Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants

  • Reshma A. Chirakkara
  • Claudio Cameselle
  • Krishna R. Reddy
Review paper


Soil pollution is a major environmental problem and many contaminated sites are tainted with a mixture of organic and heavy metal contaminants. Compared to other remedial strategies, phytoremediation is a low cost, environmentally-friendly, sustainable means of remediating the contamination. This review first provides an overview of phytoremediation studies where the soil is contaminated with just one type of pollutant (heavy metals or organics) and then critically evaluates the applicability of phytotechnologies for the remediation of contaminated sites where the soil is polluted by a mixture of organic and heavy metal contaminants. In most of the earlier research studies, mixed contamination was held to be detrimental to plant growth, yet there were instances where plant growth was more successful in soil with mixed contamination than in the soil with only individual contaminants. New effective phytoremediation strategies can be designed for remediation of co-contaminated sites using: (a) plants species especially adapted to grow in the contaminated site (hyperacumulators, local plants, transgenic plants); (b) endophytic bacteria to enhance the degradation in the rizhosphere; (c) soil amendments to increase the contaminants bioavailability [chelating agents and (bio)surfactants]; (d) soil fertilization to enhance the plant growth and microbial activity in the soil; and (e) coupling phytoremediation with other remediation technologies such as electrokinetic remediation or enhanced biodegradation in the rhizosphere.


Mixed contamination Soil Phytoremediation Heavy metals Organic contaminants Chelates Electrokinetic remediation 


  1. Aboughalma H, Bi R, Schlaak M (2008) Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:926–933CrossRefGoogle Scholar
  2. Adesodun J, Atayese M, Agbaje TA, Osadiaye B, Mafe OF, Soretire A (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201CrossRefGoogle Scholar
  3. Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y et al (2013) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213CrossRefGoogle Scholar
  4. Alaribe FO, Agamuthu P (2015) Assessment of phytoremediation potentials of lantana camara in pb impacted soil with organic waste additives. Ecol Eng 83:513–520CrossRefGoogle Scholar
  5. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881CrossRefGoogle Scholar
  6. Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Onaindia M et al (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70CrossRefGoogle Scholar
  7. Andra SS, Datta R, Sarkar D, Saminathan SK, Mullens CP, Bach SB (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183CrossRefGoogle Scholar
  8. Appenroth K-J, Krech K, Keresztes A, Fischer W, Koloczek H (2010) Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 78:216–223CrossRefGoogle Scholar
  9. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122CrossRefGoogle Scholar
  10. Baker A, McGrath S, Sidoli C, Reeves R (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49CrossRefGoogle Scholar
  11. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, pp 85–107Google Scholar
  12. Banks M, Schultz K (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 167:211–219CrossRefGoogle Scholar
  13. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588CrossRefGoogle Scholar
  14. Barceló J, Poschenrieder C (2003) Phytoremediation:principles and perspectives. Contrib Sci 2:333–344Google Scholar
  15. Batty LC, Anslow M (2008) Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). Int J Phytoremediation 10:234–249CrossRefGoogle Scholar
  16. Batty LC, Dolan C (2013) The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit Rev Environ Sci Technol 43:217–259CrossRefGoogle Scholar
  17. Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández Á (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210CrossRefGoogle Scholar
  18. Bedmar MCL, Sanz AP, Inigo MJM, Benito AP (2009) Influence of coupled electrokinetic-phytoremediation on soil remediation. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken, pp 417–437CrossRefGoogle Scholar
  19. Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280CrossRefGoogle Scholar
  20. Bhadra R, Wayment D, Williams R, Barman S, Stone M, Hughes J et al (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264CrossRefGoogle Scholar
  21. Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83:318–326CrossRefGoogle Scholar
  22. Bjelková M, Genčurová V, Griga M (2011) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions:a potential for phytoremediation of Cd-contaminated soils. Ind Crops Prod 33:761–774CrossRefGoogle Scholar
  23. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865CrossRefGoogle Scholar
  24. Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44Google Scholar
  25. Bolton H, Girvin DC, Plymale AE, Harvey SD, Workman DJ (1996) Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii. Environ Sci Technol 30:931–938CrossRefGoogle Scholar
  26. Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, OxfordGoogle Scholar
  27. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11(1):2–12CrossRefGoogle Scholar
  28. Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4):626–636CrossRefGoogle Scholar
  29. Campbell S, Paquin D, Awaya JD, Li QX (2002) Remediation of benzo[a]pyrene and chrysene-contaminated soil with industrial hemp (Cannabis sativa). Int J Phytorem 4(2):157–168CrossRefGoogle Scholar
  30. Cang L, Zhou DM, Wang QY, Fan GP (2012) Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochim Acta 86:41–48CrossRefGoogle Scholar
  31. Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A et al (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut 157:2108–2117CrossRefGoogle Scholar
  32. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefGoogle Scholar
  33. Chang M, Wang M, Kuo DTF, Shih Y (2013) Sorption of selected aromatic compounds by vegetables. Ecol Eng 61:74–81CrossRefGoogle Scholar
  34. Chaudhry Q, Schröder P, Reichhart DW, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res 9:4–17CrossRefGoogle Scholar
  35. Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z et al (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166:1226–1231CrossRefGoogle Scholar
  36. Chen Y, Lin Q, He Y, Tian G (2004) Behavior of Cu and Zn under combined pollution of 2, 4-dichlorophenol in the planted soil. Plant Soil 261:127–134CrossRefGoogle Scholar
  37. Cheng K, Lai K, Wong J (2008) Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73:791–797CrossRefGoogle Scholar
  38. Cheng S, Huang C, Lin Y, Lin S, Chen K (2015) Phytoremediation of lead using corn in contaminated agricultural land-an in situ study and benefit assessment. Ecotoxicol Environ Saf 111:72–77CrossRefGoogle Scholar
  39. Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr-B [a] P-co-contaminated soil. Environ Sci Pollut Res 20(12):8955–8963CrossRefGoogle Scholar
  40. Chigbo C, Batty L (2015) Chelate-assisted phytoremediation of cu-pyrene-contaminated soil using Z. Mays. Water Air Soil Pollut 226(3). doi: 10.1007/s11270-014-2277-2
  41. Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90(10):2542–2548CrossRefGoogle Scholar
  42. Chirakkara RA, Reddy KR (2014) Phytoremediation of mixed contaminated soils—effects of initial concentrations. Geotech Spec Publ 241:1–10Google Scholar
  43. Chirakkara RA, Reddy KR (2015) Plant species identification for phytoremediation of mixed contaminated soils. J Hazard Toxic Radioact Waste 19(4). doi: 10.1061/(ASCE)HZ.2153-5515.0000282
  44. Chirakkara RA, Reddy KR, Cameselle C (2015) Electrokinetic amendment in phytoremediation of mixed contaminated soil. Electrochim Acta 181:179–191. doi: 10.1016/j.electacta.2015.01.025 CrossRefGoogle Scholar
  45. Cho Y, Bolick JA, Butcher DJ (2009) Phytoremediation of lead with green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight ferns (Pteris cretica cv Mayii). Microchem J 91:6–8CrossRefGoogle Scholar
  46. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719Google Scholar
  47. Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Tox Radioact Waste Manag 12:188–209CrossRefGoogle Scholar
  48. Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329CrossRefGoogle Scholar
  49. Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasagawa PM (eds) Plant biotechnology and agriculture. Academic Press, Oxford, pp 309–328Google Scholar
  50. Dominguez-Rosado E, Pichtel J (2004) Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environ Eng Sci 21:169–180CrossRefGoogle Scholar
  51. Dubé J-S, Galvez-Cloutier R, Winiarski T (2002) Heavy metal transport in soil contaminated by residual light non-aqueous phase liquids (LNAPLs). Can Geotech J 39:279–292CrossRefGoogle Scholar
  52. Dushenkov V, Kumar PN, Motto H, Raskin I (1995) Rhizofiltration:the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245CrossRefGoogle Scholar
  53. Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82(3):228–232CrossRefGoogle Scholar
  54. Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806CrossRefGoogle Scholar
  55. EGWRTAC (1997) Remediation of metals-contaminated soils and groundwater. Ground-Water Remediation Technologies Analysis Center. Technology Evaluation Report TE-97-01Google Scholar
  56. Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51(7):4861–4902CrossRefGoogle Scholar
  57. Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003CrossRefGoogle Scholar
  58. Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598CrossRefGoogle Scholar
  59. Galvez-Cloutier R, Dube JS. (2002) Impact of residual NAPL on water flow and heavy metal transfer in a multimodal grain size soil under saturation conditions: implications for contaminant mobility. Paper presented at the ASTM special technical publication 1415, pp 126–137Google Scholar
  60. Gao YZ, Ling WT, Wong MH (2006) Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere 63:1560–1567CrossRefGoogle Scholar
  61. Gao Y-Z, Ling W-T, Zhu L-Z, Zhao B-W, Zheng Q-S (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere 17:409–418CrossRefGoogle Scholar
  62. Gao Y, Xiong W, Ling W, Wang H, Ren L, Yang Z (2008a) Partitioning of polycyclic aromatic hydrocarbons between plant roots and water. Plant Soil 311:201–209CrossRefGoogle Scholar
  63. Gao YZ, Shen Q, Ling WT, Ren LL (2008b) Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant. Chemosphere 72:636–643CrossRefGoogle Scholar
  64. Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60Google Scholar
  65. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310CrossRefGoogle Scholar
  66. Germaine KJ, Mcguinness M, Dowling DN (2013) Improving phytoremediation through plant-associated bacteria. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, New York, pp 961–973CrossRefGoogle Scholar
  67. Gillette JS, Luthy RG, Clemett SJ, Zare RN (1999) Direct observation of polycyclic aromatic hydrocarbons on geosorbents at the subparticle scale. Environ Sci Technol 33:1185–1192CrossRefGoogle Scholar
  68. Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87:1077–1090CrossRefGoogle Scholar
  69. Gomes P, Valente T, Pamplona J, Sequeira Braga MA, Pissarra J, Grande Gil JA, de la Torre ML (2014) Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. Int J Phytorem 16(11):1087–1103CrossRefGoogle Scholar
  70. Greger M, Landberg T, Herbert R, Persson I (2014) Arsenic speciation in submerged and terrestrial soil-plant systems. Paper presented at the one century of the discovery of arsenicosis in Latin America (1914–2014): as 2014 – Proceedings of the 5th international congress on arsenic in the environment, pp 278–279Google Scholar
  71. Gutiérrez-Ginés MJ, Hernández AJ, Pérez-Leblic MI, Pastor J, Vangronsveld J (2014) Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with lupinus luteus L. and associated endophytic bacteria. J Environ Manage 143:197–207CrossRefGoogle Scholar
  72. Hamzah A, Kusuma Z, Utomo W, Guritno B (2012) Siam weed (Chromolaena odorata L.) for phytoremediation of artisanal gold mine tailings. J Trop Agric 50:88–91Google Scholar
  73. Hechmi N, Aissa NB, Abdennaceur H, Jedidi N (2013) Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int J Phytorem 15(7):703–713CrossRefGoogle Scholar
  74. Hechmi N, Aissa NB, Abdenaceur H, Jedidi N (2014) Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environ Sci Pollut Res 21(2):1304–1313CrossRefGoogle Scholar
  75. Hodko D, Hyfte JV, Denvir A, Magnuson JW (2000) Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena. US Patent number US 6145244 AGoogle Scholar
  76. Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805CrossRefGoogle Scholar
  77. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463CrossRefGoogle Scholar
  78. Huang H, Yu N, Wang L, Gupta D, He Z, Wang K et al (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038CrossRefGoogle Scholar
  79. Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009) In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecol Eng 35:1395–1404CrossRefGoogle Scholar
  80. Hyman M, Dupont RR (2001) Groundwater and soil remediation. Process design and cost estimating of proven technologies. ASCE Press, USACrossRefGoogle Scholar
  81. Kamath R, Rentz JA, Schnoor JL, Alvarez PJJ (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Stud Surf Sci Catal 151:447–478CrossRefGoogle Scholar
  82. Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139CrossRefGoogle Scholar
  83. Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M et al (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231CrossRefGoogle Scholar
  84. Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71(2):95–122CrossRefGoogle Scholar
  85. Kikuchi T, Tanaka S (2012) Biological removal and recovery of toxic heavy metals in water environment. Crit Rev Environ Sci Technol 42(10):1007–1057CrossRefGoogle Scholar
  86. Knight B, Zhao F, McGrath S, Shen Z (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78CrossRefGoogle Scholar
  87. Kobyłecka J, Skiba E (2008) The effect of phenoxyacetic herbicides on the uptake of copper, zinc and manganese by Triticum Aestivum L. Pol J Environ Stud 17(6):895–901Google Scholar
  88. Kos B, Leštan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629CrossRefGoogle Scholar
  89. Kotrba P, Najmanova J, Macek T, Ruml T, Macková M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810CrossRefGoogle Scholar
  90. Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204CrossRefGoogle Scholar
  91. Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18(3):431–439CrossRefGoogle Scholar
  92. Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596CrossRefGoogle Scholar
  93. Lee S, Kommalapati R, Valsaraj K, Pardue J, Constant W (2002) Rate-limited desorption of volatile organic compounds from soils and implications for the remediation of a Louisiana Superfund site. Environ Monit Assess 75:93–111CrossRefGoogle Scholar
  94. Lee I, Baek K, Kim H, Kim S, Kim J, Kwon Y et al (2007) Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J Environ Sci Health, Part A 42:2039–2045CrossRefGoogle Scholar
  95. Lemström S (1904) Electricity in agriculture and horticulture. “The Electrician” Printing & Publishing Company, Ltd., LondonCrossRefGoogle Scholar
  96. Liao S-W, Chang W-L (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Photogramm Eng Remote Sensing 54:177–185Google Scholar
  97. Liao C, Liang X, Lu G, Thai T, Xu W, Dang Z (2015) Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol Environ Saf 112:1–6CrossRefGoogle Scholar
  98. Lim J-M, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9CrossRefGoogle Scholar
  99. Lin Q, Mendelssohn IA (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng 10:263–274CrossRefGoogle Scholar
  100. Lin Q, Mendelssohn IA, Suidan MT, Lee K, Venosa AD (2002) The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora. Mar Pollut Bull 44:897–902CrossRefGoogle Scholar
  101. Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368:814–822CrossRefGoogle Scholar
  102. Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277CrossRefGoogle Scholar
  103. Liu R, Jadeja RN, Zhou Q, Liu Z (2012) Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ Eng Sci 29:494–501CrossRefGoogle Scholar
  104. Liu Y, Gao M, Gu Z, Luo Z, Ye Y, Lu L (2014) Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing gemini surfactants. J Hazard Mater 267:71–80CrossRefGoogle Scholar
  105. Loehr RC, Webster MT (1996) Behavior of fresh vs. aged chemicals in soil. Soil Sediment Contam 5:361–383CrossRefGoogle Scholar
  106. Lu M, Zhang ZZ (2014) Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant Soil 382(1–2):89–102CrossRefGoogle Scholar
  107. Lu LT, Chang IC, Hsiao TY, Yu YH, Ma HW (2007) Identification of pollution source of cadmium in soil: application of material flow analysis and a case study in Taiwan. Environ Sci Pollut Res 14(1):49–59CrossRefGoogle Scholar
  108. Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28(6):266A–275ACrossRefGoogle Scholar
  109. Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27:989–992CrossRefGoogle Scholar
  110. Macek T, Francová K, Kochánková L, Lovecká P, Ryslavá E, Rezek J, Surá M, Triska J, Demnerová K, Macková M (2004) Phytoremediation: biological cleaning of a polluted environment. Rev Environ Health 19(1):63–82CrossRefGoogle Scholar
  111. Madrid F, Liphadzi MS, Kirkham MB (2003) Heavy metal displacement in chelate-irrigated soil during phytoremediation. J Hydrol 272:107–119CrossRefGoogle Scholar
  112. Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435CrossRefGoogle Scholar
  113. Marchal G, Smith KEC, Mayer P, Wollesen De Jonge L, Karlson UG (2014) Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environ Pollut 188:124–131CrossRefGoogle Scholar
  114. Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356CrossRefGoogle Scholar
  115. Marmiroli N, Marmiroli M, Maestri E (2006) Phytoremediation and phytotechnologies: a review for the present and the future. In: Twardowska I, Allen HE, Haggblom MH (eds) Soil and water pollution monitoring, protection and remediation. NATO science series, vol 69. Springer, Dordretch, pp 403–416CrossRefGoogle Scholar
  116. Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334CrossRefGoogle Scholar
  117. Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654CrossRefGoogle Scholar
  118. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van Der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207CrossRefGoogle Scholar
  119. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282CrossRefGoogle Scholar
  120. McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232(1–2):207–214CrossRefGoogle Scholar
  121. Medina VF, McCutcheon SC (1996) Phytoremediation:modeling removal of TNT and its breakdown products. Remediat J 7:31–45CrossRefGoogle Scholar
  122. Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572CrossRefGoogle Scholar
  123. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375CrossRefGoogle Scholar
  124. Mehmood F, Rashid A, Mahmood T, Dawson L (2013) Effect of DTPA on Cd solubility in soil—accumulation and subsequent toxicity to lettuce. Chemosphere 90(6):1805–1810CrossRefGoogle Scholar
  125. Memarian R, Ramamurthy AS (2012) Effects of surfactants on rhizodegradation of oil in a contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1486–1490CrossRefGoogle Scholar
  126. Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138:86–91CrossRefGoogle Scholar
  127. Miller RM (1995) Biosurfactant-facilitated remediation of metal-contaminated soils. Environ Health Perspect 103:59CrossRefGoogle Scholar
  128. Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:191–1918CrossRefGoogle Scholar
  129. Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Van der Lelie D et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site:the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556CrossRefGoogle Scholar
  130. Mulder H, Wassink GR, Breure AM, van Andel JG, Rulkens WH (1998) Effect of nonionic surfactants on naphthalene dissolution and biodegradation. Biotechnol Bioeng 60:397–407CrossRefGoogle Scholar
  131. National Research Council (1997) Innovations in ground water and soil cleanup: from concept to commercialization. The National Academies Press, WashingtonGoogle Scholar
  132. Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490CrossRefGoogle Scholar
  133. Noordman WH, Wachter JH, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212CrossRefGoogle Scholar
  134. O’Connor CS, Lepp N, Edwards R, Sunderland G (2003) The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study. Environ Monit Assess 84:141–158CrossRefGoogle Scholar
  135. Ogra Y, Awaya Y, Anan Y (2015) Comparison of accumulation of four metalloids in allium sativum. Bull Environ Contam Toxicol 94(5):604–608CrossRefGoogle Scholar
  136. Olson PE, Fletcher JS (1999) Field evaluation of mulberry root structure with regard to phytoremediation. Bioremediat J 3:27–34CrossRefGoogle Scholar
  137. Ostrowska A, Porębska G, Szczubiałka Z (2006) Limitation of Pb and Cd uptake by pine. Environ Eng Sci 23:595–602CrossRefGoogle Scholar
  138. Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M et al (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytorem 13:245–263CrossRefGoogle Scholar
  139. Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytorem 3:245–287CrossRefGoogle Scholar
  140. Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228CrossRefGoogle Scholar
  141. Palmroth M, Koskinen PP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen AT et al (2006) Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soil Sediments 6:128–136CrossRefGoogle Scholar
  142. Pavel P-, Puschenreiter M, Wenzel WW, Diacu E, Barbu CH (2014) Aided phytostabilization using miscanthus sinensis × giganteus on heavy metal-contaminated soils. Sci Total Environ 479–480(1):125–131CrossRefGoogle Scholar
  143. Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301CrossRefGoogle Scholar
  144. Pérez-López R, Márquez-García B, Abreu MM, Nieto JM, Córdoba F (2014) Erica andevalensis and erica australis growing in the same extreme environments: phytostabilization potential of mining areas. Geoderma 230–231:194–203CrossRefGoogle Scholar
  145. Pichtel J, Liskanen P (2001) Degradation of diesel fuel in rhizosphere soil. Environ Eng Sci 18:145–157CrossRefGoogle Scholar
  146. Pignatello JJ, Katz BG, Li H (2010) Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series. J Environ Qual 39(4):1133–1138CrossRefGoogle Scholar
  147. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  148. Poly B, Sreedeep S (2011) Influence of soil-multiple contaminant retention parameters on contaminant fate prediction. J Hazard Toxic Radioact Waste 15(3):180–187CrossRefGoogle Scholar
  149. Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil Sediment Contam 7(4):467–480CrossRefGoogle Scholar
  150. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540CrossRefGoogle Scholar
  151. Qiu X, Reed BE, Viadero RC (2004) Effects of flavonoids on 14C [7, 10]-benzo [a] pyrene degradation in root zone soil. Environ Eng Sci 21:637–646CrossRefGoogle Scholar
  152. Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Pollut 223:511–518CrossRefGoogle Scholar
  153. Ramamurthy AS, Memarian R (2014) Chelate enhanced phytoremediation of soil containing a mixed contaminant. Environ Earth Sci 72(1):201–206CrossRefGoogle Scholar
  154. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180(2):169–181CrossRefGoogle Scholar
  155. Reddy KR (2011) Special issue on contaminant mixtures: fate, transport, and remediation. J Hazard Toxic Radioact Waste 15:128–129CrossRefGoogle Scholar
  156. Reddy KR, Chinthamreddy S, Saichek RE, Cutright TJ (2003) Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics. Energy Sources 25(9):931–943CrossRefGoogle Scholar
  157. Rentz JA, Chapman B, Alvarez PJJ, Schnoor JL (2003) Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments. Int J Phytorem 5:57–72CrossRefGoogle Scholar
  158. Robinson B, Leblanc M, Petit D, Brooks R, Kirkman J, Gregg PH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56CrossRefGoogle Scholar
  159. Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306CrossRefGoogle Scholar
  160. Roongtanakiat N, Chairoj P (2001) Uptake potential of some heavy metals by vetiver grass. Kasetsart J (Nat Sci) 35:46–50Google Scholar
  161. Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81CrossRefGoogle Scholar
  162. Saathoff AJ, Ahner B, Spanswick RM, Walker LP (2011) Detection of phytochelatin in the xylem sap of Brassica napus. Environ Eng Sci 28:103–111CrossRefGoogle Scholar
  163. Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192CrossRefGoogle Scholar
  164. Said W, Lewis D (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57:1498–1503Google Scholar
  165. Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101CrossRefGoogle Scholar
  166. Sawyer C, McCarty P, Parkin G (1978) Chemistry for environmental engineers, 3rd edn. McGraw Hill Book Company, New YorkGoogle Scholar
  167. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323ACrossRefGoogle Scholar
  168. Schubert M (2015) Using radon as environmental tracer for the assessment of subsurface non-aqueous phase liquid (NAPL) contamination—a review. Eur Phys J Spec Top 224(4):717–730CrossRefGoogle Scholar
  169. Schwarzenbach R, Gshwend P, Imboden D (1993) Sorption: solid-aqueous solution exchange. In: Schwarzenbach R, Gshwend P, Imboden D (eds) Environmental organic chemistry. New York: Wiley-InterscienceGoogle Scholar
  170. Schwitzguébel J (2016) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments. doi: 10.1007/s11368-015-1253-9
  171. Shanker AK, Ravichandran V, Pathmanabhan G (2005) Phytoaccumulation of chromium by some multipurpose-tree seedlings. Agrofor Syst 64(1):83–87CrossRefGoogle Scholar
  172. Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, New YorkGoogle Scholar
  173. Sharma J, Bhar S, Veerappapillai S (2015) Phytoremediation of polychlorinated biphenyls: a brief review. Res J Pharm Biol Chem Sci 6(2):1466–1471Google Scholar
  174. Shen Z, Zhao F, McGrath S (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell Environ 20:898–906CrossRefGoogle Scholar
  175. Sheoran V, Sheoran AS, Poonia P (2012) Phytoremediation of metal contaminated mining sites. Int J Earth Sci Eng 5:428–436Google Scholar
  176. Shi X, Zhang X, Chen G, Chen Y, Wang L, Shan X (2011) Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. J Environ Sci 23(2):266–274CrossRefGoogle Scholar
  177. Shutcha MN, Faucon M-, Kamengwa Kissi C, Colinet G, Mahy G, Ngongo Luhembwe M, Visser M, Meerts P (2015) Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical africa (katanga, DR congo). Ecol Eng 82:81–90CrossRefGoogle Scholar
  178. Singer AC, Bell T, Heywood CA, Smith JAC, Thompson IP (2007) Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environ Pollut 147(1):74–82CrossRefGoogle Scholar
  179. Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127CrossRefGoogle Scholar
  180. Singh S, Eapen S, Thorat V, Kaushik CP, Raj K, D’Souza SF (2008) Phytoremediation of 137 cesium and 90 strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicol Environ Saf 69:306–311CrossRefGoogle Scholar
  181. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43(3):246–253CrossRefGoogle Scholar
  182. Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11(3):229–254CrossRefGoogle Scholar
