Skip to main content

Advertisement

Log in

Pesticide relevance and their microbial degradation: a-state-of-art

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The extensive use of pesticide causes imbalance in properties of soil, water and air environments due to having problem of natural degradation. Such chemicals create diverse environmental problem via biomagnifications. Currently, microbial degradation is one of the important techniques for amputation and degradation of pesticide from agricultural soils. Some studies have reported that the genetically modified microorganism has ability to degrade specific pesticide but problem is that they cannot introduce in the field because they cause some other environmental problems. Only combined microbial consortia of indigenous and naturally occurring microbes isolated from particular contaminated environment have ability to degrade pesticides at faster rate. The bioaugumentation processes like addition of necessary nutrients or organic matter are required to speed up the rate of degradation of a contaminant by the indigenous microbes. The use of indigenous microbial strains having plant growth activities is ecologically superior over the chemical methods. In this review, we have attempted to discuss the recent challenge of pesticide problem in soil environment and their biodegradation with the help of effective indigenous pesticides degrading microorganisms. Further, we highlighted and explored the molecular mechanism for the pesticide degradation in soil with effective indigenous microbial consortium. This review suggests that the use of pesticide degrading microbial consortia which is an eco-friendly technology may be suitable for the sustainable agriculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbondanzi F, Campisi T, Focanti M, Guerra R, Iacondini A (2005) Assessing degradation capability of aerobic indigenous microflora in PAH-contaminated brackish sediments. Mar Environ Res 59:419–434

    CAS  Google Scholar 

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazar Mater 165(1–3):1–12

    CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res. doi:10.1007/s11356-013-1808-5

    Google Scholar 

  • Abo-Amer A (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21(1):71–80

    CAS  Google Scholar 

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities and sediments. Curr Opin Microbiol 5:246–253

  • Acharya SS (2006) Food security and Indian Agriculture: policies, production performance and marketing environment. Agricult Econom Res Rev 22:1–19

    Google Scholar 

  • Adhya TK, Barik S, Sethunathan N (1981) Hydrolysis of selected organophosphorus insecticides by two bacterial isolates from flooded soil. J Appl Bacteriol 50:167–172

    CAS  Google Scholar 

  • Agarry SE, Olu-arotiowa OA, Aremu MO, Jimoda LA (2013) Biodegradation of Dichlorovos (Organophosphate Pesticide) in soil by bacterial isolates. J Natural Sci Res 3(8):12–16

  • Agnihotri NP (1999) Pesticide safety and monitoring. All India Coordinated Research Project on Pesticides Residues, Indian Council of Agricultural Research, New Delhi, India

  • Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil NewZealand. FEMS Microbiol Ecol 52:279–286

    CAS  Google Scholar 

  • Aislabie J, Davison AD, Boul HL, Franzmann PD, Jardine DR, Karuso P (1999) Isolation of Terrabacter sp. strain DDE-1, which metabolizes 1, 1 dichloro-2,2-bis(4 chlorophenyl) ethylene when induced with biphenyl. Appl Environ Microbiol 65(12):5607–11

  • Al-Arfaj A, Abdel-Megeed A, Ali HM, Al-Shahrani O (2013) Phyto-microbial degradation of glyphosate in Riyadh area. J Pure App Microbio 7(2):1351–1365

    CAS  Google Scholar 

  • Alisi Chiara, Musella Rosario, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032

    CAS  Google Scholar 

  • Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    CAS  Google Scholar 

  • Amellal N, Jean-M Portal, Vogel T, Berthelin J (2001) Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation 12(1):49–57

    CAS  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzymes activities of PAH polluted soils. Chemosphere 57:401–412

    CAS  Google Scholar 

  • Anonymous (1991) Survey of the environment, The Hindu, Government of India, Eleventh Five-Year Plan (2008–2012) Planning Commission of India, New Delhi, http://planningcommission.nic.in/plans/planrel/fiveyr/welcome.html

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405

    CAS  Google Scholar 

  • Arisoy M, Kolankaya N (1998) Biodegradation of Heptachlor by Phanerochaete chrysosporium ME 446: the toxic effects of Heptachlor and its Metabolites on Mice. Turk J Biol 22:427–434

    CAS  Google Scholar 

  • Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199

    CAS  Google Scholar 

  • Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69

    CAS  Google Scholar 

  • Awad NS, Sabit HH, Abo-Aba SEM, Bayoumi RA (2011) Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils. Afr J Microbiol Res 5(18):2855–2862

    CAS  Google Scholar 

  • Awasthi N, Kumar A, Makkar R, Cameotra SS (1999) Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J Environ Sci Health, Part B 34(5):793–803

    Google Scholar 

  • Bacosa HP, Suto K, Inoue C (2010) Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int Biodeterior Biodegrad 64:702–710

    CAS  Google Scholar 

  • Bacosa HP, Suto K, Inoue C (2013) Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int Biodeterior Biodegrad 74:109–115

    Google Scholar 

  • Bælum J, Nicolaisen MH, Holben WE, Strobel BW, Sørensen J, Jacobsen CS (2008) Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J 2:677–687

    Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improvephytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588

    CAS  Google Scholar 

  • Barathidasan K, Reetha D (2013) Microbial degradation of monocrotophos by Pseudomonas stutzeri. Indian Streams Res J 3(5):1

    Google Scholar 

  • Barathidasan K, Reetha D, John Milton D, Sriram N, Govindammal M (2014) Biodegradation of chlorpyrifos by co-culture of Cellulomonas fimi and Phanerochaete chrysosporium. Afr J Microbiol Res 8(9):961–966

    CAS  Google Scholar 

  • Barragan-Huerta BE, Costa-Perez C, Peralta-Cruz J, Barrera-Cortes J, Esparza-Garcıa F, Rodrıguez-Vazquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegrad 59:239–244

    CAS  Google Scholar 

  • Bastiaens L, Sphingeal D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843

    CAS  Google Scholar 

  • Beate B, Andreas T, Christian F (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59:1927–1930

    Google Scholar 

  • Beil S, Timmis K, Pieper D (1999) Genetic and biochemical analysis of the tec operon suggests a route for evolution of chlorobenzene degradation genes. J Bacteriol 181:341–346

