Reviews in Environmental Science and Bio/Technology

, Volume 14, Issue 3, pp 385–406 | Cite as

Meta-omics approaches to understand and improve wastewater treatment systems

  • Elisa RodríguezEmail author
  • Pedro A. García-Encina
  • Alfons J. M. Stams
  • Farai Maphosa
  • Diana Z. Sousa
Review paper


Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism “Candidatus Accumulibacter phosphatis”, the nitrite oxidizer “Candidatus Nitrospira defluvii” or the anammox bacterium “Candidatus Kuenenia stuttgartiensis” are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.


Wastewater Bioreactor Metagenomics Metatranscriptomics Metaproteomics 



This research was supported by the Spanish Ministry of Education and Science (Contract Project CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and the Regional Government of Castilla y Leon (Ref. VA038A07). Research of AJMS is supported by the European Research Council (Grant 323009).

Supplementary material

11157_2015_9370_MOESM1_ESM.doc (182 kb)
Supplementary material 1 (DOC 182 kb)


  1. Abram F, Enright AM, O’Reilly J, Botting CH, Collins G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110:1550–1560. doi: 10.1111/j.1365-2672.2011.05011.x Google Scholar
  2. Albertsen M, Hansen LB, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6:1094–1106. doi: 10.1038/ismej.2011.176 Google Scholar
  3. Albertsen M, Saunders AM, Nielsen KL, Nielsen PH (2013) Metagenomes obtained by ‘deep sequencing’—what do they tell about the enhanced biological phosphorus removal communities? Water Sci Technol 68:1959–1968. doi: 10.2166/wst.2013.441 Google Scholar
  4. Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, Lykidis A, Sieprawska-Lupa M, Dharmarajan L, Goltsman E, Lapidus A, Saunders E, Han C, Land M, Lucas S, Mukhopadhyay B, Whitman WB, Woese C, Bristow J, Kyrpides N (2009a) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS ONE 4:e5797. doi: 10.1371/journal.pone.0005797 Google Scholar
  5. Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Del Rio TG, Tice H, Dalin E, Barry K, Saunders E, Han C, Brettin T, Detter JC, Bruce D, Mikhailova N, Pitluck S, Hauser L, Land M, Lucas S, Richardson P, Whitman WB (2009b) Kyrpides NCComplete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1. Stand Genomic Sci 1:189–196. doi: 10.4056/sigs.32535 Google Scholar
  6. Aoi Y, Shiramasa Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2002) Real-time monitoring of ammonia-oxidizing activity in a nitrifying biofilm by amoA mRNA analysis. Water Sci Technol 46(1–2):439–442Google Scholar
  7. Aoi Y, Shiramasa Y, Masaki Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2004) Expression of amoA mRNA in wastewater treatment processes examined by competitive RT-PCR. J Biotechnol 111(2):111–120Google Scholar
  8. Arp DJ, Chain PS, Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61:503–528Google Scholar
  9. Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207–4217. doi: 10.1093/nar/gkq140 Google Scholar
  10. Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos Trans R Soc Lond B Biol Sci 367:1226–1234. doi: 10.1098/rstb.2011.0321 Google Scholar
  11. Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea (Vancouver, BC) 1:353–363Google Scholar
  12. Barr JJ, Slater FR, Fukushima T, Bond PL (2010) Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge. FEMS Microbiol Ecol 74:631–642. doi: 10.1111/j.1574-6941.2010.00967.x Google Scholar
  13. Beaumont HJ, Lens SI, Reijnders WN, Westerhoff HV, van Spanning RJ (2004) Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Mol Microbiol 54(1):148–158Google Scholar
  14. Berube PM, Stahl DA (2012) The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas europaea. J Bacteriol 194(13):3448–3456Google Scholar
  15. Bollmann A, Sedlacek CJ, Norton J, Laanbroek HJ, Suwa Y, Stein LY, Klotz MG, Arp D, Sayavedra-Soto L, Lu M, Bruce D, Detter C, Tapia R, Han J, Woyke T, Lucas SM, Pitluck S, Pennacchio L, Nolan M, Land ML, Huntemann M, Deshpande S, Han C, Chen A, Kyrpides N, Mavromatis K, Markowitz V, Szeto E, Ivanova N, Mikhailova N, Pagani I, Pati A, Peters L, Ovchinnikova G, Goodwin LA (2013) Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Stand Genomic Sci 7(3):469–482Google Scholar
  16. Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012-00011. doi: 10.1128/mBio.00012-11
  17. Bouchez T, Patureau D, Delgenes JP, Moletta R (2009) Successful bacterial incorporation into activated sludge flocs using alginate. Bioresour Technol 100:1031–1032. doi: 10.1016/j.biortech.2008.07.028 Google Scholar
  18. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185(9):2759–2773Google Scholar
  19. Chartrain M, Zeikus JG (1986) Microbial ecophysiology of whey biomethanation: characterization of bacterial trophic populations and prevalent species in continuous culture. Appl Environ Microbiol 51:188–196Google Scholar
  20. Chistoserdova L (2010) Recent progress and new challenges in metagenomics for biotechnology. Biotechnol Lett 32:1351–1359. doi: 10.1007/s10529-010-0306-9 Google Scholar
  21. Colliver BB, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18(3):219–232Google Scholar
  22. Dabert P, Delgenes JP, Godon JJ (2005) Monitoring the impact of bioaugmentation on the start up of biological phosphorus removal in a laboratory scale activated sludge ecosystem. Appl Microbiol Biotechnol 66:575–588. doi: 10.1007/s00253-004-1726-z Google Scholar
  23. Daims H, Taylor MW, Wagner M (2006) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489. doi: 10.1016/j.tibtech.2006.09.002 Google Scholar
  24. Duque AF, Bessa VS, Carvalho MF, de Kreuk MK, van Loosdrecht MC, Castro PM (2011) 2-fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Res 45:6745–6752. doi: 10.1016/j.watres.2011.10.033 Google Scholar
  25. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542. doi: 10.1101/gr.223902 Google Scholar
  26. Gori F, Tringe SG, Kartal B, Marchiori E, Jetten MS (2011) The metagenomic basis of anammox metabolism in Candidatus ‘Brocadia fulgida’. Biochem Soc Trans 39:1799–1804. doi: 10.1042/BST20110707 Google Scholar
  27. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249Google Scholar
  28. Harhangi HR, Le Roy M, van Alen T, Hu BL, Groen J, Kartal B, Tringe SG, Quan ZX, Jetten MS, Op den Camp HJ (2012) Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol 78:752–758. doi: 10.1128/aem.07113-11 Google Scholar
  29. Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, Tapia R, Han CS, Goodwin LA, Cheng JF, Pitluck S, Copeland A, Lucas S, Nolan M, Lapidus AL, Palumbo AV, Wall JD (2011) Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol 193:4268–4269. doi: 10.1128/JB.05400-11 Google Scholar
  30. He S, McMahon KD (2011) ‘Candidatus Accumulibacter’ gene expression in response to dynamic EBPR conditions. ISME J 5:329–340. doi: 10.1038/ismej.2010.127 Google Scholar
  31. He S, Kunin V, Haynes M, Martin HG, Ivanova N, Rohwer F, Hugenholtz P, McMahon KD (2010) Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’-enriched enhanced biological phosphorus removal sludge. Environ Microbiol 12:1205–1217. doi: 10.1111/j.1462-2920.2010.02163.x Google Scholar
  32. Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA (2007) Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea. Proc Natl Acad Sci USA 104:8930–8934. doi: 10.1073/pnas.0701157104 Google Scholar
  33. Hira D, Toh H, Migita CT, Okubo H, Nishiyama T, Hattori M, Furukawa K, Fujii T (2012) Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1. FEBS Lett 586:1658–1663. doi: 10.1016/j.febslet.2012.04.041 Google Scholar
  34. Hu Z, Speth DR, Francoijs KJ, Quan ZX, Jetten MS (2012) Metagenome analysis of a complex community reveals the metabolic blueprint of Anammox Bacterium “Candidatus Jettenia asiatica”. Front Microbiol 3:366. doi: 10.3389/fmicb.2012.00366 Google Scholar
  35. Ikeda-Ohtsubo W, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, Fushinobu S, Wakagi T, Shoun H, Miyauchi K, Endo G (2013) Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J Biosci Bioeng 115:37–42. doi: 10.1016/j.jbiosc.2012.08.015 Google Scholar
  36. Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE 6:e14519. doi: 10.1371/journal.pone.0014519 Google Scholar
  37. Jenkins D (2008) From total suspended solids to molecular biology tools—a personal view of biological wastewater treatment process population dynamics. Water Environ Res 80:677–687Google Scholar
  38. Kartal B, van Niftrik L, Rattray J, van de Vossenberg JL, Schmid MC, Sinninghe Damste J, Jetten MS, Strous M (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55. doi: 10.1111/j.1574-6941.2007.00408.x Google Scholar
  39. Kawakoshi A, Nakazawa H, Fukada J, Sasagawa M, Katano Y, Nakamura S, Hosoyama A, Sasaki H, Ichikawa N, Hanada S, Kamagata Y, Nakamura K, Yamazaki S, Fujita N (2012) Deciphering the genome of polyphosphate accumulating actinobacterium Microlunatus phosphovorus. DNA Res 19:383–394. doi: 10.1093/dnares/dss020 Google Scholar
  40. Keller KL, Wall JD (2011) Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbiol 2:135. doi: 10.3389/fmicb.2011.00135 Google Scholar
  41. Keller KL, Rapp-Giles BJ, Semkiw ES, Porat I, Brown SD, Wall JD (2014) New model for electron flow for sulfate reduction in Desulfovibrio alaskensis G20. Appl Environ Microbiol 80:855–868. doi: 10.1128/aem.02963-13 Google Scholar
  42. Kirstein K, Bock E (1993) Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch Microbiol 160(6):447–453Google Scholar
  43. Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, Larimer FW, Malfatti SA, Norton JM, Poret-Peterson AT, Vergez LM, Ward BB (2006) Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 72(9):6299–6315Google Scholar
  44. Kristiansen R, Nguyen HT, Saunders AM, Nielsen JL, Wimmer R, Le VQ, McIlroy SJ, Petrovski S, Seviour RJ, Calteau A, Nielsen KL, Nielsen PH (2013) A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J 7:543–554. doi: 10.1038/ismej.2012.136 Google Scholar
  45. Kuhn R, Benndorf D, Rapp E, Reichl U, Palese LL, Pollice A (2011) Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics 11:2738–2744. doi: 10.1002/pmic.201000590 Google Scholar
  46. Kunin V, He S, Warnecke F, Peterson SB, Garcia Martin H, Haynes M, Ivanova N, Blackall LL, Breitbart M, Rohwer F, McMahon KD, Hugenholtz P (2008) A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res 18:293–297. doi: 10.1101/gr.6835308 Google Scholar
  47. Kuo DH, Robinson KG, Layton AC, Meyers AJ, Sayler GS (2006) Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ Eng Sci 23(3):507–520Google Scholar
  48. Kuo DH, Robinson KG, Layton AC, Meyers AJ, Sayler GS (2010) Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. J Ind Microbiol Biotechnol 37(7):751–757Google Scholar
  49. Lacerda CM, Choe LH, Reardon KF (2007) Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6:1145–1152. doi: 10.1021/pr060477v Google Scholar
  50. Lenz M, Enright AM, O’Flaherty V, van Aelst AC, Lens PN (2009) Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal. Appl Microbiol Biotechnol 83:377–388. doi: 10.1007/s00253-009-1915-x Google Scholar
  51. Liu B, Frostegard A, Shapleigh JP (2013) Draft genome sequences of five strains in the genus Thauera. Genome Announc. doi: 10.1128/genomeA.00052-12 Google Scholar
  52. Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446:537–541. doi: 10.1038/nature05624 Google Scholar
  53. Lucker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damste JS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107:13479–13484. doi: 10.1073/pnas.1003860107 Google Scholar
  54. Lucker S, Nowka B, Rattei T, Spieck E, Daims H (2013) The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol 4:27. doi: 10.3389/fmicb.2013.00027 Google Scholar
  55. Lykidis A, Chen CL, Tringe SG, McHardy AC, Copeland A, Kyrpides NC, Hugenholtz P, Macarie H, Olmos A, Monroy O, Liu WT (2011) Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J 5:122–130. doi: 10.1038/ismej.2010.125 Google Scholar
  56. Maphosa F, van Passel MWJ, de Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ Microbiol Rep 4:604–616. doi: 10.1111/j.1758-2229.2012.00376.x Google Scholar
  57. Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269. doi: 10.1038/nbt1247 Google Scholar
  58. Maus I, Wibberg D, Stantscheff R, Eikmeyer FG, Seffner A, Boelter J, Szczepanowski R, Blom J, Jaenicke S, Konig H, Puhler A, Schluter A (2012) Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T), Isolated from a sewage sludge digester. J Bacteriol 194:5487–5488. doi: 10.1128/JB.01292-12 Google Scholar
  59. McIlroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, Tandoi V, Seviour RJ, Nielsen PH (2013) Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses. ISME J 7(6):1161–1172. doi: 10.1038/ismej.2013.6
  60. McMahon KD, Martin HG, Hugenholtz P (2007) Integrating ecology into biotechnology. Curr Opin Biotechnol 18:287–292. doi: 10.1016/j.copbio.2007.04.007 Google Scholar
  61. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. doi: 10.1038/nrg2626 Google Scholar
  62. Mino T, Satoh H (2006) Wastewater genomics. Nat Biotech 24:1229–1230Google Scholar
  63. Miura T, Kusada H, Kamagata Y, Hanada S, Kimura N (2013) Genome sequence of the multiple-beta-lactam-antibiotic-resistant bacterium Acidovorax sp. strain MR-S7. Genome Announc. doi: 10.1128/genomeA.00412-13 Google Scholar
  64. Muller EE, Pinel N, Gillece JD, Schupp JM, Price LB, Engelthaler DM, Levantesi C, Tandoi V, Luong K, Baliga NS, Korlach J, Keim PS, Wilmes P (2012) Genome sequence of ‘Candidatus Microthrix parvicella’ Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant. J Bacteriol 194:6670–6671. doi: 10.1128/JB.01765-12 Google Scholar
  65. Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA, Vollertsen J (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44:5070–5088. doi: 10.1016/j.watres.2010.07.036 Google Scholar
  66. Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PS, Hauser LJ, Land ML, Larimer FW, Shin MW, Starkenburg SR (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74(11):3559–3572Google Scholar
  67. Odom JM, Peck HD (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50. doi: 10.1111/j.1574-6968.1981.tb07609.x Google Scholar
  68. Oehmen A, Lopez-Vazquez CM, Carvalho G, Reis MA, van Loosdrecht MC (2010) Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Res 44:4473–4486. doi: 10.1016/j.watres.2010.06.017 Google Scholar
  69. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Le Paslier D (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190:2572–2579. doi: 10.1128/JB.01248-07 Google Scholar
  70. Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69. doi: 10.3389/fmicb.2011.00069 Google Scholar
  71. Plugge CM, Zhang W, Scholten JC, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81. doi: 10.3389/fmicb.2011.00081 Google Scholar
  72. Plugge CM, Henstra AM, Worm P, Swarts DC, Paulitsch-Fuchs AH, Scholten JC, Lykidis A, Lapidus AL, Goltsman E, Kim E, McDonald E, Rohlin L, Crable BR, Gunsalus RP, Stams AJ, McInerney MJ (2012) Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)). Stand Genomic Sci 7:91–106. doi: 10.4056/sigs.2996379 Google Scholar
  73. Potter LC, Millington P, Griffiths L, Thomas GH, Cole JA (1999) Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem J 344(Pt 1):77–84Google Scholar
  74. Ramos AR, Keller KL, Wall JD, Pereira IA (2012) The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5′-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol 3:137. doi: 10.3389/fmicb.2012.00137 Google Scholar
