Skip to main content

Advertisement

Log in

Review of biological diagnostic tools and their applications in geoenvironmental engineering

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biological diagnostic tools are becoming an increasingly important aspect of geoenvironmental problems. Modern geoenvironmental professionals must be able to both understand and exploit biological processes for a variety of applications, ranging from contaminant biodegradation and removal to evaluation and monitoring of environmental quality in and around landfills and landfill cover systems. Advancements in genetics and environmental measurement have yielded a wealth of sophisticated tools to evaluate biological processes in soils, sediments and groundwater. Successful use of these tools requires a keen understanding of the limitations and advantages offered by each. This paper provides an overview of the currently available biological diagnostic tools with an emphasis on their application in geoenvironmental engineering. Limitations and unresolved challenges in successful applications of these tools are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abichou T, Mahieu K, Yuan L, Chanton J, Hater G (2009) Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manag 29(5):1595–1601

  • Achal V, Pan X, Özyurt N (2011) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37(4):554–559. doi:10.1016/j.ecoleng.2010.11.009

    Google Scholar 

  • Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71(12):8966–8969. doi:10.1128/AEM.71.12.8966-8969.2005

    CAS  Google Scholar 

  • Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR (2009) Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste manag 29(9):2509–2517. doi:10.1016/j.wasman.2009.05.005

  • Albuquerque P, Mendes MV, Santos CL, Moradas-Ferreira P, Tavares F (2009) DNA signature-based approaches for bacterial detection and identification. Sci Total Environ 407(12):3641–3651. doi:10.1016/j.scitotenv.2008.10.054

    CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  Google Scholar 

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126(3):215–220. doi:10.1016/0378-1097(95)00012-T

    CAS  Google Scholar 

  • Amos BK, Sung Y, Fletcher KE, Gentry TJ, Wu WM, Criddle CS, Zhou J, Loffler FE (2007) Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites. Appl Environ Microbiol 73(21):6898–6904. doi:10.1128/aem.01218-07

    CAS  Google Scholar 

  • ASTM (ASTM International) (2010) Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. E1688

  • Avarre JC, de Lajudie P, Bena G (2007) Hybridization of genomic DNA to microarrays: a challenge for the analysis of environmental samples. J Microbiol Methods 69(2):242–248. doi:10.1016/j.mimet.2006.11.007

    CAS  Google Scholar 

  • Barkouki T, Martinez B, Mortensen B, Weathers T, De Jong J, Ginn T, Spycher N, Smith R, Fujita Y (2011) Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments. Transp Porous Media 90(1):23–39

  • Baudoin E, Benizri E, Guckert A (2001) Metabolic fingerprint of microbial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37(2):85–93. doi:10.1016/S1164-5563(01)01071-8

    Google Scholar 

  • Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27(12):1517–1527. doi:10.1016/0038-0717(95)00104-M

    CAS  Google Scholar 

  • Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16(6):545–552. doi:10.1016/j.gde.2006.10.009

    CAS  Google Scholar 

  • Bergknut M, Sehlin E, Lundstedt S, Andersson PL, Haglund P, Tysklind M (2007) Comparison of techniques for estimating PAH bioavailability: uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ Pollut 145(1):154–160. doi:10.1016/j.envpol.2006.03.052

    CAS  Google Scholar 

  • Bodelier PLE, Kamst M, Meima-Franke M, Stralis-Pavese N, Bodrossy L (2009) Whole-community genome amplification (WCGA) leads to compositional bias in methane-oxidizing communities as assessed by pmoA-based microarray analyses and QPCR. Environ Microbiol Rep 1(5):434–441. doi:10.1111/j.1758-2229.2009.00066.x

    CAS  Google Scholar 

  • Bodrossy L, Sessitsch A (2004) Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol 7(3):245–254. doi:10.1016/j.mib.2004.04.005

    CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ microbiol 5(7):566–582. doi:10.1046/j.1462-2920.2003.00450.x

  • Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen turnover. J Environ Qual 25(1):178–183. doi:10.2134/jeq1996.00472425002500010023x

    CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelinand A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23. doi:10.1021/es9026248

    CAS  Google Scholar 

  • Börjesson G, Sundh I, Tunlid A, Svensson BH (1998) Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol Biochem 30(10–11):1423–1433. doi:10.1016/S0038-0717(97)00257-5

    Google Scholar 

  • Boubakri H, Beuf M, Simonet P, Vogel TM (2006) Development of metagenomic DNA shuffling for the construction of a xenobiotic gene. Gene 375:87–94. doi:10.1016/j.gene.2006.02.027

    CAS  Google Scholar 

  • Brady KU, Kruckeberg AR Jr, Bradshaw HD (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266. doi:10.2307/30033804

    Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel S, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489. doi:10.5194/bg-8-3457-2011