    CAS  Google Scholar 

  • Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. Appl Environ Microbiol 93:224–234

    CAS  Google Scholar 

  • Bhatnagar VK (2001) Pesticides pollution: trends and perspectives. ICMR Bull 31:87–88

    Google Scholar 

  • Bhuimbar MV, Kulkarni Ashwini N, Ghosh Jai S (2011) Detoxification of chlorpyriphos by Micrococcus luteus NCIM 2103, Bacillus subtilis NCIM 2010 and Pseudomonas aeruginosa NCIM 2036. Res J Envir Earth Sci 3(5):614–619

    CAS  Google Scholar 

  • Boldt TS, Sørensen J, Karlson U, Molin S, Ramos C (2004) Combined use ofdifferent Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48(2):139–148

    CAS  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Proc Biochem J 40:1999–2013

    CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN (1995) Conctruction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Micorbiol 61:1946–1952

    CAS  Google Scholar 

  • Bunemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44:379–406

    Google Scholar 

  • Burchfield HP, Storrs EE (1957) Effect of chlorine substitution and isomerism on the intractions of S-triazine derivatives with conidia of Neurospora sitophilia. Boyce Thompson Inst Plant Res 18:429–452

  • Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWWO) catabolic plasmid. Appl Environ Microbiol 55:1323–1328

    CAS  Google Scholar 

  • Cases V, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8(3):213–222

    CAS  Google Scholar 

  • Chacko CI, Lockwood JL, Zabik M (1966) Chlorinated hydrocarbon pesticides: degradation microbes. Sci 154:893–895

    CAS  Google Scholar 

  • Chakoosari MMD (2013) Efficacy of various biological and microbial insecticides. J Biol today’s World 2(5):249–254

    Google Scholar 

  • Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organiccompounds microbiological reviews. Microbiol Mol Biol Rev 55(1):59–79

    CAS  Google Scholar 

  • Chaudry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    Google Scholar 

  • Chauhan A, Faziurrahman, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113

    CAS  Google Scholar 

  • Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticide detoxification. Trend Biotechnol 16:71

    CAS  Google Scholar 

  • Chen X, Christopher A, Jones JP, Bell SG, Guo Q, Xu F, Roa Z and Wong LL (2002) Crystal structure of the F87W/ Y96F/V247L mutant of cytochrome P-450 cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenezene. J Biol Chem 277:37519–37526.

  • Chirnside AEM, Ritter William F, Radosevich M (2007) Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Bioch 39:3056–3065

    CAS  Google Scholar 

  • Clarke PH (1984) The evolution of degradative pathways. Microbial degradation of organic compounds. Marcel Dekker, New York, pp 11–27

    Google Scholar 

  • Colombo M, Cavalca L, Bernasconi S, Andreoni V (2011) Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: a feasibility study in solid- and slurry-phase microcosms. Int Biodeter Biodegrad 65:191–197

  • Colosio C, Tiramani M, Brambilla G, Colombi A, Moretto A (2009) Neurobehavioural effects of pesticides with special focus on organophosphorus compounds: which is the real size of the problem. Neurotoxicol 30(6):1155–1161

    CAS  Google Scholar 

  • Commandeur LCM, Parsons JR (1990) Degradation of halogenated aromatic compounds. Biodegradation 1:207–220

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms ofaction, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  Google Scholar 

  • Coppotelli BM, Ibarrolaza A, Del Panno MT, Morelli IS (2008) Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community biodegradation in phenanthrene-contaminated soil. Microbial Ecol 55:173–183

    CAS  Google Scholar 

  • Cui Z, Li S, Fu G (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    CAS  Google Scholar 

  • Da HN, Deng SP (2003) Survival and persistence of genetically modified Sinorhizobium meliloti in soil. Appl Soil Ecol 22:1–14

    Google Scholar 

  • Daughton CG, Hsieh DP (1977) Parathion utilization by bacterial symbionts in a chemostat. Appl Environ Microbiol 34:175–184

    CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32(11–12):639–650

    CAS  Google Scholar 

  • Desaint S, Hartmann A, Parekh NR, Fournier JC (2000) Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol Ecol 34:173–180

    CAS  Google Scholar 

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7(3):173–180

  • Didierjean L, Gondet L, Perkins R, Lau SMC, Schaller H, O’Keefe DP, Werck- Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189

    CAS  Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligeneseutrophus. J Bacteriol 145:681–686

    CAS  Google Scholar 

  • Doyle JD, Stotzky G, McClung G, Hendricks CW (1995) Effects of genetically engineered microorganisms on microbial populations and processes in natural habitats. Adv App. Microbiol 40: 237–287

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    CAS  Google Scholar 

  • Pravin D, Bhalani S, Bhatt S, Ghelani A (2012) Degradation oforganophosphate and organochlorine pesticides in liquid culture by marine isolate nocardiopsis species and its bioprospectives. J Envir Res Develop 7(2A):995–1001

  • Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 149:77–83

    CAS  Google Scholar 

  • EI-Bestway E, Mansy AH, Mansee AH, EL-Koweidy AH (2000) Biodegradation of selected chlorinated pesticides contaminating lake Maruiut ecosystem. Pak J Biol Sci 3:1673–1680

  • Erick RB, Juan A-O, Paulino P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or pseudomonas fluorescens free cell cultures. J Environ Sci Health, Part B 41:553–569

    Google Scholar 

  • Evy AAM, Lakshmi V, Das N (2012) Biodegradation of atrazine by Cryptococcus laurentii isolated from contaminated agricultural soil. J Microbiol Biotech Res 2(3):450–457

  • Evy AA, Jaseetha AS, Das N (2013) Atrazine degradation in liquid culture and soil by a novel yeast Pichia kudriavzevii strain Atz-EN-01 and its potential application for bioremediation. J Appl Pharma Sci 3(06):035–043

    Google Scholar 

  • Fagervold SK, May HD, Sowers KR (2007) Microbial reductive dechlorination of Aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 73(9):3009–3018

    CAS  Google Scholar 

  • Fagervold SK, Watts JEM, May HD, Sowers KR (2011) Effects of bioaugmentation on indigenous PCB dechlorinatingactivity in sediment microcosms. Water Res 4(5):3899–3907

