7996–8006CrossRefGoogle Scholar
  43. Jegede AO (2012) Anaerobic digestión of cyanobacteria and Chlorella to produce methane for biofuel. Int J Agric Biol Eng 5(3):68–74Google Scholar
  44. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346–351CrossRefGoogle Scholar
  45. Kayembe K, Basosila L, Mpiana PT, Sikulisiwa PC, Mbuyu K (2013) Inhibitory effects pf phenolics monomers on methanogenesis in anaerobic digestion. Br Microbiol Res J 3(1):32–41CrossRefGoogle Scholar
  46. Keymer P, Ruffell I, Pratt S, Lant P (2013) High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour Technol 131:128–133CrossRefGoogle Scholar
  47. Kim J, Yoo G, Lee J, Kim J, Kim K, Kim CW, Park MS (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31(6):862–876CrossRefGoogle Scholar
  48. Kinnunen V, Koskinen PEP, Rintala J (2014a) Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues. Bioresour Technol 155:314–322CrossRefGoogle Scholar
  49. Kinnunen V, Cragss R, Rintala J (2014b) Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating volume reactor. Water Res 57:247–257CrossRefGoogle Scholar
  50. Kwietniewska E, Tys J (2014) Process characteristic, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energy Rev 34:491–500CrossRefGoogle Scholar
  51. Lakaniemi AM, Tuovinen OH, Puhakka JA (2013) Anaerobic conversion of microalgal biomass to sustainable energy carriers—a review. Bioresour Technol 135:222–231CrossRefGoogle Scholar
  52. Lee K, Chantrasakdakul P, Kim D, Kong M, Park KY (2014) Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production. Waste Manag 34:1035–1040CrossRefGoogle Scholar
  53. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820Google Scholar
  54. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energy Rev 15:821–826CrossRefGoogle Scholar
  55. Makarevicine V, Skorupskaite V, Andruleviciute V (2013) Biodiesel fuel from microalgae-promising alternative fuel for the future: a review. Rev Environ Sci Biotechnol 12:119–130CrossRefGoogle Scholar
  56. Marsolek MD, Kendall E, Thompson PL, Shuman TR (2014) Thermal pretreatment of algae for anaerobic digestion. Bioresour Technol 151:373–377CrossRefGoogle Scholar
  57. Mendez L, Mahdy A, Timmers RA, Ballesteros M, Gonzáles-Fernández C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141CrossRefGoogle Scholar
  58. Mendez L, Mahdy A, Demuez M, Ballesteros M, González-Fernández C (2014) Effect of high pressure termal pretreatment on Chlorella vulgaris biomass: organic matter solubilization and biochemical methane potential. Fuel 117:674–679CrossRefGoogle Scholar
  59. Miao H, Lu M, Zhao M, Huangh Z, Ren H, Yan Q, Ruan W (2013) Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage. Bioresour Technol 149:359–366CrossRefGoogle Scholar
  60. Milledge JJ (2011) Commerciial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41CrossRefGoogle Scholar
  61. Milledge JJ, Heaven S (2014) Methods of energy extraction from microalgal biomass: a review. Rev Environ Sci Biotechnol 13:301–320CrossRefGoogle Scholar
  62. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRefGoogle Scholar
  63. Neumann P, Torres A, Fermoso FG, Borja R, Jeison D (2015) Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. Int Biodeterior Biodegradation 100:85–88CrossRefGoogle Scholar
  64. O’Flaherty V, Collins G, Mahony T (2006) The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev Environ Sci Biotechnol 5:39–55CrossRefGoogle Scholar
  65. Ometto F, Quiroga G, Pĉenička P, Whitton R, Jefferson B, Villa R (2014) Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res 65:350–361CrossRefGoogle Scholar
  66. Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262CrossRefGoogle Scholar
  67. Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48CrossRefGoogle Scholar
  68. Park KY, Kweon J, Chantrasakdakul P, Kwanyong L, Cha HY (2013) Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int Biodeterior Biodegradation 85:598–602CrossRefGoogle Scholar
  69. Parkin G, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112:867–920CrossRefGoogle Scholar
  70. Passos F, Ferrer I (2014) Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 48:7171–7178CrossRefGoogle Scholar
  71. Passos F, García J, Ferrer I (2013a) Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour Technol 138:79–86CrossRefGoogle Scholar
  72. Passos F, Solé M, García J, Ferrer I (2013b) Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl Energy 108:168–175CrossRefGoogle Scholar
  73. Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Biores Technol 172:403–412CrossRefGoogle Scholar
  74. Popper ZA, Tuohy MG (2010) Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol 153:373–383CrossRefGoogle Scholar
  75. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energy Rev 24:159–171CrossRefGoogle Scholar
  76. Ramos-Suárez JL, Carreras N (2014) Use of microalgae residues for biogas production. Chem Eng J 242:86–95CrossRefGoogle Scholar
  77. Ramos-Suárez JL, Martínz A, Carreras N (2014) Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers Manag 88:1263–1270CrossRefGoogle Scholar
  78. Ras M, Lardon L, Sialve B, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Biores Technol 102:200–206CrossRefGoogle Scholar
  79. Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467CrossRefGoogle Scholar
  80. Rinzema A, Van-Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens un granular sludge from a USAB reactor. Enzyme Microb Technol 10:24–32CrossRefGoogle Scholar
  81. Rodrigues MA, Da Silva Bon EP (2011) Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res 2011:1–5CrossRefGoogle Scholar
  82. Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass addition of carbon-rich wastes. Biotechnol Lett 5:677–682CrossRefGoogle Scholar
  83. Sánchez-Hernández EP, Travieso-Córdoba L (1993) Anaerobic digestion of Chlorella vulgaris for energy production. Resour Conserv Recy 9:127–132CrossRefGoogle Scholar
  84. Santos NO, Oliveira SM, Alves LC, Cammarota MC (2014) Methane production from marine microalgae Isochrysis galbana. Bioresour Technol 157:60–67CrossRefGoogle Scholar
  85. Santos-Ballardo DU, Font-Segura X, Sánchez-Ferrer A, Barrena R, Rossi S, Valdez-Ortiz A (2015) Valorization of biodiesel production wastes: anaerobic digestión of residual Tetraselmis suecica biomass and co-digestion with glycerol. Waste Manag Res 33:250–257CrossRefGoogle Scholar
  86. Schwede S, Kowalczyk A, Gerber M, Span R (2011) Influence of different cell disruption techniques on mono digestion of algal biomass. In: Proceedings of world renewable energy congress, Linkoping, Sweden, 8–13 May 2011Google Scholar
  87. Schwede S, Rehman ZU, Gerber M, Theiss C, Span R (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511Google Scholar
  88. Sevigné-Itoiz E, Fuentes-Grünewald C, Gasol CM, Garcés E, Alacid E, Rossi S, Rieradevall J (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335CrossRefGoogle Scholar
  89. Sialve B, Bernet N, Bernard O (2009) anaerobic digestion of microalgae as necessary step to make microalgae biodiesel sustainable. Biotechnol Adv 24:409–416CrossRefGoogle Scholar
  90. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energy Rev 14:2596–2610CrossRefGoogle Scholar
  91. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energy Rev 16:4316–4342CrossRefGoogle Scholar
  92. Torres A, Fermoso FG, Rincón B, Bartacek J, Borja R, Jeison D (2013) Challenges for cost-effective microalgae anaerobic digestión. In: Chamy R, Rosenkranz F (eds) Biodegradation—engineering and technology. Publisher InTech, ISBN: 978-953-51-1153-5, Chapters published June 14, 2013 under CCBY 3.0 license. doi: 10.5772/50829
  93. Vallero M, Hulshoff-Pol L, Lens P, Lettinga G (2002) Effect of high salinity on the fate of methanol during the start-up of thermophilic (55°C) sulfate reducing reactors. Water Sci Technol 45(10):121–126Google Scholar
  94. Vergara-Fernandez A, Vargas G, Alarcón N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two stage anaerobic reactor system. Biomass Bioenergy 32:338–344CrossRefGoogle Scholar
  95. Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214CrossRefGoogle Scholar
  96. Weijermars R, Taylor P, Bahn O, Das SR, Wei YM (2012) Review of models and actors in energy mix optimization- can leader visions and decisions align with optimum model strategies for our future energy systems? Energy Strategy Rev 1:5–18CrossRefGoogle Scholar
  97. Yang Z, Guo R, Xu X, Fan X, Li X (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 35:9618–9623CrossRefGoogle Scholar
  98. Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrogen Energy 36:3465–3470CrossRefGoogle Scholar
  99. Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134CrossRefGoogle Scholar
  100. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestión: a review. Process Biochem 48:901–911CrossRefGoogle Scholar
  101. Zamalloa C, Vulsteke E, Albretch J, Verstraete W (2011) The technoeconomic potential of renewable energy through the anaerobic digeston of microalgae. Bioresour Technol 102:1149–1158CrossRefGoogle Scholar
  102. Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738CrossRefGoogle Scholar
  103. Zeshan Karthikeyan OP, Visvanathan C (2012) Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresour Technol 113:294–302CrossRefGoogle Scholar
  104. Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, Frear C (2014) Efficient anaerobic digestion of whole microalgae and lipid extracted microalgae residues for methane residues for methane energy production. Bioresour Technol 161:423–430CrossRefGoogle Scholar
  105. Zhong W, Zhang Z, Luo Y, Qiao W, Xiao M, Zhang M (2012) Biogas productivity by co-digesting taihu blue algae with corn straw as an external carbon source. Bioresour Technol 114:281–286CrossRefGoogle Scholar
  106. Zhu L (2014) The combined production of ethanol and biogas from microalgal residuals to sustain microalgal biodiesel: a theoretical evaluation. Biofuels Bioprod Biorefining 8:7–15CrossRefGoogle Scholar
  107. Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11(18):4127–4139Google Scholar
  108. Ziemiński K, Romanowska I, Kowalska M (2012) Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag 32(6):1131–1137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • David U. Santos-Ballardo
    • 1
    • 2
  • Sergio Rossi
    • 3
  • Cuauhtémoc Reyes-Moreno
    • 1
  • Angel Valdez-Ortiz
    • 1
  1. 1.Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-BiológicasUniversidad Autónoma de SinaloaCuliacánMexico
  2. 2.Maestría en Ciencias AplicadasUniversidad Politécnica de SinaloaMazatlánMexico
  3. 3.Institute of Environmental Science and Technology (ICTA)Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations