A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading

  • Raúl MuñozEmail author
  • Leslie Meier
  • Israel Diaz
  • David Jeison
Review paper


The lack of tax incentives for biomethane use requires the optimization of both biogas production and upgrading in order to allow the full exploitation of this renewable energy source. The large number of biomethane contaminants present in biogas (CO2, H2S, H2O, N2, O2, methyl siloxanes, halocarbons) has resulted in complex sequences of upgrading processes based on conventional physical/chemical technologies capable of providing CH4 purities of 88–98 % and H2S, halocarbons and methyl siloxane removals >99 %. Unfortunately, the high consumption of energy and chemicals limits nowadays the environmental and economic sustainability of conventional biogas upgrading technologies. In this context, biotechnologies can offer a low cost and environmentally friendly alternative to physical/chemical biogas upgrading. Thus, biotechnologies such as H2-based chemoautrophic CO2 bioconversion to CH4, microalgae-based CO2 fixation, enzymatic CO2 dissolution, fermentative CO2 reduction and digestion with in situ CO2 desorption have consistently shown CO2 removals of 80–100 % and CH4 purities of 88–100 %, while allowing the conversion of CO2 into valuable bio-products and even a simultaneous H2S removal. Likewise, H2S removals >99 % are typically reported in aerobic and anoxic biotrickling filters, algal-bacterial photobioreactors and digesters under microaerophilic conditions. Even, methyl siloxanes and halocarbons are potentially subject to aerobic and anaerobic biodegradation. However, despite these promising results, most biotechnologies still require further optimization and scale-up in order to compete with their physical/chemical counterparts. This review critically presents and discusses the state of the art of biogas upgrading technologies with special emphasis on biotechnologies for CO2, H2S, siloxane and halocarbon removal.


Biomethane Biotechnologies Carbon dioxide removal Hydrogen sulfide removal Siloxane removal Trace biogas contaminants 



The financial support of CONICYT-Chile (MEC Program Grant Nº: 80130013 and FONDECYT 1120488) is gratefully acknowledged. This work was also supported by the Regional Government of Castilla y León (Project VA024U14 and GR76) and the Spanish Ministry of Economy and Competitiveness (CTQ2012-34949 and RED NOVEDAR).


  1. Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Bioref 3:42–71. doi: 10.1002/bbb.117 CrossRefGoogle Scholar
  2. Accettola F, Guebitz G, Schoeftner R (2008) Siloxane removal from biogas by biofiltration: biodegradation studies. Clean Techn Environ Policy 10:211–218. doi: 10.1007/s10098-007-0141-4 CrossRefGoogle Scholar
  3. Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353. doi: 10.1016/j.biotechadv.2012.02.005 CrossRefGoogle Scholar
  4. Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas—a technology overview. Bioresour Technol 101:2913–2923. doi: 10.1016/j.biortech.2009.12.018 CrossRefGoogle Scholar
  5. Ako O, Kitamura Y, Intabon K, Satake T (2008) Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors. Bioresour Technol 99:6305–6310. doi: 10.1016/j.biortech.2007.12.016 CrossRefGoogle Scholar
  6. Alcántara C, García-Encina R, Muñoz R (2013) Evaluation of mass and energy balances in the integrated microalgae growth-anaerobic digestion process. Chem Eng J 221:238–246. doi: 10.1016/j.cej.2013.01.100 CrossRefGoogle Scholar
  7. Andriani D, Wresta A, Atmaja T, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928. doi: 10.1007/s12010-013-0652-x CrossRefGoogle Scholar
  8. Bahr M, Díaz I, Dominguez A, González Sánchez A, Muñoz R (2014) Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol 48:573–581. doi: 10.1021/es403596m CrossRefGoogle Scholar
  9. Bailón L, Hinge J (2012) Report: biogas and bio-syngas upgrading. Danish Technological Institute. Accessed 8 Dec 2014
  10. Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interf Sci 246:1–20. doi: 10.1006/jcis.2001.7952 CrossRefGoogle Scholar
  11. Basu S, Khan A, Cano-Odena A, Liu C, Vankelecom I (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768. doi: 10.1039/B817050A CrossRefGoogle Scholar
  12. Bauer F, Persson T, Hulteberg C, Tamm D (2013a) Biogas upgrading—technology overview, comparison and perspectives for the future. Biofuels Bioprod Bioref 7:499–511. doi: 10.1002/bbb.1423 CrossRefGoogle Scholar
  13. Bauer F, Hulteberg C, Persson T, Tamm D (2013b) Biogas upgrading—review of commercial technologies. SGC Rapport 2013:270. SGC. Accessed 10 Oct 2014
  14. Beggel F, Nowik IJ, Modigell M, Shalygin MG, Teplyakov VV, Zenkevitch VB (2010) A novel gas purification system for biologically produced gases. J Clean Prod 18:S43–S50. doi: 10.1016/j.jclepro.2010.06.015 CrossRefGoogle Scholar
  15. Beil M (2009) Overview on biogas upgrading technologies. In: European biomethane fuel conference, Goteborg, Sweden, 18 December 2009Google Scholar
  16. Benjaminsson J (2006) NYA Renings—Och Uppgraderingstekniker för biogas: Rapport SGC 163. Svenskt Gastekniskt Center. Accessed 20 Dec 2014
  17. Berndt A (2006) Intelligent utilization of biogas—upgrading and adding to the grid. CarboTech Engineering GmbH. Accessed 12 Dec 2014
  18. Bilfinger EMS GmbH (2014) Bio-gas upgrading process. Accessed 16 Dec 2014
  19. BOE (2013) Resolución de 21 de diciembre de 2012, Dirección General de Política Energética y Minas, por la que se modifica el protocolo de detalle PD-01 «Medición, Calidad y Odorización de Gas» de las normas de gestión técnica del sistema gasista. BOE No 6 (7 January 2013). Ministerio de Industria, Energía y TurismoGoogle Scholar
  20. Broekhuis R, Koch D, Lynn S (1992) A medium-temperature process for removal of hydrogen sulfide from sour gas streams with aqueous metal sulfate solutions. Ind Eng Chem Res 31:2635–2642. doi: 10.1021/ie00012a002 CrossRefGoogle Scholar
  21. Bugante E, Shimomura Y, Tanaka T, Taniguchi M, Oi S (1989) Methane production from hydrogen and carbon dioxide and monoxide in a column bioreactor of thermophilic methanogens by gas recirculation. J Ferment Bioeng 67:419–421. doi: 10.1016/0922-338X(89)90148-7 CrossRefGoogle Scholar
  22. Burkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energ 111:74–79. doi: 10.1016/j.apenergy.2013.04.080 CrossRefGoogle Scholar
  23. Conde JL, Moro LE, Travieso L, Sanchez EP, Leiva A, Dupeirón R, Escobedo R (1993) Biogas purification process using intensive microalgae cultures. Biotechnol Lett 15:317–320. doi: 10.1007/BF00128326 CrossRefGoogle Scholar
  24. Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100:5771–5776. doi: 10.1016/j.biortech.2009.05.072 CrossRefGoogle Scholar
  25. CO2 Solutions (2014) Harnessing nature for efficient carbon capture. Accessed 2 Jan 2015
  26. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337. doi: 10.1007/s10811-012-9810-8 CrossRefGoogle Scholar
  27. De Godos I, Mendoza JL, Acién FG, Molina E, Banks J, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314. doi: 10.1016/j.biortech.2013.11.087 CrossRefGoogle Scholar
  28. Deipser A, Stegmann R (1997) Biological degradation of VCCs and CFCs under simulated anaerobic landfill conditions in laboratory test digesters. Environ Sci Pollut Res Int 4:209–216CrossRefGoogle Scholar
  29. Demmink J, Beenackers A (1998) Gas desulfurization with ferric chelates of EDTA and HEDTA: new model for the oxidative absorption of hydrogen sulfide. Ind Eng Chem Res 37:1444–1453. doi: 10.1021/ie970427n CrossRefGoogle Scholar
  30. Deng L, Chen H, Chen Z, Liu Y, Pu X, Song L (2009) Process of simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine wastewater. Bioresour Technol 100(23):5600–5608. doi: 10.1016/j.biortech.2009.06.012 CrossRefGoogle Scholar
  31. Díaz I, Lopes AC, Perez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101:7724–7730. doi: 10.1016/j.biortech.2010.04.062 CrossRefGoogle Scholar
  32. Díaz I, Lopes AC, Perez SI, Fdz-Polanco M (2011a) Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters. Water Sci Technol 64:233–238. doi: 10.2166/wst.2011.648 CrossRefGoogle Scholar
  33. Díaz I, Pérez SI, Ferrero EM, Fdz-Polanco M (2011b) Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresour Technol 102:3768–3775. doi: 10.1016/j.biortech.2010.12.016 CrossRefGoogle Scholar
  34. Díaz I, Pérez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253CrossRefGoogle Scholar
  35. DMT (2014a) The DMT Carborex® PWS biogas upgrading system. Dirkse-milieutechniek. Accessed 11 Dec 2014
  36. DMT (2014b) The DMT Carborex® MS biogas upgrading system. Dirkse-milieutechniek. Accessed 22 Dec 2014
  37. Dolejs P, Paclík L, Maca J, Pokorna D, Zabranska J, Bartacek J (2015) Effect of S/N ratio on sulfide removal by autotrophic denitrification. Appl Microbiol Biotechnol 99(5):2383–2392. doi: 10.1007/s00253-014-6140-6 CrossRefGoogle Scholar
  38. Dousková I, Kastánek F, Maléterová Y, Kastánek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energ Convers Manage 51:606–611. doi: 10.1016/j.enconman.2009.11.008 CrossRefGoogle Scholar
  39. Energy Transition–Creative Energy (2014) From biogas to green gas: upgrading techniques and suppliers. Accessed 16 Dec 2014
  40. Estrada JM, Kraakman NJR, Lebrero R, Muñoz R (2012) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30:1354–1363. doi: 10.1016/j.biotechadv.2012.02.010 CrossRefGoogle Scholar
  41. EurObserv’ER (2014) Biogas barometer. Accessed 20 Dec 2014
  42. European Biogas Association (2013) Proposal for a European biomethane roadmap. Accessed 5 Jan 2015
  43. Fernández M, Ramírez M, Gómez JM, Cantero D (2014) Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J Hazard Mater 264:529–535. doi: 10.1016/j.jhazmat.2013.10.046 CrossRefGoogle Scholar
  44. Fortuny M, Gamisans X, Deshusses MA, Lafuente J, Casas C, Gabriel D (2011) Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters. Water Res 45:5665–5674. doi: 10.1016/j.watres.2011.08.029 CrossRefGoogle Scholar
  45. Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci USA 100:6308–6312. doi: 10.1073/pnas.0731894100 CrossRefGoogle Scholar
  46. Grande CA (2011) Biogas upgrading by pressure swing adsorption. Biofuel Eng Process Technol. doi: 10.5772/18428 Google Scholar
  47. Gunnarsson I, Alvarado-Morales M, Angelidaki I (2014) Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production. Environ Sci Technol 48:12464–12468. doi: 10.1021/es504000h CrossRefGoogle Scholar
  48. Günther L (2007) DGE GmbH presentation: purification of biomethane using pressureless purification for the production of biomethane and carbon dioxide. INNOGAS. Accessed 12 Dec 2014
  49. Hagmann M, Hesse E, Hentschel P, Bauer T (2001) Purification of biogas removal of volatile silicones. In: 8th international waste management and landfill symposium, Sardinia, 2001, pp 641–644Google Scholar
  50. Higgins V (2007) Siloxane removal process. Parker-Hannifin Corporation. US7306652 B2, 11 Dec 2007Google Scholar
  51. Horikawa M, Rossi F, Gimenes M, Costa C, Silva M (2004) Chemical absorption of H2S for biogas purification. Brazilian J Chem Eng 21:415–422. doi: 10.1590/S0104-66322004000300006 CrossRefGoogle Scholar
  52. Huguen P, Le Saux G (2010) Perspectives for a European standard on biomethane: a biogasmax proposal. European Biogasmax Project Accessed 10 Oct 2014
  53. Hullu J, Maassen J, Van Meel P, Shazad S, Vaessen J (2008) Comparing different biogas upgrading techniques. Eindhoven University of Technology. Accessed 20 Sep 2014
  54. INN (2010) NCh 3213. Of 2010. Biometano—especificaciones. Santiago, ChileGoogle Scholar
  55. Iovane P, Nanna F, Ding Y, Bikson B, Molino A (2014) Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel 135:352–358. doi: 10.1016/j.fuel.2014.06.060 CrossRefGoogle Scholar
  56. Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123. doi: 10.1016/S1537-5110(03)00110-7 CrossRefGoogle Scholar
  57. Jee H, Yano T, Nishio N, Nagai S (1987) Biomethanation of H2 and CO2 by Methanobacterium thermoautotrophicum in membrane and ceramic bioreactors. J Ferment Technol 65:413–418. doi: 10.1016/0385-6380(87)90137-3 CrossRefGoogle Scholar
  58. Jee H, Nishio N, Nagai S (1988) Continuous CH4 production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor. J Ferment Technol 66:235–238. doi: 10.1016/0385-6380(88)90054-4 CrossRefGoogle Scholar
  59. Jenicek P, Keclik F, Maca J, Bindzar J (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci Technol 58:1491–1496. doi: 10.2166/wst.2008.493 CrossRefGoogle Scholar
  60. Jenicek P, Koubova J, Bindzar J, Zabranska J (2010) Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Sci Technol 62:427–434. doi: 10.2166/wst.2010.305 CrossRefGoogle Scholar
  61. Jenicek P, Celis CA, Koubova J, Pokorna D (2011) Comparison of microbial activity in anaerobic and microaerobic digesters. Water Sci Technol 63:2244–2249. doi: 10.2166/wst.2011.579 CrossRefGoogle Scholar
  62. Jönsson O, Polman E, Jensen J, Eklund R, Schyl H, Ivarsson S (2003) Sustainable gas enters the European Gas Distribution System. In: World gas conference, TokioGoogle Scholar
  63. Ju D, Shin J, Lee H, Kong S, Kim J, Sang B (2008) Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf–MBfR). Desalination 234. doi: 10.1016/j.desal.2007.09.111
  64. Kao C-Y, Chiu S-Y, Huang T-T, Dai L, Hsu L-K, Lin C-S (2012) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl Energ 93:176–183. doi: 10.1016/j.apenergy.2011.12.082 CrossRefGoogle Scholar
  65. Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energ 30:1195–1202. doi: 10.1016/j.renene.2004.09.012 CrossRefGoogle Scholar
  66. Kim S, Choi K, Chung J (2013) Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry. Int J Hydrogen Energ 38:3488–3496. doi: 10.1016/j.ijhydene.2012.12.007 CrossRefGoogle Scholar
  67. Kobayashi T, Li Y-Y, Kubota K, Harada H, Maeda T, Yu H-Q (2012) Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Appl Microbiol Biotechnol 93:847–857. doi: 10.1007/s00253-011-3445-6 CrossRefGoogle Scholar
  68. Kohl A, Neilsen R (1997) Gas purification, 5th edn. Gulf Professional Publishing, HoustonGoogle Scholar
  69. Krayzelova L, Bartacek J, Kolesarova N, Jenicek P (2014) Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour Technol 172:297–302. doi: 10.1016/j.biortech.2014.09.056 CrossRefGoogle Scholar
  70. Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ (2005) Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem Eng Sci 60:5895–5916. doi: 10.1016/j.ces.2005.03.022 CrossRefGoogle Scholar
  71. Lee EY, Lee NY, Cho K-S, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101:309–314. doi: 10.1263/jbb.101.309 CrossRefGoogle Scholar
  72. Lee J, Kim J, Chang W, Pak D (2012) Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. J Chem Technol Biotechnol 87:844–847. doi: 10.1002/jctb.3787 CrossRefGoogle Scholar
  73. Lindberg A, Rasmuson ÅC (2006) Selective desorption of carbon dioxide from sewage sludge for in situ methane enrichment—part I: pilot-plant experiments. Biotechnol Bioeng 95:794–803. doi: 10.1002/bit.21015 CrossRefGoogle Scholar
  74. Lollar B, Hirschorn S, Mundle S, Grostern A, Edwards E, Lacrampe-Couloume G (2010) Insights into enzyme kinetics of chloroethane biodegradation using compound specific stable isotopes. Environ Sci Technol 44:7498–7503. doi: 10.1021/es101330r CrossRefGoogle Scholar
  75. López JC, Quijano G, Souza TSO, Estrada JM, Lebrero R, Muñoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, CO2) abatement: state-of-the-art and challenges. Appl Microbiol Biot 97:2277–2303. doi: 10.1007/s00253-013-4734-z CrossRefGoogle Scholar
  76. Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109:2729–2736. doi: 10.1002/bit.24557 CrossRefGoogle Scholar
  77. Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381. doi: 10.1007/s00253-012-4547-5 CrossRefGoogle Scholar
  78. Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109:1088–1094. doi: 10.1002/bit.24360 CrossRefGoogle Scholar
  79. Luo G, Wang W, Angelidaki I (2014) A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent. Appl Energ 132:536–542. doi: 10.1016/j.apenergy.2014.07.059 CrossRefGoogle Scholar
  80. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin-Cummings, San FranciscoGoogle Scholar
  81. Maestre JP, Rovira R, Álvarez-Hornos FJ, Fortuny M, Lafuente J, Gamisans X, Gabriel D (2010) Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere 80:872–880. doi: 10.1016/j.chemosphere.2010.05.019 CrossRefGoogle Scholar
  82. Malmberg (2014) Upgrade biogas to biomethane with reliable technology. Accessed 11 Dec 2014
  83. Mandeno G, Craggs R, Tanner C, Sukias J, Webster-Brown J (2005) Potential biogas scrubbing using a high rate pond. Water Sci Technol 51:253–256Google Scholar
  84. Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas conditioning with microalgae. Agron Res 7:33–38Google Scholar
  85. Marcogaz (2006) Injection of gases from non-conventional sources into gas networks. Marcogaz. Accessed 6 March 2014
  86. Mattiasson B (2005) Ekologisk lunga för biogasuppgradering. Nationellt Samverkansprojekt Biogas i Fordon. Accessed 28 Dec 2014
  87. McKinsey Z (2003) Removal of hydrogen sulfide from biogas using cow manure compost. Master of Science Thesis, Cornell University, New YorkGoogle Scholar
  88. Meier L, Pérez R, Azócar L, Rivas M, Jeison D (2015) Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading. Biomass Bioenerg 73:102–109. doi: 10.1016/j.biombioe.2014.10.032 CrossRefGoogle Scholar
  89. Miltner M, Makaruk A, Krischan J, Harasek M (2012) Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: potentials and economics. Water Sci Technol 66:1354–1360. doi: 10.2166/wst.2012.329 CrossRefGoogle Scholar
  90. Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy Convers Manage 36:763–766. doi: 10.1016/0196-8904(95)00116-U CrossRefGoogle Scholar
  91. Montebello A (2013) Aerobic Biotrickling filtration for biogas desulfurization environmental science and technology PhD Thesis, Universitat Autònoma de Barcelona, BellaterraGoogle Scholar
  92. Montebello AM, Fernández M, Almenglo F, Ramírez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200–202:237–246. doi: 10.1016/j.cej.2012.06.043 CrossRefGoogle Scholar
  93. Montebello A, Mora M, López L, Bezerra T, Gamisans X, Lafuente J, Baeza M, Gabriela D (2014) Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor. J Hazard Mater 280:200–208. doi: 10.1016/j.jhazmat.2014.07.075 CrossRefGoogle Scholar
  94. Mora M, Fernández M, Gómez JM, Cantero D, Lafuente J, Gamisans X, Gabriel D (2014) Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Appl Microbiol Biotechnol 99:77–87. doi: 10.1007/s00253-014-5688-5 CrossRefGoogle Scholar
  95. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301. doi: 10.1007/s00253-010-2697-x CrossRefGoogle Scholar
  96. Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815. doi: 10.1016/j.watres.2006.06.011 CrossRefGoogle Scholar
  97. Nghiem LD, Manassa P, Dawson M, Fitzgerald SK (2014) Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour Technol 173:443–447. doi: 10.1016/j.biortech.2014.09.052 CrossRefGoogle Scholar
  98. Neumann DW, Lynn S (1984) Oxidative adsorption of H2S and O2 by iron chelate solutions. AIChE J 30:62–69CrossRefGoogle Scholar
  99. Nordberg Å, Edström M, Uusi-Penttilä M, Rasmuson ÅC (2012) Selective desorption of carbon dioxide from sewage sludge for in situ methane enrichment: enrichment experiments in pilot scale. Biomass Bioenerg 37:196–204. doi: 10.1016/j.biombioe.2011.12.012 CrossRefGoogle Scholar
  100. Patterson T, Esteves S, Dinsdale R, Guwy A (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energ Policy 39:1806–1816. doi: 10.1016/j.enpol.2011.01.017 CrossRefGoogle Scholar
  101. Peillex J, Fardeau M, Boussand R, Navarro J, Belaich J (1988) Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation. Appl Microbiol Biotechnol 29:560–564. doi: 10.1007/BF00260985 Google Scholar
  102. Persson M (2003) Evaluation of upgrading techniques for biogas. Rapport SGC 142. Swedish Gas Center. Accessed 5 Aug 2014
  103. Persson M (2007) Biogas upgrading and utilization as vehicle fuel. In: European biogas workshop—the future of biogas in Europe III. University of Southern Denmark, pp 59–64Google Scholar
  104. Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy. Accessed 1 April 2013
  105. Persson M, Wellinger A, Rehnlund B, Rahm L (2007) Report on technological applicability of existing biogas upgrading processes. Biogasmax. Accessed 20 Oct 2014
  106. Petersson A, Wellinger A (2009) Biogas upgrading technologies—developments and innovations. IEA Bioenergy. Task 37. Accessed 5 June 2014
  107. Popat S, Deshusses M (2008) Biological removal of siloxanes from landfill and digester gases: opportunities and challenges. Environ Sci Technol 42:8510–8515. doi: 10.1021/es801320w CrossRefGoogle Scholar
  108. Puregas P (2014) Biogas upgrading. Accessed 15 Dec 2014
  109. Putt R, Singh M, Chinnasamy S, Das KC (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol 102:3240–3245. doi: 10.1016/j.biortech.2010.11.029 CrossRefGoogle Scholar
  110. Raja R, Hemaiswarya S, Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88. doi: 10.1080/10408410802086783 CrossRefGoogle Scholar
  111. Ramos I, Fdz-Polanco M (2014) Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration. Chem Eng J 250:303–311. doi: 10.1016/j.cej.2014.04.027 CrossRefGoogle Scholar
  112. Ramos I, Perez R, Reinoso M, Torio R, Fdz-Polanco M (2014) Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour Technol 164:338–346. doi: 10.1016/j.biortech.2014.04.109 CrossRefGoogle Scholar
  113. Rasi S (2009) Biogas composition and upgrading to biomethane. University of Jyväskylä, JyväskyläGoogle Scholar
  114. Raven JA, Cockell CS, De la Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc B 363:2641–2650. doi: 10.1098/rstb.2008.0020 CrossRefGoogle Scholar
  115. Rodriguez G, Dorado AD, Fortuny M, Gabriel D, Gamisans X (2014) Biotrickling filters for biogas sweetening: oxygen transfer improvement for a reliable operation. Process Saf Environ 92:261–268. doi: 10.1016/j.psep.2013.02.002 CrossRefGoogle Scholar
  116. Rodríguez E, Lopes A, Fdz-Polanco M, Stams AJM, García-Encina P (2012) Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions. Appl Microbiol Biotechnol 93:2181–2191. doi: 10.1007/s00253-011-3529-3 CrossRefGoogle Scholar
  117. Rutledge B (2005) California biogas industry assessment white paper. WestStart-CALSTART. Accessed 7 March 2014
  118. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenerg 35:1633–1645. doi: 10.1016/j.biombioe.2011.02.033 CrossRefGoogle Scholar
  119. Schmidt K, Augenstein T, Heidinger M, Ertl S, Tiehm A (2010) Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source: stable carbon isotope fractionation and growth characteristics. Chemosphere 78:527–532. doi: 10.1016/j.chemosphere.2009.11.033 CrossRefGoogle Scholar
  120. Schneider RL, Quicker P, Anzer T, Prechtl S, Faulstich M (2002) Grundlegende Untersuchungen zur effektiven, kostengünstigen Entfernung von Schwefelwasserstoff aus Biogas. In: Biogasanlagen Anforderungen zur Luftreinhaltung. AusburgGoogle Scholar
  121. Schweigkofler M, Niessner R (2001) Removal of siloxanes in biogases. J Hazard Mater B83:183–196CrossRefGoogle Scholar
  122. Schwelm Anlagentechnik GmbH (2014) Biogas conditioning. Accessed 16 Dec 2014
  123. Serejo M, Posadas E, Boncz M, Blanco S, Garcia-Encina P, Muñoz R (2015) Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ Sci Technol 49(5):3228–3236CrossRefGoogle Scholar
  124. Sinnott RK (2005) Chemical engineering design, vol 6, 4th edn. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  125. Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207. doi: 10.2166/wst.2008.023 CrossRefGoogle Scholar
  126. Soreanu G, Béland M, Falletta P, Ventresca B, Seto P (2009) Evaluation of different packing media for anoxic H2S control in biogas. Environ Technol 30:1249–1259. doi: 10.1080/09593330902998314 CrossRefGoogle Scholar
  127. Soreanu G, Béland M, Falletta P, Edmonson K, Svoboda L, Al-Jamal M, Seto P (2011) Approaches concerning siloxane removal from biogas—a review. Can Biosyst Eng 53:8.1–8.18Google Scholar
  128. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87 CrossRefGoogle Scholar
  129. Strevett KA, Vieth RF, Grasso D (1995) Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem Eng J Bioch Eng 58:71–79. doi: 10.1016/0923-0467(95)06095-2 CrossRefGoogle Scholar
  130. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. doi: 10.1016/j.bej.2008.12.011 CrossRefGoogle Scholar
  131. Thrän D et al. (2014) Biomethane—status and factors affecting market development and trade. IEA Task 40 and Task 37 Joint Study. Accessed 20 Dec 2014
  132. Tock L, Gassner M, Maréchal F (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenerg 34:1838–1854. doi: 10.1016/j.biombioe.2010.07.018 CrossRefGoogle Scholar
  133. Tomàs M, Fortuny M, Lao C, Gabriel D, Lafuente J, Gamisans X (2009) Technical and economical study of a full-scale biotrickling filter for H2S removal from biogas. Water Pract Technol 4. doi: 10.2166/wpt.2009.026
  134. Tredici MR (2009) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162. doi: 10.4155/bfs.09.10 CrossRefGoogle Scholar
  135. Tynell Å, Börjesson G, Persson M (2007) Microbial growth on pall rings: a problem when upgrading biogas with the water-wash absorption technique. Appl Biochem Biotechnol 141:299–320. doi: 10.1007/BF02729069 CrossRefGoogle Scholar
  136. Urban W, Girod K, Lohmann H (2009) Executive report: the German Market for Biomethane. Deutsche Energie-Agentur GmbH (DENA), German Energy Agency. Accessed 22 Dec 2014
  137. Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biot 79:707–718. doi: 10.1007/s00253-008-1518-y CrossRefGoogle Scholar
  138. Wang W, Xie L, Luo G, Zhou Q, Angelidaki I (2013) Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresour Technol 146:234–239. doi: 10.1016/j.biortech.2013.07.049 CrossRefGoogle Scholar
  139. Wellinger A, Lindberg A (1999) Biogas upgrading and utilization. IEA Bioenergy. Accessed 18 Dec 2014
  140. Xebex (2014) BGX SOLUTIONS—biogas plants. Accessed 5 Jan 2015
  141. Yan C, Zheng Z (2013) Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp. Bioresour Technol 139:292–299. doi: 10.1016/j.biortech.2013.04.054 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Raúl Muñoz
    • 1
    • 2
    Email author
  • Leslie Meier
    • 2
  • Israel Diaz
    • 1
  • David Jeison
    • 2
  1. 1.Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidValladolidSpain
  2. 2.Department of Chemical EngineeringUniversity of La FronteraTemucoChile

Personalised recommendations