    Google Scholar 

  • Fang H, Xiang YQ, Hao YJ, Chu XQ, Pan XD, Yu JQ, Yu YL (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi Int. Biodeter Biodegr 61:294–303

    CAS  Google Scholar 

  • FAO (2005) Proceedings of the Asia Regional Workshop, Regional Office for Asia and the Pacific, Bangkok

  • FAO (2010) (Food and Agriculture Organization of The United Nations) (http://faostat.fao.org/site/424/default.aspx#ancor)

  • Faulkner JK, Woodcock D (1964) Metabolism of 2, 4-dichlorophenoxyacetic acid (‘2, 4-D’) by Aspergillus Niger van Tiegh. Nature 203:865

    CAS  Google Scholar 

  • Fawzy IE, Hend AM, Osama NM, Khaled MG, Ibrahim MG (2014) Biodegradation of chlorpyrifos by microbial strains isolated from agricultural wastewater. J Am Sci 10(3):98–108

  • Ferguson JA, Korte F (1977) Epoxidation of aldrin to exo-dieldrin by soil bacteria. Appl Environ Microbiol 34(1):7–13

    CAS  Google Scholar 

  • Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 54:85–110

    CAS  Google Scholar 

  • Filonov AE, Akhmetov LI, Puntus IF, ESikova TZ, Gafarov AB, Izmalkova TY, Sokolov SL, Kosheleva IA, Boronin AM (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene-degrading strains in soil. Microbiol 74(4):526–532

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol 4:4–14

    Google Scholar 

  • Frantz B, Chakrabarty AM (1986) Degradative plasmids in Pseudomonas. The biology of Pseudomonas. Academic Press, Inc, New York, pp 295–323

  • Furukawa K (2003) ‘Super bugs’ for Bioremediation. Trends Biotech 21:187–190

    CAS  Google Scholar 

  • Furukawa K, Simon JR, Chakarbarthy AM (1983) Common induction and regulation of biphenyl, xylene/toluene and salicyalete catabolism in Pseudomonas paucimobilis. J Bacteriol 154:1356–1362

    CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526

    CAS  Google Scholar 

  • Genthner BRS, Price WA II, Pritchard PH (1989) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol 55:1472–1476

    CAS  Google Scholar 

  • Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus Folia. Microbiol 52:423–427

  • Ghazali FM, Rahman Raja Noor ZA, Salleh AB, Mahiran Basri (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeter Biodeg 54:61–67

    CAS  Google Scholar 

  • Gibson GT (1999) Beijerinckia sp. strain B1: a strain by any other name. J Indain Microbiol Biotechnol 23:284–293

    CAS  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • Gibson GT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia sp. Biochem Biophys Res Commun 50:211–219

    CAS  Google Scholar 

  • Giri K, Rawat AP, Rawat M, Rai JPN (2014) Biodegradation of hexachlorocyclohexane by two species of bacillus isolated from contaminated soil. Chem Ecol 30(2):97–109. doi:10.1080/02757540.2013.844795

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and microbes to clean up the environment. Biotechnol Adv 21:383–393

    CAS  Google Scholar 

  • Guzzella L, Capri E, Di Corcia A, Caracciolo AB, Giuliano G (2006) Fate of diuron and linuron in a field lysimeter experiment. J Environ Qual 35:312–323

    CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    CAS  Google Scholar 

  • Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxy-benzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359

    CAS  Google Scholar 

  • Harayama S, Rekik M (1990) The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes. Mol Gen Genet 221:113–120

    CAS  Google Scholar 

  • Harayama S, Rekik M, Wubbolts M, Rose K, Leppi RAK, Timmis KN (1989) Characterization of five genes in the upper-pathway operon of TOL plasmid pWWO from Pseudomonasputida and identification of the gene products. J Bacteriol 171:5048–5055

    CAS  Google Scholar 

  • Harayama S, Leppik RA, Rekik M, Mermod N, Lehrbach PR, Reineke W, Timmis KN (1986) Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xyIA product. J Bacteriol 167:455–461

  • Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of organophosphate pesticide by soil fungi. Adv Bio Tech 12(09):04–08

    Google Scholar 

  • Haro MA, de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotech 85:105–113

    Google Scholar 

  • Harwood CS, Parales RE (1996) The b-ketoadipate pathway and the biology of self-identity. Annual Revi Microbiol 50:553–590

    CAS  Google Scholar 

  • Hay AG, Foch DD (1998) Cometabolism of 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64:2141–2146

    CAS  Google Scholar 

  • Hay AG, Focht DD (2000) Transformation of 1,1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutrophastrain A5. FEMS Microbiol Ecol 31:249–253

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66:1737–1740

    CAS  Google Scholar 

  • Heijnen CE, van Elsas JD, Kuikman PJ, van Veen JA (1988) Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol Biochem 20:483–488

    Google Scholar 

  • Hernandez F, Beltran J, Forcada M, Lopez FJ, Morell I (1998) Experimental approach for pesticide mobility studies in the unsaturated zone. Int J Environ Anal Chem 71:87–93

    CAS  Google Scholar 

  • Holtel A, Abril MA, Marques S, Timmis KN, Ramos JL (1990) Promoter-upstream activator sequences are required for expression of the xylS gene and upper-pathway operon on the Pseudomonas TOL plasmid. MolMicrobiol 4:1551–1556

    CAS  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002a) Identification of an opd (organophosphorus degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376

    CAS  Google Scholar 

  • Horne I, Sutherland TD, Oakeshott JG, Russell RJ (2002b) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology 148:2687–2695

    CAS  Google Scholar 

  • Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25(9):1519–1528

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4(3):82–85

    CAS  Google Scholar 

  • IARC (1986) Monographs on the evaluation of carcinogenic risks to humans volume 41 some halogenated hydrocarbons and pesticide exposures. Lyon Internation Agency Res Cancer, p 434

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and Utilization of organophosphorus pesticide Malathion by Cyanobacteria. BioMed Res Inter. doi:10.1155/2014/392682

    Google Scholar 

  • ICAR (1967) Report of the special committee on harmful effects of pesticides. ICAR, New Delhi 78

    Google Scholar 

  • Isaac P, Sánchez LA, Bourguignon N, Cabral ME, Ferrero MA (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeter Biodegr 82:207–214

    Google Scholar 

  • Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20

    CAS  Google Scholar 

  • Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99(7):2637–2643

    CAS  Google Scholar 

  • Jagnow G, Halder K (1972) Evolution of CO2 from soil incubated with dieldrin-14C. SoilBiolog Biochem 4:43

    CAS  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Jain R, Garg V, Singh KP, Gupta S (2012) Isolation and characterization of monocrotophos degrading activity of soil fungal isolate Aspergillus Niger MCP1 (ITCC7782.10). Int J Envir Sci 3(2):841–850

  • Jayashree R, Vasudevan N (2007) Effect of tween 80 added to the soil on the degradation of endosulfan by Pseudomonas aeruginosa. Inter J Env Sci Tech 4(2):203–210

    CAS  Google Scholar 

  • Jia KZ, Li XH, He J, Gu LF, Ma JP, Li SP (2007) Isolation of a monocrotophos-degrading bacterial strain and characterization of enzymatic degradation. Huan Jing Ke Xue 28(4):908–912

    CAS  Google Scholar 

  • Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    CAS  Google Scholar 

  • Johnsen AR, Wick LY Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84

  • Johansen JE, Binnerup SJ, Lebolle KB, Masher F, Sorensen J, Keel C (2002) Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. J Appl Microbiol 93:1065–1074

    CAS  Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biolog Fertil Soils 33(6):443–453

    CAS  Google Scholar 

  • Jokanovic M, Prostran M (2009) Pyridinium oximes as cholinesterase reactivators structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 16:2177–2188

    CAS  Google Scholar 

  • Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66(8):888–891

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

  • Kang H, Hwang SY, Kim YM, Kim E, Kim YS, Kim SK, Kim SW, Cerniglia CE, Shuttleworth KL, Zylstra GJ (2003) Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can J Microbiol 49:139–144

    CAS  Google Scholar 

  • Kannan K, Tanabe S, Ramesh A, Subramanian A, Tatsukawa R (1992) Persistent orgnochlorine residues in food stuffs from India and their implications on human dietary exposure. J Agric Food Chem 40:518–524

    CAS  Google Scholar 

  • Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Techno 44(16):6343–6349

    CAS  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Develop 27:29–43

    Google Scholar 

  • Kim YM, Ahna CK, Wood SH, Jungb GY, Parka JM (2009) Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. J Biotechnol 144:293–298

    CAS  Google Scholar 

  • Kimyoji T, Sugimoto K, Mitani S, Matsuo N, Suzuki K (1995) Biological properties of a new fungicide, fluazinam. J Pest Sci Japan 20:129–135

    Google Scholar 

  • Klipi S, Backstrom V, Korhola M (1980) Degradation of 2-methyl-4-chlorophenoxy acetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by Pseudomonas sp. HV3. FEMS Microbiol Lett 8:177–182

    Google Scholar 

  • Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T, Wang J, Wang J, Wang F, Sun F (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25(11):2257–2264

    CAS  Google Scholar 

  • Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350

    CAS  Google Scholar 

  • Korte F, Porter PE (1970) Minutes of the fifth meeting of the IUPAC terminal pesticide residues. Erbach, West Germany

    Google Scholar 

  • Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol 39:295–304

    CAS  Google Scholar 

  • Kraiser T, Stuardo M, Manzano M, Ledger T, González B (2012) Simultaneous assessment of the effects of an herbicide on the triad: rhizobacterial community, an herbicide degrading soil bacterium and their plant host. Plant Soil. doi:10.1007/s11104-012-1444-8

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant-Microbe Interact 17:6–15

    CAS  Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural Biol Fertil. Soils 47:219–225

    CAS  Google Scholar 

  • Kumar S, Mukerji KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22(1):1–26

    CAS  Google Scholar 

  • Kumar K, Devi SS, Krishnamurthi K, Kanade GS, Chakrabarti T (2007) Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosfere 68(2): 317–322

  • Kumara M, Philipa L (2006) Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioreme J 10(4):179–190

    Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Envir Microbiol 61:234–238

    CAS  Google Scholar 

  • Laemmli CM, Leveau JHJ, Zehnder AJB, Van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 182:4165–4172

    CAS  Google Scholar 

  • Lakshmi A (1993) Pesticides in India: risk assessment to aquatic ecosystems. Sci Total Environ 134:243–253

    Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeter Biodegr 62:204–209

    CAS  Google Scholar 

  • Lancaster SH, Hollister EB, Senseman SA, Gentry TJ (2010) Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manage Sci 66:59–64

    CAS  Google Scholar 

  • Leveau JHJ, Konig F, Fuchslin H, Werlen C, van der Meer JR (1999) Dynamics of multigene expression during catabolic adaptation of RalstoniaeutrophaJMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol Microbiol 33:396–406

    CAS  Google Scholar 

  • Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149

    CAS  Google Scholar 

  • Lin X, Li PJ, Xu HX, Zhou Q X, Zhang HR (2004) Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation. J Environm Sci 16(6):987–990

  • Lipthay JR, Barkay T, Sørensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2, 4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35(1):75–84

    Google Scholar 

  • Liu Z, Chen X, Shi Y, Su Z (2012) Bacterial degradation of chlorpyrifos by Bacillus cereus. Adv Mater Res 356(360):676–680

    Google Scholar 

  • Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45:348–359

    CAS  Google Scholar 

  • Madueño L, Coppotelli BM, Alvarez HM, Morelli IS (2011) Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. Int Biodete Biodeg 65:345–3511

    Google Scholar 

  • Magan N, Fragoeiro S (2005) Enzymatic activities, osmotic stree and degradation of pesticide mixtures in soil extract liquid broth inoculated with phanerochaete chrysosporium and Trametes versicolor. Envir Microbiol 7(3):348–355

    Google Scholar 

  • Mahapatra GK (2008) Helopeltis management by chemicals in Cashew: a critical concern. Indian J Entomol 70:293–308

    Google Scholar 

  • Mahapatra GK, Panigrahi M (2013) The case for banning endosulfan. Curr Sci 104:1476–1478

    Google Scholar 

  • Mahiudddin M, Fakhruddin ANM, Abdullah-Al-Mahin, Chowdhury MAZ, Rahman MA, Alam MK (2014) Degradation of the organophosphorus insecticide diazinon by soil bacterial isolate. The Intern J Biotechn 3(1):12–23

    Google Scholar 

  • Malhotra S, Sharma P, Kumari H, Singh A, Lal R (2007) Localization of HCH catabolic genes (lin) in Sphingobium indicum B90A. Ind J Microbiol 71:8514–8518

    Google Scholar 

  • Mallick K, Bharati K, Banerji A, Shakil NA, Sethunathan N (1999) Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull Environ Contam Toxicol 62:48–54

    CAS  Google Scholar 

  • Manickam N, Bajaj A, Saini HS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 23:673–682

    CAS  Google Scholar 

  • Masunaga S, Susarla S, Gundersen JL, Yonezawa Y (1996) Pathway and rate of chlorophenols transformation in anaerobic estuarine sediment. Environ Sci Technol 30:1253–1260

    CAS  Google Scholar 

  • Matrubutham U, Harker AR (1994) Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligeneseutrophus JMP134. J Bacteriol 176:2348–2353

    CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509

    CAS  Google Scholar 

  • Matsumura F, Boush GM (1966) Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153:1278–1280

    CAS  Google Scholar 

  • Matsumura F, Boush GM (1967) Dieldrin degradation by soil microorganisms. Science 156:959–961

    CAS  Google Scholar 

  • Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus Trichoderma viride. J Econom Entomol 61:610–612

    CAS  Google Scholar 

  • Matsumura F, Boush GM, Tai A (1968) Breakdown of dieldrin in the soil by a microorganism. Nature 219(5157):965–967

    CAS  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    CAS  Google Scholar 

  • Merlin C, Springael D, Toussaint A (1999) Tn4371: a modular structure encoding a phage-likeintegrase, a pseudomonas-like catabolic pathway and RP4/Ti-like transfer functions. Plasmid 41:40–54

    CAS  Google Scholar 

  • Mohamed MS (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12(4):1–6. doi:10.2225/vol12-issue4-fulltext-11

    Google Scholar 

  • Mohanasrinivasan V, Suganthi V, Selvarajan E, Subathra Devi C, Ajith E, Muhammed FNP, Sreeram G (2013) Bioremediation of endosulfan contaminated soil. Res J Chem Environ 17(11):93–101

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium VanbaaleniiPYR-1. Appl Environ Microbiol 70:340–345

    CAS  Google Scholar 

  • Moreira IS, Amorim CL, Carvalho MF, Castro PML (2012) Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegradation 23:653–662

    CAS  Google Scholar 

  • Morrissey JP, Walsh UF, O’Donnell A, Moënne-Loccoz Y, O’Gara F (2002) Exploitation of genetically modified inoculants for industrial ecology applications. A van Leeuwenhoek 81:599–606

    CAS  Google Scholar 

  • Mrozi A, Piotrowska-Sege Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375

    Google Scholar 

  • Mulbry W, Kearney PC (1991) Degradation of pesticides by micro-organisms and the potential for genetic manipulation. Crop Protect 10:334–346

    CAS  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310

    CAS  Google Scholar 

  • Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotidesequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB)unites the class IA oxygenases in a single lineage. Microbiol 141:485–495

    CAS  Google Scholar 

  • Nakazawa T, Inouye S, Nakazawa A (1990) Regulatory systems for expression of xyl genes on the TOL plasmid. pp 133–141

  • Nancharaiah V, Joshi HM, Hausner M, Venugopalan VP (2008) Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere 71:30–35

    CAS  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Google Scholar 

  • Nelson ML, Yaron B, Nye PH (1982) Biologically induced hydrolysis of parathion in soil: kinetics and modelling. Soil Biol Biochem 14:223–228

    CAS  Google Scholar 

  • Ning J, Gang Gang, Bai Z, Qing Hu, Hongyan Qi, Anzhou Ma, Zhuan X, Guoqiang Zhuang (2012) In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Front Environ Sci Eng 6(2):231–237

    CAS  Google Scholar 

  • Nishi A, Tominaga K, Furukawa K (2000) A 9-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol 182:1949–1955

    CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Enhanced biodegradation of endosulfan and its major metabolite endosulfate by a biosurfactant producing bacterium. J Environ Sci Health B 48(6):462–469

    CAS  Google Scholar 

  • Ortiz I, Velasco A, Borgne SL, Revah S (2013) Biodegradation of DDT by stimulation of indigenous microbial populations in soil with co substrates. Biodegrad 10532(012):9578–9581

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revis Internacion de Contamin Ambient 26(1):27–38

    Google Scholar 

  • Ortiz-Hernández ML, Quintero-Ramírez R, Nava-Ocampo AA, Bello-Ramírez AM (2003) Study of the mechanism of Flavobacteriumsp. for hydrolyzingorganophosphate pesticides. Fundam Clin Pharmacol 17(6):717–723

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment. Pesticides—formulations, effects, fate, margarita stoytcheva (Ed.) In‐Tech. doi:10.5772/13534. http://www.intechopen.com/books/pesticides-formulations-effects-fate/pesticides-in-the-environment-impacts-and-itsbiodegradation-as-a-strategy-for-residues-treatment

  • Otte MP, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R (1994) Activation of an indigenous mirobial consortium for bioaugmentation of pentachlorophenol/creosote contaminated soils. Appl Microbiol Biotechnol 40:926–932

    CAS  Google Scholar 

  • Padmanabhan P, Padmanabhan S, De Rito C, Gray A, Gannon D, Snap JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labelled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    CAS  Google Scholar 

  • Pallud C, Dechesne A, Gaudet JP, Debouzia D, Grundmann GL (2004) Modification of spatial distribution of 2,4-dichlorophenoxy acetic acid degrader microhabitats during growth in soil columns. Appl Environ Microbiol 70:2709–2716

    CAS  Google Scholar 

  • Park JH, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69:3288–3298

    CAS  Google Scholar 

  • Parsek MR, Mc Fall SM, Chakrabarty AM (1995) Microbial degradation of toxic environment pollution: ecological and evolutionary consideration. Int Biodeter Biodegrad 35:175–188

    CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. J App Microbiol 19:879–881

    CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    CAS  Google Scholar 

  • Pelrez-Pantoja D, Guzmaln L, Manzano M, Pieper DH, Gonzallez B (2000) Role of tfdCIDIEIFI and tfdDIICIIEIIFII gene modules in catabolism of 3-chlorobenzoate by Ralstoniaeutropha JMP134 (pJP4). Appl Environ Microbiol 66:1602–1608

    Google Scholar 

  • Pemberton JM, Fisher PR (1977) 2, 4-D plasmids and persistence. Nature (London) 268:732–733

    CAS  Google Scholar 

  • Pemberton JM, Schmidt R (2001) Catabolic plasmids. Encyclopedia life science. Wiley, New York, pp 1–9

  • Pereira PM, Sobral Teixeira RS, de Oliveira MAL, da Silva M, Ferreira-Leitão VS (2013) Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: an alternative for impact reduction of herbicides used in sugarcane crops. J Microb Biochem Technol S 12:006. doi:10.4172/1948-5948.S12-006

    Google Scholar 

  • Perkins EJ, Gordon MP, Calceres O, Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2352–2359

    Google Scholar 

  • Phelps TJ, Segrist RL, Korte NE, Pickering DA, Strong-Guderson JJM, Palumbo AV, Walker JF, Morrissey CM, Mackowski R (1994) Bioremediation of petroleum hydrocarbon in soil column lysimeters from Kwajalein island. Appl Biochem Biotechnol 45(46):835–845

    Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotech 11(3): 262–270

  • Pimentel MR, Molina G, Dionísio AP, Maróstica MRJr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol. Res Int 1–11

  • Pino N, Penuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831

    CAS  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191(1):115–121

    CAS  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in Sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49(1):1–19

    CAS  Google Scholar 

  • Pipke R, Amrhein N (1988) Isolation and characterization of a mutant of Arthrobacter sp.strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorusand nitrogen. Appl Environ Microbiol 54:2868–2870

    CAS  Google Scholar 

  • Poh RP-C, Smith ARW, Bruce IJ (2002) Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12

    CAS  Google Scholar 

  • Porto AM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides, pesticides in modern world-pesticides use and management. [online] http://www.intechopen.com/books/pesticides-in-the-modern-world-pesticides-use-and-management/biodegradation-of-pesticides

  • Pothuluri JV, Chung YC, Xiong Y (1998) Biotransformation of 6-nitrochrysene. Appl Environ Microbiol 64:3106–3109

    CAS  Google Scholar 

  • Prabha Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351

    Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010a) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeter Biodegr 64:397–402

    CAS  Google Scholar 

  • Purnomo AS, Mori T, Kondo R (2010b) Involvement of Fenton reaction in DDT degradation by brown-rot fungi. Int Biodeter Biodegr 64:560–565

    CAS  Google Scholar 

  • Quan X, Tang H, Xiong W, Yang Z (2010) Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 179(1–3):1136–1142

    CAS  Google Scholar 

  • Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiol 149:2879–2890

    CAS  Google Scholar 

  • Reineke W (1984) Microbial degradation of halogenated aromatic compounds. Microbial degradation of organic compounds, Marcel Dekker, New York, pp 319–360

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287

    CAS  Google Scholar 

  • Rekha SN, Naik RP (2006) Pesticide residue in organic and conventional food—risk analysis. Chem Health Safety 13:12–19

    CAS  Google Scholar 

  • Rheinwald JC, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid.controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci USA 70:885–889

    CAS  Google Scholar 

  • Ripp S, Nivens DE, Werner C, Sayler GS (2000) Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl Microbiol Biotech 53:736–741

    CAS  Google Scholar 

  • Riya P, Jagatpati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2(7):36–41

    Google Scholar 

  • Rodrigues JLM, Kachel A, Aiello MR, Quensen JF, Maltseva OV, Tsio TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl Environ Microbiol 72(4):2476–2482

    CAS  Google Scholar 

  • Romeh AA, Hendawi MY (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus(Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Tech 16:265–276

    Google Scholar 

  • Saint CP, McClure NC, Venables WA (1990) Physical map of the aromatic amine and m- toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a uniquemeta-cleavage pathway. J Gen Microbiol 136:615–625

  • Sakamoto M, Tsutsumi T (2004) Applicability of headspace solid-phase microextraction to the determination of multi-class pesticides in waters. J Chromat A 1028(1):63–74

    CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganismsfor bioremediation processes. Curr Opin Biotechnol 11(3):286–289

    CAS  Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microbiol Ecol 19:1–20

    CAS  Google Scholar 

  • Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner MO, Richter A, Battin T, Eberl L, Riedel K (2010) Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics 10:1819–1830

    CAS  Google Scholar 

  • Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    CAS  Google Scholar 

  • Seo JSu, Keum YS, Reneen MH, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHS) and organophosphorus pesticides from PAH-contaminated soil in hilo, Hawaii. J Agric Food Chem 55:5383–5389

    CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canad J Microbiol 50(4):239–249

  • Sethunathan N, Yoshida T (1973) A Flavobacterium that degrades diazinon and parathion. Can J Microbiol 19:873–875

    CAS  Google Scholar 

  • Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biot 53:348–351

    CAS  Google Scholar 

  • Sharma S, Singh P, Raj M, Chadha BS, Saini HS (2009) Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonasaeruginosa WH-2. J Hazard Mater 171:1178–1182

    CAS  Google Scholar 

  • Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110

    CAS  Google Scholar 

  • Shetty PK, Murugan M, Sreeja KG (2008) Crop protection stewardship in India: wanted or unwanted. Curr Sci 95(4):457–464

  • Shields MS, Hooper SW, Sayler GS (1985) Plasmid mediated mineralization of 4-chlorobiphenyl. J Bacteriol 163:882–889

    CAS  Google Scholar 

  • Shivaramaiah HM (2010) Biodegradation of endosulfan by anabaena pesticide. Res J 22(2):125–128

    CAS  Google Scholar 

  • Siddaramappa R, Rajaram KP, Sethunathan N (1973) Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol 26(6):846–849

    CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr (2003) Biodegradation kinetics of endosulfan by Fusarium vetricosum and a Pandoraea species. J Agric Food Chem 51:8015–8019

    CAS  Google Scholar 

  • Silva IS, dos Santos EC, de Menezes CR, de Faria AF, Franciscon E, Grossman M et al (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675

    CAS  Google Scholar 

  • Singh M, Singh DK (2014) Biodegradation of endosulfan in broth medium and in soil microcosm by Klebsiella sp. M3. Bull Environ Contam Toxicol 92(2):237–242

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JA, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JA, Wright DJ (2004) Biodegradation of chloropyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soil. Appl Environ Microbiol 70(8):4855–4863

    CAS  Google Scholar 

  • Singh DP, Khattar JIS, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyrifos degradation by the Cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res 18:1351–1359

    CAS  Google Scholar 

  • Sinha N, Narayan R, Shanker R, Saxena DK (1995) Endosulfan-induced biochemical changes in the testis of rats. Vet Hum Toxicol 37:547–549

    CAS  Google Scholar 

  • Sinha N, Narayan R, Saxena DK (1997) Effect of endosulfan on the testis of growing rats. Bull Environ Contamin Tox 58:79–86

    CAS  Google Scholar 

  • Spooner RA, Lindsay K, Franklin FCH (1986) Genetic, functional and sequence analysis of thexylR and xylS regulatory genes of the TOL plasmid pWWO. J Gen Microbiol 132:1347–1358

    CAS  Google Scholar 

  • Springael D, Ryngaert A, Merlin C, Toussaint A, Max M (2001) Occurrence of Tn4371-Related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. Appl Environ Microbiol 67(1):42–50

  • Stockholm Convention Persistent Organic Pollutants, Government of India, 2009

  • Stockholm Convention Persistent Organic Pollutants, Government of India, 2011. moef.nic.in/downloads/public-information/NIP-India.pdf

  • Strong LC, McTavish H, Sadowsky MJ, Wacket LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinantEscherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    CAS  Google Scholar 

  • Su D, Li PJ, Frank S, Xiong XZ (2006) Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18:1204–1209

    CAS  Google Scholar 

  • Suenaga H, Mitsuoka M, Ura Y, Watanable T, Furukawa K (2001) Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene and alkylbenzenes. J Bacteriol 183:5441–5444

    CAS  Google Scholar 

  • Swissa N, Nitzan Y, Langzam Y, Cahan R (2014) Atrazine biodegradation by a monoculture of Raoultella planticolaisolated from a herbicides wastewater treatment facility. Int Biodeter Biodeg 92:6–11

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(2):8500–8505

    CAS  Google Scholar 

  • Tamer MAMT, El-Naggar MAH (2013) Diazinon decomposition by soil bacteria and identification of degradation products by GC-MS. Soil Environ 32(2):96–102

    Google Scholar 

  • Tan HM (1999) Bacterial catabolic transposons. Appl Microbiol Biotechnol 51(1):12

    Google Scholar 

  • The Directorate of Plant Protection, Quarantine and Storage, Government of India (2010) Total pesticides consumed during 2005–2006 to 2009–2010, as per official data of (www.indiaforsafefood.in/farminginindia.html)

  • Themel K, Sparling R, Oleszkiewicz J (1996) Anaerobic dehalogenation of 2-chlorophenol by mixed bacterial cultures in absence methanogenesis. Environ Technol 17:869–875

    CAS  Google Scholar 

  • Thomas B, Parkins IB (1995) Assimilative capacity of subsurface for the pesticides, atrazine and alachlor and nitrate. FEDRIP-Data base, National Technical Information Service (NTIS), USA

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    CAS  Google Scholar 

  • Tomlin CDS (2002) The e-Pesticide Manual, Version 2.2. [CD-ROM], 12th edn. The Britich Crop Protection Council, UK

  • Top EM, van Daele P, de Saeyer N, Forney LJ (1998) Enhancement of 2,4-dichlorophenoxyaceticacid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Anton van Leeuwen 73:87–94

    CAS  Google Scholar 

  • Torres JPM, Fróes-Asmus CIR, Weber R, Vijgen J (2013a) HCH contamination from farmer pesticide production in Brazil—a challenge for the Stockholm Convention implementation. Environ Sci Pollut Res. doi:10.1007/s11356-012-1089-4

    Google Scholar 

  • Torres JPM, Leite C, Krauss T, Weber R (2013b) Landfill mining from a deposit of the chlorine/organochlorine industry as source of dioxin contamination of animal feed and assessment of the responsible processes. Environ Sci Pollut Res. doi:10.1007/s11356-012-1073-z

    Google Scholar 

  • Tralau T, Cook AM, Ruff J (2001) Map of the IncPb plasmid pTSA encoding widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T2. Appl Environ Microbiol 67:1508–1516

    CAS  Google Scholar 

  • Tsuda M, Tan HM, Nishi A, Furukawa K (1999) Mobile catabolic genes in bacteria. J Biosci Bioeng 87:401–410

    CAS  Google Scholar 

  • Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745

    CAS  Google Scholar 

  • UN/DESA (2008) Changing unsustainable patterns of consumption and production, Johannesburg plan on implementation of the world summit on sustainable development, Johannesburg, 2002 (Chapter III)

  • United Nations Environment Programme Chemicals (2011) UNEP Persistent Organic

  • Vaccari DA, Strom PF, Alleman JE (2006) Pollutants. Accessed 5th July 2010, http://www.chem.unep.ch/pops/

  • Vamsee-Krishna C, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48(1):19–34

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Google Scholar 

  • Van der Meer JR, Zehnder AJB, de Vos WM (1991) Identification of a novel composite transposable element Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol 173:7077–7083

    CAS  Google Scholar 

  • van der Meer J R, Ravatn R, Sentchilo V (2001) The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol 175:79–85

  • van der Meer JR, De-Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetics adaptation to xenobiotic compounds. Microbiol Review 56:677–94

  • Van Elsas JD, Dijkstra AF, Govaert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilus introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160

    Google Scholar 

  • Van Herwijnen R, Van de Sande BF, Van der Wielen FWM, Springael D, Govers HAJ, Parsons JR (2003) Influence of phenanthrene and fluoranthene on the degradation of fluorine and glucose by Sphingomonas sp. strain LB126 in chemostatcultures. FEMS Microbiol Ecol 46:105–111

    Google Scholar 

  • Van Limbergen H, Top EM, Verstraete W (1998) Bioaugmentation in activated sludge: current feature and future perspectives. Appl Microbiol Biotechnol 50:16–23

    Google Scholar 

  • Vargas JM Jr (1975) Pesticide degradation. In: Presented at the international shade tree conference in Detroit, Michigan. J Arboricult 232–233

  • Velicer GJ (1999) Pleiotropic effects of adaptation to a single carbon source for growth on alternative substrates. Appl Environ Microbiol 65:264–269

    CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621

    CAS  Google Scholar 

  • Verma P, Verma P, Sagar R (2013) Variation in N mineralization and herbaceous species diversity due to sites, seasons, and N treatment in a seasonally dry tropical environment of India. For Ecol Manage 297:15–26

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vollmer MD, Hoier H, Hecht HJ, Schell U, Groning J, Goldman A, Schlomann M (1998) Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild type enzyme and engineered variants. Appl Environ Microbiol 64:3290–3299

    CAS  Google Scholar 

  • Wang W-D, Niu JL, Cui ZJ (2005) Biodegradation of pesticides: a review. J Heilongj Aug First Land Reclama Univ 17(2):18

  • Wang Y, Xiao M, Geng X, Liu J, Chen J (2007) Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere. Appl Microbiol Biotechnol 77:733–739

    CAS  Google Scholar 

  • Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn andwheat by horizontal gene transfer within endophytic bacteria.Soil Bio. Biochem 42:1051–1057

    CAS  Google Scholar 

  • Wang L, Chi X-Q, Zhang J–J, Sun D-L, Zhou N-Y (2014) Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp. strain WBC 3. Inte Biodete Biodeg 87:116–121

    CAS  Google Scholar 

  • Wasilkowski D, Swędzioł Ż, Mrozik A (2012) The applicability of genetically modified microorganisms in bioremediationof contaminated environments. Science 66(8):817–826

    CAS  Google Scholar 

  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons J R, Renard M E, Cornelis G R. (2001). Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152(10):861–872

  • Weber R, Varbelow HG (2013) Dioxin/POPs legacy of pesticide production in Hamburg: part 1—securing of the production area. Environ Sci Pollut Res. doi:10.1007/s11356-012-1011-0

    Google Scholar 

  • WHO (2004) The WHO recommended classification of pesticides by hazard and guidelines to classification, 2004

  • Williams PA, Worsey MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J Bacteriol 125:818–828

    CAS  Google Scholar 

  • Wolfe NL, Zepp RG, Paris DF (1978) Use of structure-reactivity relationships to estimate hydrolytic persistence of carbamate pesticides. Water Resour 12:561–563

    CAS  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    CAS  Google Scholar 

  • World Bank (2010). World Development Indicators; Rising Global Interest in Farmland. Can it Yield Sustainable and Equitable Benefits? Washington. (available from http://data.worldbank.org/data-catalog/world-development-indicators)

  • Xiao PF, Kondo R (2013) Biodegradation of dieldrin by cordyceps fungi and detection of metabolites. Appl Mecha Mater 295–298:30–34

    Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white-rot fungi, belonging to genus phlebia. Microbiol Lett 314(2):140–146

  • Xu GM, Li YY, Zheng W, Peng X, Li W, Yan YC (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon sp. Biotechnol Lett 29:1469–1473

    CAS  Google Scholar 

  • Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeter Biodegr 62:51–56

    CAS  Google Scholar 

  • Yan DZ, Lui H, Zhou NY (2006) Conversion of SphingobiumchlorophenolicumATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286

    CAS  Google Scholar 

  • Yang, Zhao Y, Zhang B, Yang C, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

  • Yang L, Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol Biochem 43(5):915–922

    CAS  Google Scholar 

  • Ye D, Siddiqi MA, Maccubbin AE, Kuma S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    CAS  Google Scholar 

  • Yim YJ, Seo J, Kang SI, Ahn JH, Hur HG (2008) Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch Environ Contam Toxicol 54:406–411

    CAS  Google Scholar 

  • You M, Liu X (2004) Biodegradation and bioremediation of pesticide pollution. Chin J Ecol 23:73–77

    Google Scholar 

  • Yrjala K, Paulin L, Romantschuk M (1997) Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154:403–408

    CAS  Google Scholar 

  • Yuan Y, Guo SH, Li FM, Li TT (2013) Effect of an electric field on n-hexadecane microbial degradation in contaminated soil. Int Biodeterior Biodegrad 77:78–84

  • Yu YL, Shan M, Fang H, Wang X, Chu XQ (2006) Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil. J Agric Food Chem 54:10070–10075

  • Zaitsev G, Uotila JS, Tsitko IV, Lobanok AG, Salkinoja-Salonen MS (1995) Utilization of halogentad benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61:4191–4201

    CAS  Google Scholar 

  • Zboinska E, Lejczak B, Kafarski P (1992) Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Appl Environ Microbiol 58:2993–2999

    CAS  Google Scholar 

  • Zhao H-P, Wu Q-S, Wang L, Zhao X-T, Gao H-W (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. J Hazard Mater 164:863–869

    CAS  Google Scholar 

  • Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2410–2413

    CAS  Google Scholar 

  • Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414

Download references

Acknowledgments

Authors thankful to SERB (Science and Engineering Research Board), New Delhi, India for providing fund for project entitled “Studies of agriculturally important microorganism to develop effective microbial consortium for degradation of pesticide and insecticide in soil to enhance sustainable agriculture” to carry out research on pesticide degradation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, J.P., Jaiswal, D.K. & Sagar, R. Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13, 429–466 (2014). https://doi.org/10.1007/s11157-014-9341-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9341-7

Keywords

Navigation