    Google Scholar 

  • Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130(12):3327–3333. doi:10.1099/00221287-130-12-3327

    CAS  Google Scholar 

  • Cabral A, Moreira J, Jugnia L (2010a) Biocover performance of landfill methane oxidation: Experimental results. J Environ Eng 136(8):785–793. doi:10.1061/(ASCE)EE.1943-7870.0000182

  • Cabral A, Capanema M, Gebert J, Moreira J, Jugnia L (2010b) Quantifying microbial methane oxidation efficiencies in two experimental landfill biocovers using stable isotopes. Water Air Soil Pollut 209(1–4):157–172. doi:10.1007/s11270-009-0188-4

    CAS  Google Scholar 

  • Capanema MA, Cabral AR (2012) Evaluating methane oxidation efficiencies in experimental landfill biocovers by mass balance and carbon stable isotopes. Water Air Soil Pollut 223(9):5623–5635. doi:10.1007/s11270-012-1302-6

    CAS  Google Scholar 

  • Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007a) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 62(1):12–23. doi:10.1111/j.1574-6941.2007.00368.x

    Google Scholar 

  • Cébron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007b) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73(3):798–807. doi:10.1128/Aem.01491-06

    Google Scholar 

  • Cébron A, Norini M-P, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Meth 73(2):148–159. doi:10.1016/j.mimet.2008.01.009

    Google Scholar 

  • Cébron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736. doi:10.1111/j.1462-2920.2010.02376.x

    Google Scholar 

  • Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28(1):351–356. doi:10.1016/j.conbuildmat.2011.07.042

    Google Scholar 

  • Chandler DP (1998) Redefining relatively: quantitative PCR at low template concentrations for industrial and environmental microbiology. J Ind Microbiol Biotechnol 21(3):128–140. doi:10.1038/sj.jim.2900546

    CAS  Google Scholar 

  • Chanton J, Liptay K (2000) Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochem Cycles 14(1):51–60. doi:10.1029/1999GB900087

    CAS  Google Scholar 

  • Chanton JP, Rutkowski CM, Mosher B (1999) Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ Sci Technol 33(21):3755–3760. doi:10.1021/es9904033

    CAS  Google Scholar 

  • Chanton JP, Powelson DK, Abichou T, Fields D, Green R (2008) Effect of temperature and oxidation rate on carbon-isotope fractionation during methane oxidation by landfill cover materials. Environ Sci Technol 42(21):7818–7823. doi:10.1021/es801221y

    CAS  Google Scholar 

  • Chauhan A, Green S, Pathak A, Thomas J, Venkatramanan R (2013) Whole-genome sequences of five oyster-associated bacteria show potential for crude oil hydrocarbon degradation. Genome Announc 1(5):e00802-13. doi:10.1128/genomeA.00802-13

    Google Scholar 

  • Chen Q, Yin H, Luo H, Xie M, Qiu G, Liu X (2009) Micro-array based whole-genome hybridization for detection of microorganisms in acid mine drainage and bioleaching systems. Hydrometallurgy 95(1–2):96–103. doi:10.1016/j.hydromet.2008.05.003

    CAS  Google Scholar 

  • Chi Z, Lu W, Wang H, Zhao Y (2012) Diversity of methanotrophs in a simulated modified biocover reactor. J Environ Sci 24(6):1076–1082. doi:10.1016/S1001-0742(11)60889-9

  • Colin VL, Villegas LB, Abate CM (2012) Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int Biodeterior Biodegradation 69:28–37. doi:10.1016/j.ibiod.2011.12.001

    CAS  Google Scholar 

  • Curtis TP, Sloan WT (2005) Exploring microbial diversity: a vast below. Science 309(5739):1331–1333. doi:10.1126/science.1118176

    CAS  Google Scholar 

  • Davis G, Baldwin BR, Peacock AD, Ogles D, White GM, Boyle SL, Raes E, Koenigsberg SS, Sublette KL (2008) Integrated approach to PCE-impacted site characterization, site management, and enhanced bioremediation. Remediat J 18(4):5–17. doi:10.1002/rem.20178

    Google Scholar 

  • DeAngelis KM, Wu CH, Beller HR, Brodie EL, Chakraborty R, DeSantis TZ, Fortney JL, Hazen TC, Osman SR, Singer ME, Tom LM, Andersen GL (2011) PCR amplification-independent methods for detection of microbial communities by the high-density microarray PhyloChip. Appl Environ Microb 77(18):6313–6322. doi:10.1128/aem.05262-11

  • De Visscher A, De Pourcq I, Chanton J (2004) Isotope fractionation effects by diffusion and methane oxidation in landfill cover soils. J Geophys Res Atmos (1984–2012) 109 (D18). doi:10.1029/2004JD004857

  • Degger N, Wepener V, Richardson BJ, Wu RSS (2011) Brown mussels (Perna perna) and semi-permeable membrane devices (SPMDs) as indicators of organic pollutants in the South African marine environment. Mar Pollut Bull 63(5–12):91–97. doi:10.1016/j.marpolbul.2011.04.024

    CAS  Google Scholar 

  • DeJong J, Fritzges M, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi:10.1061/(ASCE)1090-0241(2006)

    CAS  Google Scholar 

  • Delavat F, Lett M-C, Lièvremont D (2012) Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches. Biol Direct 7(1):28. doi:10.1186/1745-6150-7-28

    CAS  Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77(4):1315–1324. doi:10.1128/aem.01526-10

    CAS  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53(3):371–383. doi:10.1007/s00248-006-9134-9

    CAS  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi:10.1016/j.ecoleng.2011.11.011

  • Dobler R, Saner M, Bachofen R (2000) Population changes of soil microbial communities induced by hydrocarbon and heavy metal contamination. Bioremediat J 4(1):41–56. doi:10.1080/10588330008951131

    CAS  Google Scholar 

  • Dupraz S, Parmentier M, Ménez B, Guyot F (2009) Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chem Geol 265(1–2):44–53. doi:10.1016/j.chemgeo.2009.05.003

    CAS  Google Scholar 

  • Einola J-KM, Kettunen RH, Rintala JA (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol Biochem 39(5):1156–1164. doi:10.1016/j.soilbio.2006.12.022

    CAS  Google Scholar 

  • Epelde L, Becerril JM, Hernández-Allica J, Barrutia O, Garbisu C (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39(3):299–310. doi:10.1016/j.apsoil.2008.01.005

  • Eränen JK (2008) Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper–nickel smelters. J Evol Biol 21(2):492–501. doi:10.1111/j.1420-9101.2007.01491.x

    Google Scholar 

  • Ferris FG, Phoenix V, Fujita Y, Smith RW (2004) Kinetics of calcite precipitation induced by ureolytic bacteria at 10–20 C in artificial groundwater. Geochim Cosmochim Acta 68(8):1701–1710. doi:10.1016/S0016-7037(03)00503-9

    CAS  Google Scholar 

  • Ferris F, Stehmeier L, Kantzas A, Mourits F (1996) Bacteriogenic mineral plugging. J Canadian Petroleum Technology 35(8)

  • Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ Sci Technol 41(10):3689–3696. doi:10.1021/es061514m

    CAS  Google Scholar 

  • Franklin RB, Garland JL, Bolster CH, Mills AL (2001) Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments. Appl Environ Microbiol 67(2):702–712. doi:10.1128/aem.67.2.702-712.2001

    CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59(11):3605–3617

    Google Scholar 

  • Fujita Y, Redden GD, Ingram JC, Cortez MM, Ferris FG, Smith RW (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta 68(15):3261–3270. doi:10.1016/j.gca.2003.12.018

    CAS  Google Scholar 

  • Fujita Y, Taylor JL, Gresham TLT, Delwiche ME, Colwell FS, McLing TL, Petzke LM, Smith RW (2008) Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ Sci Technol 42(8):3025–3032. doi:10.1021/es702643g

    CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390. doi:10.1126/science.1112665

    CAS  Google Scholar 

  • Gebert J, Gröngröft A (2006) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manage 26(4):399–407. doi:10.1016/j.wasman.2005.11.007

    CAS  Google Scholar 

  • Gebert J, Stralis-Pavese N, Alawi M, Bodrossy L (2008) Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ Microbiol 10(5):1175–1188. doi:10.1111/j.1462-2920.2007.01534.x

  • Gebert J, Singh BK, Pan Y, Bodrossy L (2009) Activity and structure of methanotrophic communities in landfill cover soils. Environ Microbiol Rep 1(5):414–423. doi:10.1111/j.1758-2229.2009.00061.x

  • Gillevet PM, Sikaroodi M, Torzilli AP (2009) Analyzing salt-marsh fungal diversity: comparing ARISA fingerprinting with clone sequencing and pyrosequencing. Fungal Ecol 2(4):160–167. doi:10.1016/j.funeco.2009.04.001

    Google Scholar 

  • Golyshin PN, Martins Dos Santos VAP, Kaiser O, Ferrer M, Sabirova YS, Lünsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Pühler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106(2–3):215–220. doi:10.1016/j.jbiotec.2003.07.013

    CAS  Google Scholar 

  • Graham AM, Bouwer EJ (2010) Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides. Environ Sci Technol 44(1):136–142. doi:10.1021/es9013882

    CAS  Google Scholar 

  • Gutierrez-Zamora M-L, Manefield M (2010) An appraisal of methods for linking environmental processes to specific microbial taxa. Rev Environ Sci Biotechnol 9(2):153–185. doi:10.1007/s11157-010-9205-8

    Google Scholar 

  • Hatzinger PB, Böhlke JK, Sturchio NC (2013) Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Curr Opin Biotechnol 24(3):542–549. doi:10.1016/j.copbio.2012.11.010

    CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208. doi:10.1126/science.1195979

    CAS  Google Scholar 

  • Hazen TC, Rocha AM, Techtmann SM (2013) Advances in monitoring environmental microbes. Curr Opin Biotechnol 24(3):526–533. doi:10.1016/j.copbio.2012.10.020

    CAS  Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. Isme J 1(1):67–77. http://www.nature.com/ismej/journal/v1/n1/suppinfo/ismej20072s1.html

  • He Z, Van Nostrand JD, Zhou J (2012) Applications of functional gene microarrays for profiling microbial communities. Curr Opin Biotechnol 23(3):460–466. doi:10.1016/j.copbio.2011.12.021

    CAS  Google Scholar 

  • Hedrick DB, Peacock A, Stephen JR, Macnaughton SJ, Bruggemann J, White DC (2000) Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J Microbiol Methods 41(3):235–248. doi:10.1016/S0167-7012(00)00157-3

    CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994. doi:10.1101/gr.6.10.986

    CAS  Google Scholar 

  • Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry K, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. Isme J 4(5):660–672. doi:http://www.nature.com/ismej/journal/v4/n5/suppinfo/ismej2009154s1.html

  • Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42(6):878–887. doi:10.1016/j.soilbio.2010.02.019

    CAS  Google Scholar 

  • Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manage Res 26(1):33–46. doi:10.1177/0734242X07087977

    CAS  Google Scholar 

  • Huber-Humer M, Roder S, Lechner P (2009) Approaches to assess biocover performance on landfills. Waste Manage 29(7):2092–2104. doi:10.1016/j.wasman.2009.02.001

    CAS  Google Scholar 

  • Huber-Humer M, Tintner J, Böhm K, Lechner P (2011) Scrutinizing compost properties and their impact on methane oxidation efficiency. Waste Manage 31(5):871–883. doi:10.1016/j.wasman.2010.09.023

    CAS  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180(2):366–376

    CAS  Google Scholar 

  • Hunkeler D (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency

  • Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, Aravena R, Bjerg PL (2011) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119(1–4):69–79. doi:10.1016/j.jconhyd.2010.09.009

    CAS  Google Scholar 

  • IPCC (2011) Special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council) (2011a) Environmental molecular diagnostics fact sheets (trans: Team EMD). Interstate Technology & Regulatory Council, Washington, DC

  • ITRC (2011b) Incorporating bioavailability considerations into the evaluation of contaminated sediment sites. ITRC Contaminated Sediment Team, Washington, DC

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7(2):139–153. doi:10.1007/s11157-007-9126-3

    CAS  Google Scholar 

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13(10):2623–2632. doi:10.1111/j.1462-2920.2011.02501.x

    CAS  Google Scholar 

  • Jugnia L-B, Cabral AR, Greer CW (2008) Biotic methane oxidation within an instrumented experimental landfill cover. Ecol Eng 33(2):102–109. doi:10.1016/j.ecoleng.2008.02.003

    Google Scholar 

  • Kallistova AY, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola JKM, Kulomaa MS, Rintala JA, Nozhevnikova AN (2007) Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill. Microb Ecol 54(4):637–645. doi:10.1007/s00248-007-9219-0

    Google Scholar 

  • Key KC, Sublette KL, Duncan K, Mackay DM, Scow KM, Ogles D (2013) Using DNA-stable isotope probing to identify MTBE- and TBA-degrading microorganisms in contaminated groundwater. Ground Water Monit Remediat 33(4):57–68. doi:10.1111/gwmr.12031

    CAS  Google Scholar 

  • Kim T, Moon K-E, Yun J, Cho K-S (2013) Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl Microbiol Biot 97(7):3171–3181. doi:10.1007/s00253-012-4123-z

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69(5):2423–2429. doi:10.1128/AEM.69.5.2423-2429.2003

    CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974. doi:10.1128/aem.05402-11

    CAS  Google Scholar 

  • Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotech 23(10):1269–1273. http://www.nature.com/nbt/journal/v23/n10/suppinfo/nbt1131_S1.html

  • Lee SW, Im J, DiSpirito AA, Bodrossy L, Barcelona MJ, Semrau JD (2009) Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl Microbiol Biotechnol 85(2):389–403. doi:10.1007/s00253-009-2238-7

    CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlík O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1(2):134–148. doi:10.1038/ismej.2007.26

    CAS  Google Scholar 

  • Li H, Chi Z, Lu W, Wang H (2014) Sensitivity of methanotrophic community structure, abundance, and gene expression to CH4 and O2 in simulated landfill biocover soil. Environ Pollut 184:347–353. doi:10.1016/j.envpol.2013.09.002

  • Liang Y, Van Nostrand JD, N’Guessan LA, Peacock AD, Deng Y, Long PE, Resch CT, Wu L, He Z, Li G, Hazen TC, Lovley DR, Zhou J (2012) Microbial functional gene diversity with a shift of subsurface redox conditions during In Situ uranium reduction. Appl Environ Microbiol 78(8):2966–2972. doi:10.1128/aem.06528-11

    CAS  Google Scholar 

  • Liu P, Meagher RJ, Light YK, Yilmaz S, Chakraborty R, Arkin AP, Hazen TC, Singh AK (2011) Microfluidic fluorescence in situ hybridization and flow cytometry (µFlowFISH). Lab Chip 11(16):2673–2679. doi:10.1039/C1LC20151D

    CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12(3):248–253. doi:10.1016/S0958-1669(00)00207-X

    CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytorem 3:173–187. doi:10.1080/15226510108500055

    CAS  Google Scholar 

  • Loiacono ST, Meyer-Dombard DAR, Havig JR, Poret-Peterson AT, Hartnett HE, Shock EL (2012) Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environ Microbiol 14(5):1272–1283. doi:10.1111/j.1462-2920.2012.02710.x

    CAS  Google Scholar 

  • Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee Y-J, Mason OU, Dubinsky EA, Chavarria KL, Tom LM, Fortney JL, Lamendella R, Jansson JK, D’Haeseleer P, Hazen TC, Zhou J (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. Isme J 6(2):451–460. http://www.nature.com/ismej/journal/v6/n2/suppinfo/ismej201191s1.html

  • Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69(1):320–326. doi:10.1128/aem.69.1.320-326.2003

    CAS  Google Scholar 

  • Madsen EL (2006) The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr Opin Biotechnol 17(1):92–97. doi:10.1016/j.copbio.2005.12.004

    CAS  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. doi:10.1146/annurev.genom.9.081307.164359

    CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 (7057):376–380. http://www.nature.com/nature/journal/v437/n7057/suppinfo/nature03959_S1.html

  • Marsh TL, Saxman P, Cole J, Tiedje J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66(8):3616–3620. doi:10.1128/aem.66.8.3616-3620.2000

    CAS  Google Scholar 

  • Marshall IP, Berggren DR, Azizian MF, Burow LC, Semprini L, Spormann AM (2011) The hydrogenase chip: a tiling oligonucleotide DNA microarray technique for characterizing hydrogen-producing and-consuming microbes in microbial communities. ISME J 6(4):814–826. doi:10.1038/ismej.2011.136

    Google Scholar 

  • Martinez B, DeJong J, Ginn T, Montoya B, Barkouki T, Hunt C, Tanyu B, Major D (2013) Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng 139(4):587–598. doi:10.1061/(ASCE)GT.1943-5606.0000787

    CAS  Google Scholar 

  • McDonald IR, Murrell JC (1997) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156(2):205–210. doi:10.1111/j.1574-6968.1997.tb12728.x

    CAS  Google Scholar 

  • McGrath KC, Mondav R, Sintrajaya R, Slattery B, Schmidt S, Schenk PM (2010) Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microb 76(21):7161–7170. doi:10.1128/aem.03108-09

  • Metzker ML (2009) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626

    Google Scholar 

  • Michener R, Lajtha K (2008) Stable isotopes in ecology and environmental science. Wiley

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65(11):4715–4724

    CAS  Google Scholar 

  • Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manage 26(4):381–388. doi:10.1016/j.wasman.2005.11.005

    CAS  Google Scholar 

  • Morrill PL, Sleep BE, Seepersad DJ, McMaster ML, Hood ED, LeBron C, Major DW, Edwards EA, Lollar BS (2009) Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone. J Contam Hydrol 110(1–2):60–71. doi:10.1016/j.jconhyd.2009.08.006

    CAS  Google Scholar 

  • Müller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34(4):554–587. doi:10.1111/j.1574-6976.2010.00214.x

    Google Scholar 

  • Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53(3):435–442. doi:10.1007/s00248-006-9125-x

    CAS  Google Scholar 

  • Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4(2):77–82. doi:10.1007/s007920050140

    CAS  Google Scholar 

  • Nishimura S, Sawamoto T, Akiyama H, Sudo S, Yagi K (2004) Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochem Cycles 18(2). doi:10.1029/2003GB002207

  • Noble RRP, Stalker L, Wakelin SA, Pejcic B, Leybourne MI, Hortle AL, Michael K (2012) Biological monitoring for carbon capture and storage: a review and potential future developments. Int J Greenhouse Gas Control 10:520–535. doi:10.1016/j.ijggc.2012.07.022

    CAS  Google Scholar 

  • Nostrand JD, He Z, Zhou J (2012) Use of functional gene arrays for elucidating in situ biodegradation. Front Microbiol 3:339. doi:10.3389/fmicb.2012.00339

    Google Scholar 

  • Nozhevnikova A, Glagolev M, Nekrasova V, Einola J, Sormunen K, Rintala J (2003) The analysis of methods for measurement of methane oxidation in landfills. Water Sci Technol 48(4):45–52

    CAS  Google Scholar 

  • Palmroth MT, Münster U, Pichtel J, Puhakka J (2005) Metabolic responses of microbiota to diesel fuel addition in vegetated soil. Biodegradation 16(1):91–101. doi:10.1007/s10531-004-0626-y

    CAS  Google Scholar 

  • Palmroth MRT, Koskinen PEP, Kaksonen AH, Münster U, Pichtel J, Puhakka JA (2007) Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Biodegradation 18(6):769–782. doi:10.1007/s10532-007-9105-y

    CAS  Google Scholar 

  • Pankhurst C, Doube BM, Gupta V (1997) Biological indicators of soil health. CAB International, Wallingford

    Google Scholar 

  • Pennanen T, Frostegard A, Fritze H, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62(2):420–428

    CAS  Google Scholar 

  • Polti MA, Atjián MC, Amoroso MJ, Abate CM (2011) Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int Biodeterior Biodegradation 65(8):1175–1181. doi:10.1016/j.ibiod.2011.09.008

    CAS  Google Scholar 

  • Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegradation 88:48–55. doi:10.1016/j.ibiod.2013.12.004

    CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64(10):3724–3730

    CAS  Google Scholar 

  • Popa R, Mashall MJ, Nguyen H, Tebo BM, Brauer S (2009) Limitations and benefits of ARISA intra-genomic diversity fingerprinting. J Microbiol Methods 78(2):111–118. doi:10.1016/j.mimet.2009.06.005

    CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26(6):576–590. doi:10.1016/j.biotechadv.2008.08.002

    CAS  Google Scholar 

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98:3–9. doi:10.14359/10154

    CAS  Google Scholar 

  • Ramakrishnan V, Bang SS, Deo KS (1998) A novel technique for repairing cracks in high performance concrete structures using bacteria. In: International conference on HPHSC. Perth, pp 597–617

  • Reay D, Nedwell D, McNamara N, Ineson P (2005) Effect of tree species on methane and ammonium oxidation capacity in forest soils. Soil Biol Biochem 37(4):719–730. doi:10.1016/j.soilbio.2004.10.004

    CAS  Google Scholar 

  • Reichenauer TG, Watzinger A, Riesing J, Gerzabek MH (2011) Impact of different plants on the gas profile of a landfill cover. Waste Manage 31(5):843–853. doi:10.1016/j.wasman.2010.08.027

    CAS  Google Scholar 

  • Reichle DE (1977) The role of soil invertebrates in nutrient cycling. Ecol Bull 145–156. http://www.jstor.org/stable/20112575

  • Renzi M, Roselli L, Giovani A, Focardi SE, Basset A (2014) Early warning tools for ecotoxicity assessment based on Phaeodactylum tricornutum. Ecotoxicology 23(6):1055–1072. doi:10.1007/s10646-014-1249-z

  • Révész KM, Lollar BS, Kirshtein JD, Tiedeman CR, Imbrigiotta TE, Goode DJ, Shapiro AM, Voytek MA, Lacombe PJ, Busenberg E (2014) Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks. J Contam Hydrol 156:62–77. doi:10.1016/j.jconhyd.2013.10.004

    Google Scholar 

  • Richardson BJ, De Luca Abbott SB, McClellan KE, Zheng GJ, Lam PKS (2008) The use of permeability reference compounds in biofouled semi-permeable membrane devices (SPMDs): a laboratory-based investigation. Mar Pollut Bull 56(9):1663–1667. doi:10.1016/j.marpolbul.2008.05.012

    CAS  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124. doi:10.1038/nbt1485

    CAS  Google Scholar 

  • Sadasivam B, Reddy K (2013) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 1–29. doi:10.1007/s11157-013-9325-z

  • Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P (2011) Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manage 31(5):1018–1028. doi:10.1016/j.wasman.2011.01.024

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27(5):409–455. doi:10.1177/0734242x09339325

    CAS  Google Scholar 

  • Schneidewind U, Haest PJ, Atashgahi S, Maphosa F, Hamonts K, Maesen M, Calderer M, Seuntjens P, Smidt H, Springael D, Dejonghe W (2014) Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. J Contam Hydrol 157:25–36. doi:10.1016/j.jconhyd.2013.10.006

  • Schütte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biot 80(3):365–380

    Google Scholar 

  • Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171(4):719–736. doi:10.1111/j.1469-8137.2006.01824.x

    CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145. doi:10.1038/nbt1486

    CAS  Google Scholar 

  • Sleep BE, Seepersad DJ, Kaiguo MO, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebron C, Lollar BS, Major DW, Edwards EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40(11):3623–3633

  • Sprocati AR, Alisi C, Tasso F, Marconi P, Sciullo A, Pinto V, Chiavarini S, Ubaldi C, Cremisini C (2012) Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochem 47(11):1649–1655. doi:10.1016/j.procbio.2011.10.001

    CAS  Google Scholar 

  • Stefanowicz A (2006) The Biolog plates technique as a tool in ecological studies of microbial communities. Polish J Environ Stud 15(5):669

    CAS  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnology Advances 26(6):561–575. doi:10.1016/j.biotechadv.2008.07.004

  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70(8):4748–4755. doi:10.1128/aem.70.8.4748-4755.2004

    CAS  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160. doi:10.1128/jb.00345-12

    CAS  Google Scholar 

  • Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6(4):347–363. doi:10.1111/j.1462-2920.2004.00582.x

    CAS  Google Scholar 

  • Stralis-Pavese N, Bodrossy L, Reichenauer TG, Weilharter A, Sessitsch A (2006) 16S rRNA based T-RFLP analysis of methane oxidising bacteria: assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl Soil Ecol 31(3):251–266. doi:10.1016/j.apsoil.2005.05.006

    Google Scholar 

  • Streese J, Stegmann R (2003) Microbial oxidation of methane from old landfills in biofilters. Waste Manage 23(7):573–580. doi:10.1016/S0956-053X(03)00097-7

    CAS  Google Scholar 

  • Su Y, Zhang X, Xia F-F, Zhang Q-Q, Kong J-Y, Wang J, He R (2013) Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst Appl Microbiol. doi:10.1016/j.syapm.2013.10.005

  • Sublette K, Peacock A, White D, Davis G, Ogles D, Cook D, Kolhatkar R, Beckmann D, Yang X (2006) Monitoring subsurface microbial ecology in a sulfate-amended, gasoline-contaminated aquifer. Ground Water Monit Rem 26(2):70–78

    CAS  Google Scholar 

  • Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9(9):2289–2297. doi:10.1111/j.1462-2920.2007.01342.x

    CAS  Google Scholar 

  • Suer P, Hallberg N, Carlsson C, Bendz D, Holm G (2009) Biogrouting compared to jet grouting: environmental (LCA) and economical assessment. J Environ Sci Health Part A 44(4):346–353

    CAS  Google Scholar 

  • Sun H, Wang C, Huo C, Zhou Z (2008) Semipermeable membrane device–assisted desorption of pyrene from soils and its relationship to bioavailability. Environ Toxicol Chem 27(1):103–111. doi:10.1897/07-120.1

    CAS  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62(2):625–630

    CAS  Google Scholar 

  • Tarnowski BI, Spinale FG, Nicholson JH (1991) DAPI as a useful stain for nuclear quantitation. Biotechnic Histochem 66(6):296–302. doi:10.3109/10520299109109990

    Google Scholar 

  • Taş N, van Eekert MHA, Schraa G, Zhou J, de Vos WM, Smidt H (2009) Tracking functional guilds: “Dehalococcoides” spp. in European River Basins Contaminated with Hexachlorobenzene. Appl Environ Microbiol 75 (14):4696–4704. doi:10.1128/aem.02829-08

  • USEPA (1998) Evaluation of dredged material proposed for discharge in waters of the U.S.—testing manual: inland testing manual. EPA/823/B-98/004. http://www.itrcweb.org/contseds-bioavailability/References/Evaluation-Analytical-methods-USACE-EPA.pdf

  • USEPA (2002) Technical basis for the derivation of equilibrium partitioning sediment guidelines (ESGs) for the protection of benthic organisms: nonionic organics. Draft. EPA/822/R-02/041. Washington, DC: Water Resource Center. http://www.itrcweb.org/contseds-bioavailability/References/2009_03_11_criteria_sediment_EPA822R02041.pdf

  • USEPA (United States Environmental Protection Agency) (1991) Evaluation of dredged material proposed for ocean disposal: testing manual. EPA/503/8-91/001. With the U.S. Army Corps of Engineers. http://www.itrcweb.org/contseds-bioavailability/References/gbook.pdf

  • van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2010) Correlation of dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76(3):843–850. doi:10.1128/aem.01482-09

    Google Scholar 

  • Van Nostrand JD, Wu WM, Wu L, Deng Y, Carley J, Carroll S, He Z, Gu B, Luo J, Criddle CS, Watson DB, Jardine PM, Marsh TL, Tiedje JM, Hazen TC, Zhou J (2009) GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ Microbiol 11(10):2611–2626. doi:10.1111/j.1462-2920.2009.01986.x

    Google Scholar 

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40(1):157–166. doi:10.1016/j.cemconres.2009.08.025

    Google Scholar 

  • Vargas-García MdC, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67. doi:10.1016/j.scitotenv.2012.05.026

    Google Scholar 

  • Von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229. doi:10.1111/j.1574-6976.1997.tb00351.x

    Google Scholar 

  • Wackett LP (2004) Stable isotope probing in biodegradation research. Trends Biotechnol 22(4):153–154. doi:10.1016/j.tibtech.2004.01.013

    CAS  Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6(3):302–309

    CAS  Google Scholar 

  • Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53(3):498–506. doi:10.1007/s00248-006-9197-7

    CAS  Google Scholar 

  • Wang Y, Wu W, Ding Y, Liu W, Perera A, Chen Y, Devare M (2008) Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biol Biochem 40(9):2452–2459. doi:10.1016/j.soilbio.2008.06.009

    CAS  Google Scholar 

  • Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL, Clark SJ (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25(21):4422–4426

    CAS  Google Scholar 

  • Watzinger A, Stemmer M, Pfeffer M, Rasche F, Reichenauer TG (2008) Methanotrophic communities in a landfill cover soil as revealed by [13C] PLFAs and respiratory quinones: impact of high methane addition and landfill leachate irrigation. Soil Biol Biochem 40(3):751–762. doi:10.1016/j.soilbio.2007.10.010

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254. doi:10.1016/j.copbio.2009.02.012

    CAS  Google Scholar 

  • Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, Lelie D, Taghavi S, Carleer R, Vangronsveld J (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments 13(1):176–188. doi:10.1007/s11368-012-0582-1

    CAS  Google Scholar 

  • Whiteley AS, Manefield M, Lueders T (2006) Unlocking the ‘microbial black box’ using RNA-based stable isotope probing technologies. Curr Opin Biotechnol 17(1):67–71. doi:10.1016/j.copbio.2005.11.002

    CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583

    CAS  Google Scholar 

  • Widory D, Proust E, Bellenfant G, Bour O (2012) Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: the added value of the isotope (delta C-13 and delta O-18 CO2; delta C-13 and delta D CH4) approach. Waste Manage 32(9):1685–1692. doi:10.1016/j.wasman.2012.04.008

    CAS  Google Scholar 

  • Wilshusen JH, Hettiaratchi JPA, De Visscher A, Saint-Fort R (2004a) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ Pollut 129(2):305–314. doi:10.1016/j.envpol.2003.10.015

    CAS  Google Scholar 

  • Wilshusen JH, Hettiaratchi JPA, Stein VB (2004b) Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Manage 24(7):643–653. doi:10.1016/j.wasman.2003.12.006

    CAS  Google Scholar 

  • Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen KT, Jørgensen KS, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi: from laboratory to field scale. Int Biodeterior Biodegradation 86:238–247. doi:10.1016/j.ibiod.2013.09.012

    CAS  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65(11):4887–4897

    CAS  Google Scholar 

  • Wu L, Thompson DK, Liu X, Fields MW, Bagwell CE, Tiedje JM, Zhou J (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38(24):6775–6782

    CAS  Google Scholar 

  • Wu L, Liu X, Schadt CW, Zhou J (2006) Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol 72(7):4931–4941. doi:10.1128/aem.02738-05

    CAS  Google Scholar 

  • Wünsche L, Brüggemann L, Babel W (1995) Determination of substrate utilization patterns of soil microbial communities: an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol Ecol 17(4):295–305

    Google Scholar 

  • Xie J, He Z, Liu X, Liu X, Van Nostrand JD, Deng Y, Wu L, Zhou J, Qiu G (2011) Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol 77(3):991–999. doi:10.1128/aem.01798-10

    CAS  Google Scholar 

  • Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Dai Z, Liu X (2007) Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. J Microbiol Meth 70(1):165–178. doi:10.1016/j.mimet.2007.04.011

    CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils 29(2):111–129

    CAS  Google Scholar 

  • Zelles L, Alef K (1995) Biomarkers. Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 422–439

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci 99(24):15681–15686

    CAS  Google Scholar 

  • Zhu X, Tian J, Liu C, Chen L (2013) Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating coking wastewater. Appl Microbiol Biot 97(19):8767–8775. doi:10.1007/s00253-012-4558-2

    CAS  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39(8):909–916. doi:10.1016/S0032-9592(03)00200-0

    CAS  Google Scholar 

Download references

Acknowledgments

This research project is funded by the U.S. National Science Foundation (Grant CMMI #1200799), which is gratefully acknowledged. It is a part of doctoral thesis of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna R. Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yargicoglu, E.N., Reddy, K.R. Review of biological diagnostic tools and their applications in geoenvironmental engineering. Rev Environ Sci Biotechnol 14, 161–194 (2015). https://doi.org/10.1007/s11157-014-9358-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9358-y

Keywords

Navigation