  183. Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082CrossRefGoogle Scholar
  184. Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X (2013) The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula. J Environ Manage 114:202–208CrossRefGoogle Scholar
  185. Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241CrossRefGoogle Scholar
  186. USEPA (1995) Contaminants and remedial options at selected metal-contaminated sites. Report number EPA/540/R-95/512Google Scholar
  187. USEPA (1996) Sources of lead in soil. Report number EPA 747-R-98-001bGoogle Scholar
  188. USEPA (1997) Clean up the nation’s waste sites: markets and technology trends. Report number EPA 542-R-96-005Google Scholar
  189. USEPA (1999) Introduction to phytoremediation. Report number EPA/600/R 99/107. Washington: Office of Research and DevelopmentGoogle Scholar
  190. USEPA (2006) In situ treatment technologies for contaminated soil. Report number EPA 542/F-06/013Google Scholar
  191. USGAO (2010) SUPERFUND. EPA’s estimated costs to remediate existing sites exceed current funding levels, and more sites are expected to be added to the national priorities list. United States Government Accountability Office. Report number GAO-10-380Google Scholar
  192. Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236CrossRefGoogle Scholar
  193. Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417CrossRefGoogle Scholar
  194. Wang JY, Yang L, Tseng C-C, Hsu H-L (2008) Application of phytoremediation on soil contaminated by pyrene. Environ Eng Sci 25:829–838CrossRefGoogle Scholar
  195. Wei SH, Zhou QX (2006) Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res 13:151–155CrossRefGoogle Scholar
  196. Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J et al (2010) Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mater 176:269–273CrossRefGoogle Scholar
  197. Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700CrossRefGoogle Scholar
  198. Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L et al (2009) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418CrossRefGoogle Scholar
  199. Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R et al (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427CrossRefGoogle Scholar
  200. Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S et al (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytorem 13:244–255CrossRefGoogle Scholar
  201. White JC (2009) Optimizing planting density for p, p’-DDE phytoextraction by Cucurbita pepo. Environ Eng Sci 26:369–376CrossRefGoogle Scholar
  202. White PM, Wolf DC, Thomas GJ, Reynolds CM (2005) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220CrossRefGoogle Scholar
  203. Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G et al (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53CrossRefGoogle Scholar
  204. Wójcik M, Sugier P, Siebielec G (2014) Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci Total Environ 487(1):313–322CrossRefGoogle Scholar
  205. Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318CrossRefGoogle Scholar
  206. Wu L, Luo Y, Song J (2007) Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. In: Willey N (ed) Phytoremediation. Nato science series, vol 69. Dordretch, Springer, pp 291–303Google Scholar
  207. Wu L, Li Z, Han C, Liu L, Teng Y, Sun X et al (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int J Phytorem 14(6):570–584CrossRefGoogle Scholar
  208. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi: 10.5402/2011/402647 Google Scholar
  209. Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34CrossRefGoogle Scholar
  210. Zhang H, Dang Z, Zheng L, Yi X (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6:249–258CrossRefGoogle Scholar
  211. Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066CrossRefGoogle Scholar
  212. Zhi-Xin N, Sun LN, Sun TH, Li YS, Wang H (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci (China) 19:961–967CrossRefGoogle Scholar
  213. Zhou DM, Chen HF, Cang L, Wang YL (2007) Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. Chemosphere 67:1671–1676CrossRefGoogle Scholar
  214. Zhu YL, Zayed AM, Qian J-H, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28(1):339–344CrossRefGoogle Scholar
  215. Zhu Z-q, Yang X-e, Wang K, Huang H-g, Zhang X, Fang H et al (2012) Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. J Hazard Mater 235–236:144–151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Civil and Materials EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Chemical EngineeringUniversity of VigoVigoSpain

Personalised recommendations