Effect of soil/contamination characteristics and process operational conditions on aminopolycarboxylates enhanced soil washing for heavy metals removal: a review

  • Alberto Ferraro
  • Massimiliano Fabbricino
  • Eric D. van Hullebusch
  • Giovanni Esposito
  • Francesco Pirozzi
Review paper

Abstract

The present paper analyzes literature data dealing with the use of aminopolycarboxylates for chemical washing of heavy metals contaminated soils. The aim is to rationalize and organize the up-to-date knowledge of process dependence on different parameters, in order to give a contribution to the development of washing protocols applicable for process optimization. Process efficiency is found to be dependent on i) parameters related to soil composition, ii) parameters related to contaminant characteristics and iii) operating parameters. The effect that each of them, according to the reviewed experimental studies, has on process efficiency, is highlighted, and the interdependence among them is presented as a key point to understand the overall removal mechanism and therefore to calibrate its application case-by-case.

Keywords

Soil washing Aminopolycarboxylates chelant agents Process parameters Soil characteristics Heavy metals 

References

  1. Abumaizar R, Khan LI (1996) Laboratory Investigation of Heavy Metal Removal by Soil Washing. J Air Waste Manage Assoc 46:765–768. doi:10.1080/10473289.1996.10467512 CrossRefGoogle Scholar
  2. Abumaizar RJ, Smith EH (1999) Heavy metal contaminants removal by soil washing. J Hazard Mater 70:71–86CrossRefGoogle Scholar
  3. Anderson R, Rasor E, Van Ryn F (1999) Particle size separation via soil washing to obtain volume reduction. J Hazard Mater 66:89–98. doi:10.1016/S0304-3894(98)00210-6 CrossRefGoogle Scholar
  4. Arias-Estevez M, Novoa-Munoz JC, Pateiro M, Lopez-Periago E (2007) Influence of aging on copper fractionation in an acid soil. Soil Sci 172:225–232CrossRefGoogle Scholar
  5. Arwidsson Z, Elgh-Dalgren K, von Kronhelm T et al (2010) Remediation of heavy metal contaminated soil washing residues with aminopolycarboxylic acids. J Hazard Mater 173:697–704CrossRefGoogle Scholar
  6. Atanassova I, Okazaki M (1997) Adsorption-desorption characteristics of high levels of copper in soil clay fractions. Water Air Soil Pollut 98:213–228. doi:10.1007/BF02047035 Google Scholar
  7. Barona A, Aranguiz I, Elías A (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Pollut 113:79–85CrossRefGoogle Scholar
  8. Begum ZA, Rahman IMM, Tate Y et al (2012) Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 87:1161–1170. doi:10.1016/j.chemosphere.2012.02.032 CrossRefGoogle Scholar
  9. Bell CF (1977) Principles and applications of metal chelation. Clarendon Press, OxfordGoogle Scholar
  10. Benitez LN, Dubois J-P (1999) Evaluation of the Selectivity of Sequential Extraction Procedures Applied to the Speciation of Cadmium in Soils. Int J Environ Anal Chem 74:289–303. doi:10.1080/03067319908031433 CrossRefGoogle Scholar
  11. Bermond A, Ghestem JP (2001) Kinetic study of trace metal EDTA-desorption from contaminated soils. In: Selim HM, Sparks DL (eds) Heavy Met. release soils. Lewis Publishers, Boca Raton, FL, pp 131–147CrossRefGoogle Scholar
  12. Bermond A, Yousfi I, Ghestem J-P (1998) Kinetic approach to the chemical speciation of trace metals in soils. Analyst 123:785–789. doi:10.1039/a707776i CrossRefGoogle Scholar
  13. Bricka RM, Teeter CL, Fitzpatrick M (1999) Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges, Report No. CG-D-03-00, U.S. Department of Transportation, United States Coast Guard Systems. Washington, DCGoogle Scholar
  14. Brown GA, Elliott HA (1992) Influence of electrolytes on EDTA extraction of Pb from polluted soil. Water, Air, Soil Pollut 62:157–165. doi:10.1007/BF00478458 CrossRefGoogle Scholar
  15. Cesaro R, Esposito G (2009) Optimal operational conditions for the electrochemical regeneration of a soil washing EDTA solution. J Environ Monit 11:307–313. doi:10.1039/b816295f CrossRefGoogle Scholar
  16. Chrastný V, Komárek M, Jrovcová E, Štíchová J (2008) A critical evaluation of the 0.05 M EDTA extraction of Pb from forest soils. Int J Environ Anal Chem 88:385–396. doi:10.1080/03067310701744283 CrossRefGoogle Scholar
  17. Chu W (2003) Remediation of Contaminated Soils by Surfactant-Aided Soil Washing. Pract Period Hazardous, Toxic, Radioact Waste Manag 7:19–24CrossRefGoogle Scholar
  18. Cline SR, Reed BE (1995) Lead removal from soils via bench-scale soil washing techniques. J Environ Eng 121:700–705CrossRefGoogle Scholar
  19. Cline SR, Reed BE, Matsumoto BE (1993) Efficiencies of soil washing solutions for the remediation of lead contaminated soils. Proc. 25th Mid-Atlantic Indus. Waste Conf. 25:93–101Google Scholar
  20. Davis AP, Singh I (1995) Washing of Zinc(II) from contaminated soil column. J Environ Eng 121:174–185CrossRefGoogle Scholar
  21. Davranche M, Bollinger J-C (2000) Release of Metals from Iron Oxyhydroxides under Reductive Conditions: Effect of Metal/Solid Interactions. J Colloid Interface Sci 232:165–173CrossRefGoogle Scholar
  22. Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: A review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31CrossRefGoogle Scholar
  23. Di Palma L, Ferrantelli P (2005) Copper leaching from a sandy soil: mechanism and parameters affecting EDTA extraction. J Hazard Mater 122:85–90. doi:10.1016/j.jhazmat.2005.03.010 CrossRefGoogle Scholar
  24. Doelsch E, Deroche B, Van de Kerchove V (2006) Impact of sewage sludge spreading on heavy metal speciation in tropical soils (Réunion, Indian Ocean). Chemosphere 65:286–293. doi:10.1016/j.chemosphere.2006.02.046 CrossRefGoogle Scholar
  25. Doelsch E, Moussard G, Saint MH (2008) Fractionation of tropical soilborne heavy metals—Comparison of two sequential extraction procedures. Geoderma 143:168–179. doi:10.1016/j.geoderma.2007.10.027 CrossRefGoogle Scholar
  26. Durrani A (2011) The Effect of Solvent on Stability Constant of Mixed Ligand Complexes. Rasayan J Chem 4:554–556Google Scholar
  27. Elliott HA, Brown GA (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut. doi:10.1007/BF00283464 Google Scholar
  28. Elliott HA, Linn JH, Shields GA (1989) Role of Fe in Extractive Decontamination of Pb-Polluted Soils. Hazard Waste Hazard Mater 6:223–229. doi:10.1089/hwm.1989.6.223 CrossRefGoogle Scholar
  29. Elliott HA, Shastri NL (1999) Extractive Decontamination of Metal-Polluted Soils Using Oxalate. Water Air Soil Pollut 110:335–346. doi:10.1023/A:1005067404259 CrossRefGoogle Scholar
  30. Ernst R, Allen HE, Mancy KH (1975) Characterization of Trace-Metal Species and Measurement of Trace-Metal Stability-Constants by Electrochemical Techniques. Water Res 9:969–979CrossRefGoogle Scholar
  31. Fabbricino M, Ferraro A, Del Giudice G, d’Antonio L (2013) Current views on EDDS use for ex situ washing of potentially toxic metal contaminated soils. Rev Environ Sci Bio/Technology 12:391–398. doi:10.1007/s11157-013-9309-z CrossRefGoogle Scholar
  32. Ferraro A, van Hullebusch ED, Huguenot D et al (2015) Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil. J Environ Manage 163:62–69. doi:10.1016/j.jenvman.2015.08.004 CrossRefGoogle Scholar
  33. Finzgar N, Lestan D (2007) Multi-step leaching of Pb and Zn contaminated soils with EDTA. Chemosphere 66:824–832. doi:10.1016/j.chemosphere.2006.06.029 CrossRefGoogle Scholar
  34. Finzgar N, Lestan D (2006) Heap leaching of Pb and Zn contaminated soil using ozone/UV treatment of EDTA extractants. Chemosphere 63:1736–1743. doi:10.1016/j.chemosphere.2005.09.015 CrossRefGoogle Scholar
  35. Fischer K, Bipp H-P (2002) Removal of Heavy Metals from Soil Components and Soils by Natural Chelating Agents. Part II. Soil Extraction by Sugar Acids. Water Air Soil Pollut 138:271–288CrossRefGoogle Scholar
  36. Ghestem JP, Bermond A (1998) EDTA Extractability of Trace Metals in Polluted Soils: A Chemical-Physical Study. Environ Technol 19:409–416. doi:10.1080/09593331908616696 CrossRefGoogle Scholar
  37. Ghomi AB, Mazinani F (2013) Spectrophotometric Study of Stability Constants of Metal Complexes of Promethazine at Different Temperatures. J Physycal Chem Electrochem 2:13–19Google Scholar
  38. Giannis A, Gidarakos E (2005) Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. J Hazard Mater 123:165–175. doi:10.1016/j.jhazmat.2005.03.050 CrossRefGoogle Scholar
  39. Griffiths RA (1995) Soil-washing technology and practice. J Hazard Mater 40:175–189. doi:10.1016/0304-3894(94)00064-N CrossRefGoogle Scholar
  40. Güçlü K, Apak R (2000) Modeling of Copper(II), Cadmium(II), and Lead(II) Adsorption on Red Mud from Metal-EDTA Mixture Solutions. J Colloid Interface Sci 228:238–252. doi:10.1006/jcis.2000.6974 CrossRefGoogle Scholar
  41. Guo H, Wang W, Sun Y et al (2010) Ethyl lactate enhances ethylenediaminedisuccinic acid solution removal of copper from contaminated soils. J Hazard Mater 174:59–63. doi:10.1016/j.jhazmat.2009.09.016 CrossRefGoogle Scholar
  42. Gupta CK, Mukherjee TK (1990) Hydrometallurgy in Extraction Process, vol 1. CRC Press, Boca Raton, FLGoogle Scholar
  43. Hanson AT, Samani Z, Dwyer B, Jacquez R (1992) Heap Leaching as a Solvent-Extraction Technique for Remediation of Metals-Contaminated Soils. In: Sabatini DA, Knox RC (eds) Transp. Remediat. Subsurf. Contam. Colloidal, Interfacial, Surfactant Phenom. American Chemical Society, Norman, Oklahoma, pp 108–123Google Scholar
  44. Hempei M, Thoeming J (1999) Mercury Contaminated Sites: Characterization, Risk Assessment and Remediation. In: Ebinghaus R, Tumer RR, de Lacerda LI et al (eds) Mercur. Contam. Sites Charact. Risk Assess. Remediat. Springer, New York, NY, pp 113–130CrossRefGoogle Scholar
  45. Hong J, Pintauro PN (1996a) Selective removal of heavy metals from contaminated kaolin by chelators. Water Air Soil Pollut 87:73–91CrossRefGoogle Scholar
  46. Hong J, Pintauro PN (1996b) Desorption-complexation-dissolution characteristics of adsorbed cadmium from kaolin by chelators. Water Air Soil Pollut 86:35–50. doi:10.1007/BF00279144 CrossRefGoogle Scholar
  47. Hong PKA, Cai X, Cha Z (2008) Pressure-assisted chelation extraction of lead from contaminated soil. Environ Pollut 153:14–21CrossRefGoogle Scholar
  48. Hong PKA, Li C, Banerji SK, Regmi T (1999) Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil. J Soil Contam 8:81–103CrossRefGoogle Scholar
  49. Hsieh HN, Raghu D, Liskowitz JW, Grow J (1989) Soil washing techniques for removal of chromium contaminants from soil. Proc. 21st Mid-Atlantic Indus. Waste Conf. pp 651–660Google Scholar
  50. Hwang SS, Park JS, Namkoong W (2007) Ultrasonic-assisted extraction to release heavy metals from contaminated soil. J Ind Eng Chem 13:650–656Google Scholar
  51. Jalali M, Khanlari ZV (2008) Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 143:26–40CrossRefGoogle Scholar
  52. Janrao DM, Pathan J, Kayande DD, Mulla JJ (2014) An Over View of Potentiometric Determination of Stability Constants of Metal Complexes. Sci Rev Chem Commun 4:11–24Google Scholar
  53. Jean L, Bordas F, Bollinger J-C (2007) Chromium and nickel mobilization from a contaminated soil using chelants. Environ Pollut 147:729–736. doi:10.1016/j.envpol.2006.09.003 CrossRefGoogle Scholar
  54. Kim C, Lee Y, Ong SK (2003) Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51:845–853CrossRefGoogle Scholar
  55. Kim C, Ong S-K (1999) Recycling of lead-contaminated EDTA wastewater. J Hazard Mater 69:273–286CrossRefGoogle Scholar
  56. Kirpichtchikova TA, Manceau A, Spadini L et al (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190CrossRefGoogle Scholar
  57. Komárek M, Száková J, Rohošková M et al (2008) Copper contamination of vineyard soils from small wine producers: A case study from the Czech Republic. Geoderma 147:16–22CrossRefGoogle Scholar
  58. Komárek M, Vaněk A, Száková J et al (2009) Interactions of EDDS with Fe- and Al-(hydr)oxides. Chemosphere 77:87–93CrossRefGoogle Scholar
  59. Koopmans GF, Schenkeveld WDC, Song J et al (2008) Influence of EDDS on Metal Speciation in Soil Extracts: Measurement and Mechanistic Multicomponent Modeling. Environ Sci Technol 42:1123–1130. doi:10.1021/es071694f CrossRefGoogle Scholar
  60. Lestan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13. doi:10.1016/j.envpol.2007.11.015 CrossRefGoogle Scholar
  61. Lim T-T, Tay J-H, Wang J-Y (2004) Chelating-Agent-Enhanced Heavy Metal Extraction from a Contaminated Acidic Soil. J Environ Eng 130:59–66. doi:10.1061/(ASCE)0733-9372(2004)130:1(59) CrossRefGoogle Scholar
  62. Linn JH, Elliott HA (1988) Mobilization of Cu and Zn in contaminated soil by nitrilotriacetic acid. Water Air Soil Pollut 37:449–458. doi:10.1007/BF00192954 CrossRefGoogle Scholar
  63. Lo IMC, Tsang DCW, Yip TCM et al (2011a) Significance of metal exchange in EDDS-flushing column experiments. Chemosphere 83:7–13. doi:10.1016/j.chemosphere.2011.01.040 CrossRefGoogle Scholar
  64. Lo IMC, Tsang DCW, Yip TCM et al (2011b) Influence of injection conditions on EDDS-flushing of metal-contaminated soil. J Hazard Mater 192:667–675. doi:10.1016/j.jhazmat.2011.05.067 CrossRefGoogle Scholar
  65. Luther GW, Rickard DT, Theberge S, Olroyd A (1996) Determination of Metal (Bi)Sulfide Stability Constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by Voltammetric Methods. Environ Sci Technol 30:671–679CrossRefGoogle Scholar
  66. Macauley E, Hong A (1995) Chelation extraction of lead from soil using pyridine-2,6-dicarboxylic acid. J Hazard Mater 40:257–270CrossRefGoogle Scholar
  67. Maiz I, Arambarri I, Garcia R, Millán E (2000) Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110:3–9. doi:10.1016/S0269-7491(99)00287-0 CrossRefGoogle Scholar
  68. Maiz I, Esnaola M, Millan E (1997) Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci Total Environ 206:107–115. doi:10.1016/S0048-9697(97)80002-2 CrossRefGoogle Scholar
  69. Mann MJ (1999) Full-scale and pilot-scale soil washing. J Hazard Mater 66:119–136. doi:10.1016/S0304-3894(98)00207-6 CrossRefGoogle Scholar
  70. Marino MA, Brica RM, Neale CN (1997) Heavy metal soil remediation: The effects of attrition scrubbing on a wet gravity concentration process. Environ Prog 16:208–214CrossRefGoogle Scholar
  71. Mason TJ (2007) Sonochemistry and the environment—providing a “green” link between chemistry, physics and engineering. Ultrason Sonochem 14:476–483CrossRefGoogle Scholar
  72. Matusinović T, Filipović I (1981) Potentiometric determination of stability constants of cyanoacetato complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and lead(II). Talanta 28:199–200CrossRefGoogle Scholar
  73. Meers E, Tack FMG, Verloo MG (2008) Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation. Chemosphere 70:358–363. doi:10.1016/j.chemosphere.2007.07.044 CrossRefGoogle Scholar
  74. Mercier G, Duchesne J, Blackburn D (2001) Prediction of Metal Removal Efficiency from Contaminated Soils by Physical Methods. J Environ Eng 127:348–358CrossRefGoogle Scholar
  75. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. doi:10.1016/S0013-7952(00)00101-0 CrossRefGoogle Scholar
  76. Neale CN (1996) Acids and chelating agents show varying degrees of effectiveness in removing heavy metals from soils. Hazard Waste Consult 14:1.6–1.8Google Scholar
  77. Neale CN, Bricka RM, Chao AC (1997) Evaluating acids and chelating agents for removing heavy metals from contaminated soils. Environ Prog 16:274–280CrossRefGoogle Scholar
  78. Neilson JW, Artiola JF, Maier RM (2003) Characterization of Lead Removal from Contaminated Soils by Nontoxic Soil-Washing Agents. J Environ Qual 32:899. doi:10.2134/jeq2003.8990 CrossRefGoogle Scholar
  79. Nifant’eva TI, Shkinev VM, Spivakov BY, Burba P (1999) Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration. Talanta 48:257–267. doi:10.1016/S0039-9140(98)00249-5 CrossRefGoogle Scholar
  80. Nowack B (2002) Environmental Chemistry of Aminopolycarboxylate Chelating Agents. Environ Sci Technol 36:4009–4016. doi:10.1021/es025683s CrossRefGoogle Scholar
  81. Nowack B, Schulin R, Robinson BH (2006) Critical Assessment of Chelant-Enhanced Metal Phytoextraction. Environ Sci Technol 40:5225–5232. doi:10.1021/es0604919 CrossRefGoogle Scholar
  82. Nowack B, Sigg L (1996) Adsorption of EDTA and Metal-EDTA Complexes onto Goethite. J Colloid Interface Sci 177:106–121. doi:10.1006/jcis.1996.0011 CrossRefGoogle Scholar
  83. Oberteuffer JA (1974) Magnetic separation: A review of principles, devices, and applications. IEEE Trans Magn 10:223–238. doi:10.1109/TMAG.1974.1058315 CrossRefGoogle Scholar
  84. Oldshue JY (1983) Fluid Mixing Technology. McGraw-Hill, New YorkGoogle Scholar
  85. Paff SW, Bosilovich BE, Kardos NJ (1994) Acid extraction treatment system (AETS) for treatment of metal contaminated soils. 20th Annu. Res. Symp. Abstr. Proceedings, EPA/600/R-94/011. pp 178–182Google Scholar
  86. Papassiopi N, Tambouris S, Kontopoulos A (1999) Removal of Heavy Metals from Calcareous Contaminated Soils by EDTA Leaching. Water Air Soil Pollut 109:1–15. doi:10.1023/A:1005089515217 CrossRefGoogle Scholar
  87. Peters RW (1995) Feasibility/treatability studies for removal of heavy metals from training range soils at the Grafenwohr training area, Germany. ANL/ESD/TM-81, Argonne National Laboratory. Argonne, ILGoogle Scholar
  88. Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210CrossRefGoogle Scholar
  89. Peters RW, Miller G, Taylor JD, et al (1993) Remediation of heavy metal contaminated soil using chelant extraction: feasibility study. Proc. 48th Purdue Ind. Waste Conf. 48. pp 141–167Google Scholar
  90. Peters RW, Shem L (1992) Use of chelating agents for remediation of heavy metal contaminated soil. In: Vandegrift GF, Reed DT, Tasker IR (eds) Environ. Remediat. removing Org. Met. ion Pollut. ACS Symp. Ser. No. 509. American Chemical Society, Washington, DC, pp 70–84Google Scholar
  91. Pichtel J, Pichtel TM (1997) Comparison of Solvents for Ex Situ Removal of Chromium and Lead from Contaminated Soil. Environ Eng Sci 14:97–104. doi:10.1089/ees.1997.14.97 CrossRefGoogle Scholar
  92. Pichtel J, Vine B, Kuula-Väisänen P, Niskanen P (2001) Lead Extraction from Soils as Affected by Lead Chemical and Mineral Forms. Environ Eng Sci 18:91–98. doi:10.1089/10928750151132276 CrossRefGoogle Scholar
  93. Pickering WF (1986) Metal ion speciation — soils and sediments (a review). Ore Geol Rev 1:83–146. doi:10.1016/0169-1368(86)90006-5 CrossRefGoogle Scholar
  94. Pitluck MR, Pollard BD, Haworth DT (1987) Determination of stability constants of a copper/citric acid complex by ion-exchange chromatography and atomic absorption spectrometry. Anal Chim Acta 197:339–342. doi:10.1016/S0003-2670(00)84747-9 CrossRefGoogle Scholar
  95. Plant JA, Raiswell R (1983) Principles of environmental geochemistry. In: Thornton I (ed) Appl. Environ. geochemistry. Accademic Press, London, pp 1–39Google Scholar
  96. Qi J, Wang H, Sun H et al (2011) Operating Variables in Chemical Extraction of Heavy metals from Contaminated Soils. Energy Procedia 11:4830–4837CrossRefGoogle Scholar
  97. Qiang T, Xiao-Quan S, Jin Q, Zhe-Ming N (1994) Trace Metal Redistribution during Extraction of Model Soils by Acetic Acid/Sodium Acetate. Anal Chem 66:3562–3568. doi:10.1021/ac00093a005 CrossRefGoogle Scholar
  98. Qiu R, Zou Z, Zhao Z et al (2010) Removal of trace and major metals by soil washing with Na2EDTA and oxalate. J Soils Sediments 10:45–53. doi:10.1007/s11368-009-0083-z CrossRefGoogle Scholar
  99. Rauret G, López-Sánchez JF, Sahuquillo A et al (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61. doi:10.1039/a807854h CrossRefGoogle Scholar
  100. Rauret G, Rubio R, López-Sánchez JF (1989) Optimization of Tessier Procedure for Metal Solid Speciation in River Sediments. Int J Environ Anal Chem 36:69–83. doi:10.1080/03067318908026859 CrossRefGoogle Scholar
  101. Reed BE, Carriere PC, Moore R (1996) Flushing of a Pb(II) contaminated soil using HCl, EDTA and CaCl2. J Environ Eng 122:48–50CrossRefGoogle Scholar
  102. Rikers RA, Rem P, Dalmijn WL (1998) Improved method for prediction of heavy metal recoveries from soil using high intensity magnetic separation (HIMS). Int J Miner Process 54:165–182. doi:10.1016/S0301-7516(98)00017-9 CrossRefGoogle Scholar
  103. Ritschel J (2003) Extraction of heavy metals from soil with selected biodegradable complexing agents. doi: 10.3929/ethz-a-004596586
  104. Roy D, Liu M, Wang G (1994) Modeling of anthracene removal from soil columns by surfactant. J Environ Sci Heal Part A Environ Sci Eng Toxicol 29:197–213. doi:10.1080/10934529409376029 Google Scholar
  105. Ryan PC, Hillier S, Wall AJ (2008) Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study. Sci Total Environ 407:603–614. doi:10.1016/j.scitotenv.2008.09.019 CrossRefGoogle Scholar
  106. Sahuquillo A, Rigol A, Rauret G (2003) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. TrAC Trends Anal Chem 22:152–159CrossRefGoogle Scholar
  107. Sandoval-Gonzalez A, Silva-Martinez S, Blass-Amador G (2007) Ultrasound leaching and electrochemical treatment combined for lead removal soil. J New Mater Electrochem Syst 10:195–199Google Scholar
  108. Saponaro S, Bonomo L, Barbafieri M, Petruzzelli G (2002) Soil Washing Feasibility at a Manufacturing Gas Plant Site. Soil Sediment Contam 11:751–767. doi:10.1080/20025891107078 CrossRefGoogle Scholar
  109. Sarkar D, Andra SS, Saminathan SKM, Datta R (2008) Chelant-aided enhancement of lead mobilization in residential soils. Environ Pollut 156:1139–1148CrossRefGoogle Scholar
  110. Semer R, Reddy KR (1996) Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J Hazard Mater 45:45–57. doi:10.1016/0304-3894(96)82887-1 CrossRefGoogle Scholar
  111. Shan X, Chen B (1993) Evaluation of sequential extraction for speciation of trace metals in model soil containing natural minerals and humic acid. Anal Chem 65:802–807. doi:10.1021/ac00054a026 CrossRefGoogle Scholar
  112. Shtacher G (1966) Potentiometric determination of stability constants of metal complexes with certain amino dicarboxylic acids. J Inorg Nucl Chem 28:845–861. doi:10.1016/0022-1902(66)80421-9 CrossRefGoogle Scholar
  113. Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic Press, AmsterdamGoogle Scholar
  114. Steele MC, Pichtel J (1998) Ex-Situ Remediation of a Metal-Contaminated Superfund Soil Using Selective Extractants. J Environ Eng 124:639–645. doi:10.1061/(ASCE)0733-9372(1998)124:7(639) CrossRefGoogle Scholar
  115. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley Interscience, New YorkGoogle Scholar
  116. Subirés-Muñoz JD, García-Rubio A, Vereda-Alonso C et al (2011) Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Sep Purif Technol 79:151–156CrossRefGoogle Scholar
  117. Svoboda J (2004) Magnetic Techniques for the Treatment of Materials, 1st edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  118. Tampouris S, Papassiopi N, Paspaliaris I (2001) Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J Hazard Mater 84:297–319. doi:10.1016/S0304-3894(01)00233-3 CrossRefGoogle Scholar
  119. Tandy S, Ammann A, Schulin R, Nowack B (2006) Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environ Pollut 142:191–199. doi:10.1016/j.envpol.2005.10.013 CrossRefGoogle Scholar
  120. Tandy S, Bossart K, Mueller R et al (2004) Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents. Environ Sci Technol 38:937–944. doi:10.1021/es0348750 CrossRefGoogle Scholar
  121. Tejowulan R, Hendershot W (1998) Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques. Environ Pollut 103:135–142CrossRefGoogle Scholar
  122. Tella AC, Obaleye JA (2010) Metal – Chelator Therapy : Stability Constants of Transition Metal Complexes of Pyrimidine and Sulphonamide Drugs. Int J Chem Sci 8:1675–1683Google Scholar
  123. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi:10.1021/ac50043a017 CrossRefGoogle Scholar
  124. Theodoratos P, Papassiopi N, Georgoudis T, Kontopoulos A (2000) Selective Removal of Lead from Calcareous Polluted Soils using the Ca-EDTA Salt. Water Air Soil Pollut 122:351–368. doi:10.1023/A:1005295119231 CrossRefGoogle Scholar
  125. Tipping E (2002) Cation binding by humic substances. Cambridge University Press, New YorkCrossRefGoogle Scholar
  126. Tobia RJ (1993) Final report: Pilot-scale soil washing study. EPA Contract 68-03-3482. Pensacola, FloridaGoogle Scholar
  127. Tsang DCW, Lo IMC, Surampalli RY (2012) Design, implementation, and economic/societal considerations of chelant-enhanced soil washing. In: Tsang DCW, Lo IMC, Surampalli RY (eds) Chelating agents L. Decontam. Technol. American Society of Civil Engineers, Reston, Virginia, pp 1–26CrossRefGoogle Scholar
  128. Tsang DCW, Yip TCM, Lo IMC (2009) Kinetic Interactions of EDDS with Soils. 2. Metal−EDDS Complexes in Uncontaminated and Metal-Contaminated Soils. Environ Sci Technol 43:837–842. doi:10.1021/es8020292 CrossRefGoogle Scholar
  129. Udovic M, Letsan D (2007) EDTA leaching of Cu contaminated soils using Ozone/UV for a treatment and reuse of washing solution in a closed loop. Water Air Soil Pollut 181:319–327CrossRefGoogle Scholar
  130. Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51:135–151. doi:10.1080/03067319308027619 CrossRefGoogle Scholar
  131. USEPA (1993) Selecting remediation techniques for contaminated sediment. EPA/823/B-93/001. Washington, DCGoogle Scholar
  132. USEPA (1994) SITE innovative technology evaluation. Emerg. Technol. bullettin, EPA/540/F-49/509Google Scholar
  133. USEPA (1995) Contaminants and Remedial Options at Selected Metal-Contaminated, SitesEPA/540/R-95/512. Office of Research and Development, Washington, DCGoogle Scholar
  134. Van Benschoten JE, Matsumoto MR, Young WH (1997) Evaluation and Analysis of Soil Washing for Seven Lead-Contaminated Soils. J Environ Eng 123:217–224CrossRefGoogle Scholar
  135. Van Hullebusch ED, Lens PNL, Tabak HH (2005a) Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides. 3. Influence of Chemical Speciation and Bioavailability on Contaminants Immobilization/Mobilization Bio-processes. Rev Environ Sci Bio/Technology 4:185–212. doi:10.1007/s11157-005-2948-y CrossRefGoogle Scholar
  136. Van Hullebusch ED, Utomo S, Zandvoort MH, Lens PNL (2005b) Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta 65:549–558. doi:10.1016/j.talanta.2004.07.024 CrossRefGoogle Scholar
  137. Vandevivere P, Hammes F, Verstraete W et al (2001) Metal Decontamination of Soil, Sediment, and Sewage Sludge by Means of Transition Metal Chelant [S, S]-EDDS. J Environ Eng 127:802–811. doi:10.1061/(ASCE)0733-9372(2001)127:9(802) CrossRefGoogle Scholar
  138. Vanthuyne M, Maes A, Cauwenberg P (2003) The use of flotation techniques in the remediation of heavy metal contaminated sediments and soils: an overview of controlling factors. Miner Eng 16:1131–1141. doi:10.1016/j.mineng.2003.06.012 CrossRefGoogle Scholar
  139. Vaxevanidou K, Papassiopi N, Paspaliaris I (2008) Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere 70:1329–1337CrossRefGoogle Scholar
  140. Voglar D, Lestan D (2010) Electrochemical separation and reuse of EDTA after extraction of Cu contaminated soil. J Hazard Mater 180:152–157CrossRefGoogle Scholar
  141. Voglar D, Lestan D (2014) Chelant soil-washing technology for metal-contaminated soil. Environ Technol 35:1389–1400. doi:10.1080/09593330.2013.869265 CrossRefGoogle Scholar
  142. Wacker M, Seubert A (2014) Determination of stability constants of strong metal–ligand complexes using anion or cation exchange chromatography and atomic spectrometry detection. J Anal At Spectrom 29:707–714CrossRefGoogle Scholar
  143. Wang LK (2004) Site Remediation and Groundwater Decontamination. In: Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) Handb. CRC Press, USA, Ind. Hazard. Wastes Treat, pp 923–970Google Scholar
  144. Wasay SA, Parker WJ, Van GP (2001) Contamination of a calcareous soil by battery industry wastesII. Treatment. Can J Civ Eng 28:349–354CrossRefGoogle Scholar
  145. Wen Y, Marshall WD (2011) Simultaneous mobilization of trace elements and polycyclic aromatic hydrocarbon (PAH) compounds from soil with a nonionic surfactant and [S, S]-EDDS in admixture: Metals. J Hazard Mater 197:361–368CrossRefGoogle Scholar
  146. Werther J, Malerius O, Schimdt J (2001) Ways to Improve the Efficiency of Soil Washing. In: Stegmann R, Brunner G, Calmano W, Matz G (eds) Treat. Springer-Verlag, Berlin, Heidelberg, Contam. Soil Fundam. Anal. Appl, pp 434–460Google Scholar
  147. Williford CW, Bricka RM (2000) Physical Separation of Metal-Contaminated Soils. In: Iskandar IK (ed) Environmental Restoration of Metals-Contaminated Soils, 1st edn. CRC Press, Boca Raton, pp 121–165CrossRefGoogle Scholar
  148. De Wolf CA, Lepage JN, Bemelaar JH (2010) Acidic solution containing a chelating agent and the use thereof. United States Pat. Appl. Publ. Akzo Nobel N.V., USAGoogle Scholar
  149. Xiaofeng S, Longhua W, Yongming L (2006) Determination of Ethylenediaminedisuccinic acid in soils and plants using reversed phase high performance liquid chromatography. Chinese J Anal Chem 34:1375–1378CrossRefGoogle Scholar
  150. Xing L, Beauchemin D (2009) Determination of stability constants of metal complexes with IC-ICP-MS. J Anal At Spectrom 24:336–339. doi:10.1039/b816385e CrossRefGoogle Scholar
  151. Xu J, Kleja DB, Biester H et al (2014) Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil. Chemosphere 109:99–105. doi:10.1016/j.chemosphere.2014.02.058 CrossRefGoogle Scholar
  152. Yan DYS, Lo IMC (2011) Enhanced multi-metal extraction with EDDS of deficient and excess dosages under the influence of dissolved and soil organic matter. Environ Pollut 159:78–83. doi:10.1016/j.envpol.2010.09.021 CrossRefGoogle Scholar
  153. Yan DYS, Yui MMT, Yip TCM et al (2010) Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. J Hazard Mater 178:890–894CrossRefGoogle Scholar
  154. Yip TCM, Tsang DCW, Ng KTW, Lo IMC (2009a) Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. Chemosphere 74:301–307. doi:10.1016/j.chemosphere.2008.09.006 CrossRefGoogle Scholar
  155. Yip TCM, Tsang DCW, Ng KTW, Lo IMC (2009b) Kinetic Interactions of EDDS with Soils. 1. Metal Resorption and Competition under EDDS Deficiency. Environ Sci Technol 43:831–836. doi:10.1021/es802030k CrossRefGoogle Scholar
  156. Yip TCM, Yan DYS, Yui MMT et al (2010) Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture. Chemosphere 80:416–421. doi:10.1016/j.chemosphere.2010.03.033 CrossRefGoogle Scholar
  157. Yu J, Klarup D (1994) Extraction kinetics of copper, zinc, iron, and manganese from contaminated sediment using Disodium Ethylenediaminetetraacetate. Water, Air, Soil Pollut 75:205–225. doi:10.1007/BF00482938 CrossRefGoogle Scholar
  158. Zaid AA, Mohsin M, Farooqui M, Janrao DM (2013) Effect of ionic strength on the stabilities of ciprofloxacin – Metal complexes. J Saudi Chem Soc 17:43–45. doi:10.1016/j.jscs.2011.02.020 CrossRefGoogle Scholar
  159. Zhang W, Lo IM (2006) EDTA-Enhanced Washing for Remediation of Pb- and/or Zn-Contaminated Soils. J Environ Eng 132:1282–1288. doi:10.1061/(ASCE)0733-9372(2006)132:10(1282) CrossRefGoogle Scholar
  160. Zhang W, Tsang DCW, Lo IMC (2008) Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant. J Hazard Mater 155:433–439CrossRefGoogle Scholar
  161. Zou Z, Qiu R, Zhang W et al (2009) The study of operating variables in soil washing with EDTA. Environ Pollut 157:229–236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alberto Ferraro
    • 1
    • 2
    • 3
  • Massimiliano Fabbricino
    • 2
  • Eric D. van Hullebusch
    • 3
  • Giovanni Esposito
    • 1
  • Francesco Pirozzi
    • 2
  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  2. 2.Department of Civil, Architectural and Environmental EngineeringUniversity of Naples “Federico II”NaplesItaly
  3. 3.Laboratoire Géomatériaux et Environnement (EA 4508)UPEM, Université Paris-EstMarne-la-ValléeFrance

Personalised recommendations