  75. Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146(Pt 3):551–571Google Scholar
  76. Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS (2005) Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1:e55. doi: 10.1371/journal.pcbi.0010055 Google Scholar
  77. Roh SW, Abell GC, Kim KH, Nam YD, Bae JW (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28:291–299. doi: 10.1016/j.tibtech.2010.03.001 Google Scholar
  78. Roling WF, Ferrer M, Golyshin PN (2010) Systems approaches to microbial communities and their functioning. Curr Opin Biotechnol 21:532–538. doi: 10.1016/j.copbio.2010.06.007 Google Scholar
  79. Russ L, Kartal B, Op den Camp HJ, Sollai M, Le Bruchec J, Caprais JC, Godfroy A, Sinninghe Damste JS, Jetten MS (2013) Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol 4:219. doi: 10.3389/fmicb.2013.00219 Google Scholar
  80. Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM (2009) Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Environ Microbiol 75:1688–1696. doi: 10.1128/AEM.01210-08 Google Scholar
  81. Schink B, Stams AJM (2013) Syntrophism among prokaryotes. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 471–493. doi: 10.1007/978-3-642-30123-0_59
  82. Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90. doi: 10.1016/j.jbiotec.2008.05.008 Google Scholar
  83. Schneider T, Riedel K (2010) Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10:785–798. doi: 10.1002/pmic.200900450 Google Scholar
  84. Schuster M, Conrad R (1992) Metabolism of nitric oxide and nitrous oxide during nitrification and denitrification in soil at different incubation conditions. FEMS Microbiol Ecol 10:133–143. doi: 10.1111/j.1574-6941.1992.tb00007.x Google Scholar
  85. Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94:21–33. doi: 10.1007/s10482-008-9226-2 Google Scholar
  86. Shi K, Zhou W, Zhao H, Zhang Y (2012) Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter. Bioresour Technol 113:280–287. doi: 10.1016/j.biortech.2012.01.117 Google Scholar
  87. Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452. doi: 10.1146/annurev-micro-090110-102844 Google Scholar
  88. Silva CC, Jesus EC, Torres AP, Sousa MP, Santiago VM, Oliveira VM (2010) Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J Microbiol Biotechnol 20:447–459Google Scholar
  89. Silva CC, Hayden H, Sawbridge T, Mele P, Kruger RH, Rodrigues MV, Costa GG, Vidal RO, Sousa MP, Torres AP, Santiago VM, Oliveira VM (2012) Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system. AMB Express 2:18. doi: 10.1186/2191-0855-2-18 Google Scholar
  90. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161. doi: 10.1128/AEM.02345-10 Google Scholar
  91. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16. doi: 10.1038/nrg2695 Google Scholar
  92. Sorokin DY, Lucker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damste JS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MC, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256. doi: 10.1038/ismej.2012.70 Google Scholar
  93. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978Google Scholar
  94. Speth DR, Hu B, Bosch N, Keltjens JT, Stunnenberg HG, Jetten MS (2012) Comparative genomics of two independently enriched “Candidatus Kuenenia Stuttgartiensis” anammox bacteria. Front Microbiol 3:307. doi: 10.3389/fmicb.2012.00307 Google Scholar
  95. Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ (2006) Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 72(3):2050–2063Google Scholar
  96. Stein LY, Arp DJ, Berube PM, Chain PS, Hauser L, Jetten MS, Klotz MG, Larimer FW, Norton JM, Op den Camp HJ, Shin M, Wei X (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007. doi: 10.1111/j.1462-2920.2007.01409.x Google Scholar
  97. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794. doi: 10.1038/nature04647 Google Scholar
  98. Suwa Y, Norton JM, Bollmann A, Klotz MG, Stein LY, Laanbroek HJ, Arp DJ, Goodwin LA, Chertkov O, Held B, Bruce D, Detter JC, Detter JC, Tapia R, Han CS (2011) Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia. J Bacteriol 193:5047–5048. doi: 10.1128/jb.05521-11 Google Scholar
  99. Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I, Douglas AE (2009) A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol 3:24. doi: 10.1186/1752-0509-3-24 Google Scholar
  100. Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324. doi: 10.1128/AEM.71.10.6319-6324.2005 Google Scholar
  101. van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJ, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs KJ, Russ L, Lam P, Malfatti SA, Tringe SG, Haaijer SC, Op den Camp HJ, Stunnenberg HG, Amann R, Kuypers MM, Jetten MS (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15:1275–1289. doi: 10.1111/j.1462-2920.2012.02774.x Google Scholar
  102. van der Star WR, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MC (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163. doi: 10.1016/j.watres.2007.03.044 Google Scholar
  103. van der Star WR, Miclea AI, van Dongen UG, Muyzer G, Picioreanu C, van Loosdrecht MC (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294. doi: 10.1002/bit.21891 Google Scholar
  104. Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506. doi: 10.1007/s00248-006-9197-7 Google Scholar
  105. Walker CB, Redding-Johanson AM, Baidoo EE, Rajeev L, He Z, Hendrickson EL, Joachimiak MP, Stolyar S, Arkin AP, Leigh JA, Zhou J, Keasling JD, Mukhopadhyay A, Stahl DA (2012) Functional responses of methanogenic archaea to syntrophic growth. ISME J 6:2045–2055. doi: 10.1038/ismej.2012.60 Google Scholar
  106. Wexler M, Richardson DJ, Bond PL (2009) Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environ Microbiol 11:3029–3044. doi: 10.1111/j.1462-2920.2009.02007.x Google Scholar
  107. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920. doi: 10.1111/j.1462-2920.2004.00687.x Google Scholar
  108. Wilmes P, Bond PL (2006a) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97. doi: 10.1016/j.tim.2005.12.006 Google Scholar
  109. Wilmes P, Bond PL (2006b) Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Sci Technol 54:217. doi: 10.2166/wst.2006.390 Google Scholar
  110. Wilmes P, Andersson AF, Lefsrud MG, Wexler M, Shah M, Zhang B, Hettich RL, Bond PL, VerBerkmoes NC, Banfield JF (2008a) Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J 2:853–864. doi: 10.1038/ismej.2008.38 Google Scholar
  111. Wilmes P, Wexler M, Bond PL (2008b) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 3:e1778. doi: 10.1371/journal.pone.0001778 Google Scholar
  112. Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41. doi: 10.1186/1754-6834-5-41 Google Scholar
  113. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667. doi: 10.1371/journal.pcbi.1000667 Google Scholar
  114. Worm P, Koehorst JJ, Visser M, Sedano-Nunez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJ (2014) A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochim Biophys Acta 1837:2004–2016. doi: 10.1016/j.bbabio.2014.06.005 Google Scholar
  115. Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46(4):1027–1037Google Scholar
  116. Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. BMC Microbiol 9:149. doi: 10.1186/1471-2180-9-149 Google Scholar
  117. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7:e38183. doi: 10.1371/journal.pone.0038183 Google Scholar
  118. Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA, Wall JD, Arkin AP (2011) How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 9:452–466. doi: 10.1038/nrmicro2575 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Environmental TechnologyValladolid UniversityValladolidSpain
  2. 2.Socamex S.A.ValladolidSpain
  3. 3.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
  4. 4.Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations