Reuse options for coal fired power plant bottom ash and fly ash

Abstract

Reuse options for coal fly ash and coal bottom ash are reviewed in this paper. Although, significant quantities of coal fly ash and coal bottom ash are produced worldwide every year, less than 30 % of coal ash produced is reused. Coal ash is mainly reused in civil engineering applications such as road construction, embankments, construction materials, geo-polymer applications and in cement production. Other potential reuse options for coal ash include applications such as glass ceramics, water and wastewater treatment, agriculture as well as for making high value products (e.g. telescope mirrors, break-liners, fire proof products etc.). Considering that only a small fraction of coal ash is reused, other reuse options for commercial applications need to be explored.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ASTM:

American Society of Testing of Materials

CBA:

Coal bottom ash

CFA:

Coal fly ash

DNA:

Deoxyribonucleic acid

EU:

European Union

FGD:

Flue gas desulfurization

GBA:

Ground bottom ash

HeCB:

Heptachloro biphenyl

LOI:

Loss on ignition

OPC:

Ordinary Portland cement

PAH:

Polycyclic aromatic hydrocarbon

PCB:

Polychlorinated biphenyl

TCB:

Tri chloro biphenyl

TOC:

Total organic carbon

TPPs:

Thermal power plants

TW:

Tinacal ore waste

ZFA:

Zeolited fly ash

USA:

United States of America

References

  1. ACAA (2010) 2010 coal combustion product (CCP) Production and use survey report. American Coal Ash Association. http://acaa.affiniscape.com/associations/8003/files/2010_CCP_Survey_FINAL_102011.pdf. Accessed 20.02.2012

  2. Agyei NM, Strydom CA, Potgieter JH (2002) The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cem Concr Res 32(12):1889–1897. doi:10.1016/s0008-8846(02)00888-8

    CAS  Google Scholar 

  3. Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface 143(1–2):48–67

    CAS  Google Scholar 

  4. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363. doi:10.1016/j.pecs.2009.11.003

    CAS  Google Scholar 

  5. Arenillas A, Smith KM, Drage TC, Snape CE (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84(17):2204–2210. doi:10.1016/j.fuel.2005.04.003

    CAS  Google Scholar 

  6. Asokan P, Saxena M, Asolekar SR (2005) Coal combustion residues—environmental implications and recycling potentials. Resour Conserv Recycl 43(3):239–262. doi:10.1016/j.resconrec.2004.06.003

    Google Scholar 

  7. Ayala J, Blanco F, García P, Rodriguez P, Sancho J (1998) Asturian fly ash as a heavy metals removal material. Fuel 77(11):1147–1154. doi:10.1016/s0016-2361(98)00027-1

    CAS  Google Scholar 

  8. Baba A, Kaya A (2004) Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. J Environ Manag 73(3):199–207. doi:10.1016/j.jenvman.2004.06.005

    Google Scholar 

  9. Baba A, Gurdal G, Sengunalp F, Ozay O (2008) Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: can thermal power plant, province of Canakkale, Turkey. Environ Monit Assess 139(1):287–298

    CAS  Google Scholar 

  10. Barbieri L, Lancellotti I, Manfredini T, Ignasi Q, Rincon JM, Romero M (1999) Design, obtainment and properties of glasses and glass-ceramics from coal fly ash. Fuel 78(2):271–276. doi:10.1016/s0016-2361(98)00134-3

    CAS  Google Scholar 

  11. Bashkin VN, Wongyai K (2002) Environmental fluxes of arsenic from lignite mining and power generation in northern Thailand. Environ Geol 41(8):883–888

    CAS  Google Scholar 

  12. Bhangare RC, Ajmal PY, Sahu SK, Pandit GG, Puranik VD (2011) Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int J Coal Geol. doi:10.1016/j.coal.2011.03.008

  13. Bhargava R, Mathur R, Khanna P (1974) Removal of detergent from wastewater by adsorption on fly ash. Indian J Environ Health 16(2):109–120

    CAS  Google Scholar 

  14. Brigden K, Santillo D, Stringer R (2002) Hazardous emissions from Thai coal-fired power plants. Toxic and potentially toxic elements in fly ashes collected from the Mae Moh and Thai Petrochemical industry coal-fired power plants in Thailand, 2002. Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter, Exeter

    Google Scholar 

  15. Bruce RB, Kuntze RA (1983) Sag-resistant gypsum board containing coal fly ash and method for making same. US Patent No 4,403,006, 6 Sept 1983

  16. Cao D-z, Selic E, Herbell J-D (2008) Utilization of fly ash from coal-fired power plants in China. J Zhejiang Univ Sci A 9(5):681–687. doi:10.1631/jzus.A072163

    CAS  Google Scholar 

  17. Chakraborty R, Mukherjee A (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol Environ Saf 72(3):838–842. doi:10.1016/j.ecoenv.2008.09.023

    CAS  Google Scholar 

  18. Chaturvedi A, Yadava K, Pathak K, Singh V (1990) Defluoridation of water by adsorption on fly ash. Water Air Soil Pollut 49(1):51–61

    CAS  Google Scholar 

  19. Chaulia PK, Biswajit R, Maity SN (2009) Utilisation of flyash as gainful resource material for green brick making. Res J Chem Environ 13(4):10–12

    CAS  Google Scholar 

  20. Chen QY, Tyrer M, Hills CD, Yang XM, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag 29(1):390–403. doi:10.1016/j.wasman.2008.01.019

    CAS  Google Scholar 

  21. Chen XY, Wendell K, Zhu J, Li JL, Yu X, Zhang Z (2012) Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater. Bioresour Technol 110:79–85

    Google Scholar 

  22. Cheriaf M, Rocha JC, Péra J (1999) Pozzolanic properties of pulverized coal combustion bottom ash. Cem Concr Res 29(9):1387–1391. doi:10.1016/s0008-8846(99)00098-8

    CAS  Google Scholar 

  23. Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag 29(2):539–543. doi:10.1016/j.wasman.2008.06.023

    CAS  Google Scholar 

  24. Cho H, Oh D, Kim K (2005) A study on removal characteristics of heavy metals from aqueous solution by fly ash. J Hazard Mater 127(1–3):187–195

    CAS  Google Scholar 

  25. Choi SK, Lee S, Song YK, Moon HS (2002) Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound. Fuel 81(8):1083–1090. doi:10.1016/s0016-2361(02)00006-6

    CAS  Google Scholar 

  26. Cokca E, Yilmaz Z (2004) Use of rubber and bentonite added fly ash as a liner material. Waste Manag 24(2):153–164. doi:10.1016/j.wasman.2003.10.004

    CAS  Google Scholar 

  27. Collot A-G (2006) Matching gasification technologies to coal properties. Int J Coal Geol 65(3–4):191–212. doi:10.1016/j.coal.2005.05.003

    CAS  Google Scholar 

  28. Conner JR, Hoeffner SL (1998) A critical review of stabilization/solidification technology. Crit Rev Environ Sci Technol 28(4):397–462

    CAS  Google Scholar 

  29. Cumpston B, Shadman F, Risbud S (1992) Utilization of coal-ash minerals for technological ceramics. J Mater Sci 27(7):1781–1784. doi:10.1007/bf01107204

    CAS  Google Scholar 

  30. Daci MN, Daci NM, Zeneli L, Gashi S, Hoxha D (2011) Coal ash as adsorbent for heavy metal ions in standard solutions, industrial wastewater and streams. Ecohydrol Hydrobiol 11(1):129–132

    CAS  Google Scholar 

  31. Davies L (2011) Beyond Fukushima: disasters, nuclear energy, and energy law. BYU Law Rev 2011:1937

  32. Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70(3–4):377–394. doi:10.1016/s0013-7952(03)00105-4

    Google Scholar 

  33. Dewangan P, Pradhan M, Kishore N (2010) Utilisation of fly ash as a structural fill material for safe and sustainable development: need of the hour. IME J 134–139

  34. Diamadopoulos E, Ioannidis S, Sakellaropoulos GP (1993) As(V) removal from aqueous solutions by fly ash. Water Res 27(12):1773–1777. doi:10.1016/0043-1354(93)90116-y

    CAS  Google Scholar 

  35. Dinçer AR, Günes Y, Karakaya N (2007) Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution. J Hazard Mater 141(3):529–535. doi:10.1016/j.jhazmat.2006.07.064

    Google Scholar 

  36. Dizge N, Aydiner C, Demirbas E, Kobya M, Kara S (2008) Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies. J Hazard Mater 150(3):737–746. doi:10.1016/j.jhazmat.2007.05.027

    CAS  Google Scholar 

  37. Dutta BK, Khanra S, Mallick D (2009) Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel 88(7):1314–1323. doi:10.1016/j.fuel.2009.01.005

    CAS  Google Scholar 

  38. ECOBA (2008) Production and utilisation of CCPs in 2008 in Europe (EU 15). European Coal Combustion Products Association. www.ecoba.org. Accessed 02.20.2012

  39. EGAT (2010) Personal communication with Mae Moh Power Plant, Thailand. Discussion notes with Mae Moh Authrity during site visit made on 23–24 September 2011

  40. EPRI (1996) Coal ash: its origin, disposal, use, and potential health issues. EPRI TR-106516 (Section B)

  41. Fairbrother A, Bigham G, Pietari J, Mohsen F (2010) Coal ash: hazard, waste, or resources? Newsl Expon Environ Eco Sci Pract 1:1–11

    Google Scholar 

  42. Fang Z, Gesser H (1996) Recovery of gallium from coal fly ash. Hydrometallurgy 41(2–3):187–200

    Google Scholar 

  43. Fisher GL, Chang D, Brummer M (1976) Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres. Science 192(4239):553

    CAS  Google Scholar 

  44. Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2004) Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J Non Cryst Solids 333(2):187–193. doi:10.1016/j.jnoncrysol.2003.09.048

    CAS  Google Scholar 

  45. Furlong T, Hearne J (1994) Process for producing solid bricks from fly ash, bottom ash, lime, gypsum, and calcium carbonate. Google Patents

  46. Gal M, Hollis J, Keren R (1988) Boron release and sorption by fly ash as affected by pH and particle size. J Environ Qual 17(2):181–184

    Google Scholar 

  47. Geetha S, Ramamurthy K (2010) Environmental friendly technology of cold-bonded bottom ash aggregate manufacture through chemical activation. J Clean Prod 18(15):1563–1569. doi:10.1016/j.jclepro.2010.06.006

    CAS  Google Scholar 

  48. Giergiczny Z, Król A (2008) Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. J Hazard Mater 160(2–3):247–255. doi:10.1016/j.jhazmat.2008.03.007

    CAS  Google Scholar 

  49. Gitari WM, Petrik LF, Key DL, Okujeni C (2010) Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash. J Environ Sci Health, Part A 46(2):117–137

    Google Scholar 

  50. Gorme JB, Kim SS, Kim YT (2010) Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environ Eng Res 15(4):207–213

    Google Scholar 

  51. Gupta G, Torres N (1998) Use of fly ash in reducing toxicity of and heavy metals in wastewater effluent. J Hazard Mater 57(1–3):243–248. doi:10.1016/s0304-3894(97)00093-9

    CAS  Google Scholar 

  52. Gupta VK, Mittal A, Krishnan L, Gajbe V (2004) Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep Purif Technol 40(1):87–96. doi:10.1016/j.seppur.2004.01.008

    CAS  Google Scholar 

  53. Gupta VK, Mittal A, Krishnan L, Mittal J (2006) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci 293(1):16–26. doi:10.1016/j.jcis.2005.06.021

    CAS  Google Scholar 

  54. Haibin L, Zhenling L (2010) Recycling utilization patterns of coal mining waste in China. Resour Conserv Recycl 54(12):1331–1340. doi:10.1016/j.resconrec.2010.05.005

    Google Scholar 

  55. Hansen Y, Notten PJ, Petrie JG (2002) The environmental impact of ash management in coal-based power generation. Appl Geochem 17(8):1131–1141. doi:10.1016/s0883-2927(02)00013-6

    CAS  Google Scholar 

  56. Horiuchi S, Kawaguchi M, Yasuhara K (2000) Effective use of fly ash slurry as fill material. J Hazard Mater 76(2–3):301–337. doi:10.1016/s0304-3894(00)00205-3

    CAS  Google Scholar 

  57. Hsu T-C (2008) Adsorption of an acid dye onto coal fly ash. Fuel 87(13–14):3040–3045. doi:10.1016/j.fuel.2008.03.026

    CAS  Google Scholar 

  58. Hsu TC, Yu CC, Yeh CM (2008) Adsorption of Cu 2 + from water using raw and modified coal fly ashes. Fuel 87(7):1355–1359

    CAS  Google Scholar 

  59. Huang WH (1990) The use of bottom ash in highway embankments, subgrades, and subbases. Indiana Department of Transportation and Purdue University, West Lafayette

  60. Hui KS, Chao CYH (2006) Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents. J Hazard Mater 137(1):401–409. doi:10.1016/j.jhazmat.2006.02.014

    CAS  Google Scholar 

  61. Hui K, Chao C, Kot S (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127(1):89–101

    CAS  Google Scholar 

  62. Hui K, Hui K, Lee SK (2009) A Novel and green approach to produce nano-porous materials zeolite A and MCM-41 from coal fly ash and their applications in environmental protection. Int J Chem Biol Eng 2:4

    Google Scholar 

  63. IEA (2012) Key world energy statistics. International Energy Agency. www.iea.org/publications/freepublications/publication/kwes.pdf. Accessed 05.10.2013

  64. Iyer R (2002) The surface chemistry of leaching coal fly ash. J Hazard Mater 93(3):321–329. doi:10.1016/s0304-3894(02)00049-3

    CAS  Google Scholar 

  65. Izquierdo M, Querol X (2012) Leaching behaviour of elements from coal combustion fly ash: an overview. Int J Coal Geol 94:54–66. doi:10.1016/j.coal.2011.10.006

    CAS  Google Scholar 

  66. Izquierdo M, Querol X, Davidovits J, Antenucci D, Nugteren H, Fernández-Pereira C (2009) Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J Hazard Mater 166(1):561–566

    CAS  Google Scholar 

  67. Janos P, Wildnerová M, Loucka T (2002) Leaching of metals from fly ashes in the presence of complexing agents. Waste Manag 22(7):783–789. doi:10.1016/s0956-053x(02)00039-9

    CAS  Google Scholar 

  68. Janos P, Buchtová H, Rýznarová M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37(20):4938–4944. doi:10.1016/j.watres.2003.08.011

    CAS  Google Scholar 

  69. Jaturapitakkul C, Cheerarot R (2003) Development of bottom ash as pozzolanic material. J Mater Civ Eng 15:48

    CAS  Google Scholar 

  70. Jayaranjan M, Annachhatre AP (2012) Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Water Sci Technol J Int Assoc Water Pollut Res 67(2):311–318

    Google Scholar 

  71. Jones MR, McCarthy A (2005) Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel 84(11):1398–1409. doi:10.1016/j.fuel.2004.09.030

    CAS  Google Scholar 

  72. Juan R, Hernández S, Andrés JM, Ruiz C (2007) Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash. Fuel 86(12–13):1811–1821. doi:10.1016/j.fuel.2007.01.011

    CAS  Google Scholar 

  73. Kara A, Kurama H, Kara Y, Kurama S (2004) Utilization of coal combustion fly ash in terracotta bodies. Key Eng Mater 264:2513–2516

    Google Scholar 

  74. Kara S, Aydiner C, Demirbas E, Kobya M, Dizge N (2007) Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash. Desalination 212(1–3):282–293

    CAS  Google Scholar 

  75. Kayabal K, Bulus G (2000) The usability of bottom ash as an engineering material when amended with different matrices. Eng Geol 56(3–4):293–303. doi:10.1016/s0013-7952(99)00097-6

    Google Scholar 

  76. Kim B (2003) Properties of coal ash mixtures and their use in highway embankments. Civil engineering. PhD. Purdue University, Ann Arbor, p 240

  77. Kim AG, Hesbach P (2009) Comparison of fly ash leaching methods. Fuel 88(5):926–937. doi:10.1016/j.fuel.2008.11.013

    CAS  Google Scholar 

  78. Kim B, Prezzi M, Salgado R (2005) Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. J Geotech Geoenviron Eng 131:914

    CAS  Google Scholar 

  79. Kimura N, Omata K, Kiga T, Takano S, Shikisima S (1995) The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Convers Manag 36(6–9):805–808. doi:10.1016/0196-8904(95)00126-X

    CAS  Google Scholar 

  80. Kizgut S, Cuhadaroglu D, Samanli S (2010) Stirred grinding of coal bottom ash to be evaluated as a cement additive. Energy Source Part A 32(16):1529–1539. doi:10.1080/15567030902780378

    CAS  Google Scholar 

  81. Kniess CT, de Lima JC, Prates PB, Kuhnen NC, Riella HG (2007) Dilithium dialuminium trisilicate phase obtained using coal bottom ash. J Non Cryst Solids 353(52–54):4819–4822. doi:10.1016/j.jnoncrysol.2007.06.047

    CAS  Google Scholar 

  82. Kolay P, Singh D (2001) Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cem Concr Res 31(4):539–542

    CAS  Google Scholar 

  83. Korcak R (1998) Agricultural uses of coal combustion byproducts. In: Agricultural uses of municipal, animal and industrial byproducts. USDA-ARS Conservation Res Rep 44:103–119

  84. Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A (2010) Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. J Hazard Mater 173(1):581–588

    CAS  Google Scholar 

  85. Kraus RN, Chun Y, Ramme BW, Singh SS (2003) Properties of field manufactured cast-concrete products utilizing recycled materials. J Mater Civ Eng 15:400

    Google Scholar 

  86. Kula I, Olgun A, Sevinc V, Erdogan Y (2002) An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials. Cem Concr Res 32(2):227–232. doi:10.1016/s0008-8846(01)00661-5

    CAS  Google Scholar 

  87. Kumar S, Patil CB (2006) Estimation of resource savings due to fly ash utilization in road construction. Resour Conserv Recycl 48(2):125–140. doi:10.1016/j.resconrec.2006.01.002

    Google Scholar 

  88. Kumar S, Stewart J (2003a) Evaluation of Illinois pulverized coal combustion dry bottom ash for use in geotechnical engineering applications. J Energy Eng 129:42

    Google Scholar 

  89. Kumar S, Stewart J (2003b) Utilization of Illinois PCC dry bottom ash for compacted landfill barriers. Soil Sediment Contam Int J 12(3):401–415

    Google Scholar 

  90. Kumpiene J, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environ Pollut 145(1):365–373. doi:10.1016/j.envpol.2006.01.037

    CAS  Google Scholar 

  91. Kurama H, Kaya M (2008) Usage of coal combustion bottom ash in concrete mixture. Constr Build Mater 22(9):1922–1928. doi:10.1016/j.conbuildmat.2007.07.008

    Google Scholar 

  92. Lav AH, Lav MA, Goktepe AB (2006) Analysis and design of a stabilized fly ash as pavement base material. Fuel 85(16):2359–2370. doi:10.1016/j.fuel.2006.05.017

    CAS  Google Scholar 

  93. Lee JM, Kim DW, Kim JS (2011) Characteristics of co-combustion of anthracite with bituminous coal in a 200-MWe circulating fluidized bed boiler. Energy 36(9):5703–5709. doi:10.1016/j.energy.2011.06.051

    CAS  Google Scholar 

  94. Leonards GA, Bailey B (1982) Pulverized coal ash as structural fill. J Geotech Eng Div Am Soc Civ Eng 108:517–531

    Google Scholar 

  95. Levandowski J, Kalkreuth W (2009) Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. Int J Coal Geol 77(3–4):269–281. doi:10.1016/j.coal.2008.05.005

    CAS  Google Scholar 

  96. Lin CY, Yang DH (2002) Removal of pollutants from wastewater by coal bottom ash. J Environ Sci Health, Part A 37(8):1509–1522

    Google Scholar 

  97. Lopez-Anton M, Diaz-Somoano M, Fierro J, Martinez-Tarazona M (2007) Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Process Technol 88(8):799–805

    CAS  Google Scholar 

  98. Manz OE (1999) Coal fly ash: a retrospective and future look. Fuel 78(2):133–136. doi:10.1016/s0016-2361(98)00148-3

    CAS  Google Scholar 

  99. Mathieu JL, Gadgil AJ, Addy SEA, Kowolik K (2010) Arsenic remediation of drinking water using iron-oxide coated coal bottom ash. J Environ Sci Health, Part A 45(11):1446–1460

    CAS  Google Scholar 

  100. Matjie RH, Bunt JR, van Heerden JHP (2005) Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal. Miner Eng 18(3):299–310. doi:10.1016/j.mineng.2004.06.013

    CAS  Google Scholar 

  101. McCarthy MJ, Dhir RK (1999) Towards maximising the use of fly ash as a binder. Fuel 78(2):121–132. doi:10.1016/s0016-2361(98)00151-3

    CAS  Google Scholar 

  102. Mehta P (1998) Role of pozzolanic and cementious material in sustainable development of the concrete industry. Spec Publ 178:1–20

    Google Scholar 

  103. Mittal A, Kurup L, Gupta VK (2005) Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of Amaranth from aqueous solutions. J Hazard Mater 117(2–3):171–178. doi:10.1016/j.jhazmat.2004.09.016

    CAS  Google Scholar 

  104. Mohan D, Singh KP, Singh G, Kumar K (2002) Removal of dyes from wastewater using fly ash, a low-cost adsorbent. Ind Eng Chem Res 41(15):3688–3695

    CAS  Google Scholar 

  105. Mohanty S, Chugh YP (2007) Development of fly ash-based automotive brake lining. Tribol Int 40(7):1217–1224. doi:10.1016/j.triboint.2007.01.005

    CAS  Google Scholar 

  106. Mondragon F, Rincon F, Sierra L, Escobar J, Ramirez J, Fernandez J (1990) New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel 69(2):263–266. doi:10.1016/0016-2361(90)90187-u

    CAS  Google Scholar 

  107. Montagnaro F, Santoro L (2009) Reuse of coal combustion ashes as dyes and heavy metal adsorbents: effect of sieving and demineralization on waste properties and adsorption capacity. Chem Eng J 150(1):174–180

    CAS  Google Scholar 

  108. Montes-Hernandez G, Pérez-López R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2–3):1347–1354. doi:10.1016/j.jhazmat.2008.04.104

    CAS  Google Scholar 

  109. Moulton LK (1973) Bottom ash and boiler slag. In: Proceedings of the third international ash utilization symposium. Sponsored by National Coal Association, Edison Electric Institute, American Public Power Association, National Ash Association, and Bureau of Mines, Pittsburgh, 13–14 March 1973

  110. Moulton LK, Seals RK, Anderson DA (1973) Utilization of ash from coal-burning power plants in highway construction. Highw Res Rec 430:26–39

    Google Scholar 

  111. Mukhtar S, Kenimer AL, Sadaka SS, Mathis JG (2003) Evaluation of bottom ash and composted manure blends as a soil amendment material. Bioresour Technol 89(3):217–228. doi:10.1016/S0960-8524(03)00085-3

    CAS  Google Scholar 

  112. Muñoz MI, Aller AJ (2012) Chemical modification of coal fly ash for the retention of low levels of lead from aqueous solutions. Fuel. doi:10.1016/j.fuel.2012.06.042

  113. Naik TR, Kraus RN, Chun Y, Botha FD (2005) Cast-concrete products made with FBC ash and wet-collected coal-ash. J Mater Civ Eng 17:659

    CAS  Google Scholar 

  114. Nathan Y, Dvorachek M, Pelly I, Mimran U (1999) Characterization of coal fly ash from Israel. Fuel 78(2):205–213

    CAS  Google Scholar 

  115. Nemade P, Alappat B (2002) Removal of fluorides from water using low cost adsorbents. Water Supply 2(1):311–317

    CAS  Google Scholar 

  116. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53(6):655–665. doi:10.1016/s0045-6535(03)00517-4

    CAS  Google Scholar 

  117. Ohtake T, Uchida K, Ikazaki F, Kawamura M, Ohkubo T, Kamiya K (1991) Synthesis of mullite from fly ash and alumina powder mixture. J Ceram Soc Jpn 99(1147):239–243

    CAS  Google Scholar 

  118. Olgun A, Erdogan Y, Ayhan Y, Zeybek B (2005) Development of ceramic tiles from coal fly ash and tincal ore waste. Ceram Int 31(1):153–158. doi:10.1016/j.ceramint.2004.04.007

    CAS  Google Scholar 

  119. Palumbo AV, McCarthy JF, Amonette JE, Fisher LS, Wullschleger SD, Daniels WL (2004) Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion by-products. Adv Environ Res 8(3–4):425–438. doi:10.1016/s1093-0191(02)00124-7

    CAS  Google Scholar 

  120. Pandey VC, Singh JS, Singh RP, Singh N, Yunus M (2011) Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour Conserv Recycl 55(9):819–835

    Google Scholar 

  121. Papandreou A, Stournaras CJ, Panias D (2007) Copper and cadmium adsorption on pellets made from fired coal fly ash. J Hazard Mater 148(3):538–547. doi:10.1016/j.jhazmat.2007.03.020

    CAS  Google Scholar 

  122. Papandreou AD, Stournaras CJ, Panias D, Paspaliaris I (2011) Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets. Miner Eng doi:10.1016/j.mineng.2011.07.016

  123. Peng F, Liang K, Hu A, Shao H (2004) Nano-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash. Fuel 83(14–15):1973–1977. doi:10.1016/j.fuel.2004.04.008

    CAS  Google Scholar 

  124. Pengthamkeerati P, Satapanajaru T, Chularuengoaksorn P (2008) Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel 87(12):2469–2476

    CAS  Google Scholar 

  125. Pereira CF, RodrIguez-Piñero M, Vale J (2001) Solidification/stabilization of electric arc furnace dust using coal fly ash: analysis of the stabilization process. J Hazard Mater 82(2):183–195. doi:10.1016/s0304-3894(00)00359-9

    CAS  Google Scholar 

  126. Pimraksa K, Wilhelm M, Wruss W (2000) A new approach to the production of bricks made of 100% fly ash. In: International ash utilization symposium, Centre for Applied Energy Research, University of Kentucky, p 84

  127. Pires M, Querol X (2004) Characterization of Candiota (South Brazil) coal and combustion by-product. Int J Coal Geol 60(1):57–72. doi:10.1016/j.coal.2004.04.003

    CAS  Google Scholar 

  128. Polat H, Vengosh A, Pankratov I, Polat M (2004) A new methodology for removal of boron from water by coal and fly ash. Desalination 164(2):173–188. doi:10.1016/s0011-9164(04)00176-6

    CAS  Google Scholar 

  129. Popovic A, Djordjevic D (2009) pH-dependent leaching of dump coal ash—retrospective environmental analysis. Energy Sources Part A Recovery Util Environ Eff 31(17):1553–1560

    CAS  Google Scholar 

  130. Popovic A, Djordjevic D, Polic P (2001) Trace and major element pollution originating from coal ash suspension and transport processes. Environ Int 26(4):251–255. doi:10.1016/s0160-4120(00)00114-8

    CAS  Google Scholar 

  131. Prasad B, Mondal K (2008) The impact of filling an abandoned open cast mine with fly ash on ground water quality: a case study. Miner Water Environ 27(1):40–45. doi:10.1007/s10230-007-0021-5

    CAS  Google Scholar 

  132. Prasad B, Sangita K, Tewary B (2011) Reducing the hardness of mine water using transformed fly ash. Mine Water Environ 30(1):61–66. doi:10.1007/s10230-010-0130-4

    CAS  Google Scholar 

  133. Prezzi M, Kim B (2008) Compaction characteristics and corrosivity of Indiana class-F fly and bottom ash mixtures. Constr Build Mater 22(4):694–702. doi:10.1016/j.conbuildmat.2006.09.007

    Google Scholar 

  134. Querol X, Moreno N, Umana JC, Alastuey A, Hernández E, López-Soler A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50(1):413–423

    CAS  Google Scholar 

  135. Ram LC, Masto RE (2010) An appraisal of the potential use of fly ash for reclaiming coal mine spoil. J Environ Manag 91(3):603–617. doi:10.1016/j.jenvman.2009.10.004

    CAS  Google Scholar 

  136. Ram L, Srivastava N, Jha S, Sinha A, Masto R, Selvi V (2007) Management of lignite fly ash for improving soil fertility and crop productivity. Environ Manag 40(3):438–452. doi:10.1007/s00267-006-0126-9

    Google Scholar 

  137. Rifa A, Yasufuku N, Omine K, Tsuji K (2009) Experimental study of coal ash utilization for road application on soft soil. Paper presented at the international joint symposium on geodisaster prevention and geoenvironment in Asia JS-Fukuoka

  138. Russell NV, Méndez LB, Wigley F, Williamson J (2002) Ash deposition of a Spanish anthracite: effects of included and excluded mineral matter. Fuel 81(5):657–663. doi:10.1016/s0016-2361(01)00155-7

    CAS  Google Scholar 

  139. Sampaolo A, Relini G (1994) Coal ash for artificial habitats in Italy. Bull Mar Sci 55(2–3):1277–1294

    Google Scholar 

  140. Sathonsaowaphak A, Chindaprasirt P, Pimraksa K (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater 168(1):44–50. doi:10.1016/j.jhazmat.2009.01.120

    CAS  Google Scholar 

  141. Sato A, Nishimoto S (2001) Effective reuse of coal ash as civil engineering material. In: Proceedings of the world of coal ash conference, Lexington, April, pp 11–15

  142. Saxena M, Prabakhar J (2000) Emerging technologies for third millennium on wood substitute and paint from coal ash, vol 2, pp 26–28

  143. Sell N, McIntosh T, Severance C, Peterson A (1989) The agronomic landspreading of coal bottom ash: using a regulated solid waste as a resource. Resour Conserv Recycl 2(2):119–129. doi:10.1016/0921-3449(89)90019-0

    Google Scholar 

  144. Sen AK, De AK (1987) Adsorption of mercury(II) by coal fly ash. Water Res 21(8):885–888. doi:10.1016/s0043-1354(87)80003-9

    CAS  Google Scholar 

  145. Sharma S, Fulekar M, Jayalakshmi C, Straub CP (1989) Fly ash dynamics in soil-water systems. Crit Rev Environ Sci Technol 19(3):251–275

    CAS  Google Scholar 

  146. Shih W-H, Chang H-L (1996) Conversion of fly ash into zeolites for ion-exchange applications. Mater Lett 28(4–6):263–268. doi:10.1016/0167-577x(96)00064-x

    CAS  Google Scholar 

  147. Silva LFO, Ward CR, Hower JC, Izquierdo M, Waanders F (2010) Mineralogy and leaching characteristics of coal ash from a major Brazilian power plant. Coal Combust Gasif Prod 2:51–65

    Google Scholar 

  148. Singh N (2009) Adsorption of herbicides on coal fly ash from aqueous solutions. J Hazard Mater 168(1):233–237

    CAS  Google Scholar 

  149. Singh RP, Gupta AK, Ibrahim MH, Mittal AK (2010) Coal fly ash utilization in agriculture: its potential benefits and risks. Rev Environ Sci Bio 9(4):345–358. doi:10.1007/s11157-010-9218-3

    CAS  Google Scholar 

  150. Sokolar R, Smetanova L (2010) Dry pressed ceramic tiles based on fly ash-clay body: influence of fly ash granulometry and pentasodium triphosphate addition. Ceram Int 36(1):215–221. doi:10.1016/j.ceramint.2009.07.009

    CAS  Google Scholar 

  151. Solis-Guzman J, Arenas CG, Marrero M, Leiva C, Arenas LFV (2011) High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Manag 31(8):1783–1789. doi:10.1016/j.wasman.2011.03.017

    Google Scholar 

  152. Soong Y, Fauth DL, Howard BH, Jones JR, Harrison DK, Goodman AL, Gray ML, Frommell EA (2006) CO2 sequestration with brine solution and fly ashes. Energy Convers Manag 47(13–14):1676–1685. doi:10.1016/j.enconman.2005.10.021

    CAS  Google Scholar 

  153. Steenbruggen G, Hollman GG (1998) The synthesis of zeolites from fly ash and the properties of the zeolite products. J Geochem Explor 62(1–3):305–309. doi:10.1016/s0375-6742(97)00066-6

    CAS  Google Scholar 

  154. Su T, Wang J (2011) Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes. Chemosphere 85(8):1368–1374

    Google Scholar 

  155. Sun W-l, Qu Y-z, Yu Q, Ni J-r (2008) Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash. J Hazard Mater 154(1–3):595–601. doi:10.1016/j.jhazmat.2007.10.063

    CAS  Google Scholar 

  156. Suwanvitaya P, Wattanachai P (2006) Comparison of metals leaching from Mortar with Mae Moh and Calaca bottom ashes as sand replacement. http://www.cv.titech.ac.jp/~jsps/activity_report/2005/Patcharaporn.pdf

  157. Taeyoon L (2011) Leaching characteristics of bottom ash from coal fired electric generating plants, and waste tire; individually and mixtures when used as construction site fill materials. Waste Manag 31(2):246–252. doi:10.1016/j.wasman.2010.10.010

    Google Scholar 

  158. Theis TL, Gardner KH (1990) Environmental assessment of ash disposal. Crit Rev Environ Sci Technol 20(1):21–42

    CAS  Google Scholar 

  159. Twardowska I, Szczepanska J (2002) Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study. Sci Total Environ 285(1–3):29–51. doi:10.1016/s0048-9697(01)00893-2

    CAS  Google Scholar 

  160. Uçurum M, Toraman Ö, Depci T, Yo urtçuo lu E (2011) A study on characterization and use of flotation to separate unburned carbon in bottom ash from Çayirhan power plant. Energy Sources Part A Recovery Util Environ Eff 33(6):562–574

    Google Scholar 

  161. Ugurlu A, Salman B (1998) Phosphorus removal by fly ash. Environ Int 24(8):911–918. doi:10.1016/s0160-4120(98)00079-8

    CAS  Google Scholar 

  162. USEPA (2011) EPA promoted the use of coal ash products with incomplete risk information (trans: U.S. Environmental Protection Agency OoIG)

  163. USEPA (2013) Waste-non hazardous wastes-industrial wastes. http://www.epa.gov/wastes/nonhaz/industrial/special/fossil/ccr-rule/ccrfaq.htm#3. Accessed 16.01.2014

  164. Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A, Querol X (2005) Phase–mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. Int J Coal Geol 61(1–2):35–63. doi:10.1016/j.coal.2004.06.004

    CAS  Google Scholar 

  165. Vilches LF, Fernández Pereira C, Olivares del Valle J, Rodríguez Piñero M, Vale J (2002) Development of new fire proof products made from coal fly ash: the CEFYR project. J Chem Technol Biotechnol 77(3):361–366

    CAS  Google Scholar 

  166. Vilches LF, Fernández-Pereira C, Olivares del Valle J, Vale J (2003) Recycling potential of coal fly ash and titanium waste as new fireproof products. Chem Eng J 95(1–3):155–161. doi:10.1016/s1385-8947(03)00099-8

    CAS  Google Scholar 

  167. Viraraghavan T, Dronamraju M (1992) Utilization of coal ash in water pollution control. Int J Environ Stud 40(1):79–85

    CAS  Google Scholar 

  168. Vivoda V (2012) Japan’s energy security predicament post-Fukushima. Energy Policy 46:135–143

    Google Scholar 

  169. Vujić J, Antić DP, Vukmirović Z (2012) Environmental impact and cost analysis of coal versus nuclear power: the US case. Energy 45(1):31–42

    Google Scholar 

  170. Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39(1):129–138. doi:10.1016/j.watres.2004.09.011

    CAS  Google Scholar 

  171. Wearing C, Birch C, Nairn J (2004) An assessment of Tarong bottom ash for use on agricultural soils. Dev Chem Eng Miner Process 12(5–6):531–543

    Google Scholar 

  172. Wee HL, Wu H, Zhang D-k, French D (2005) The effect of combustion conditions on mineral matter transformation and ash deposition in a utility boiler fired with a sub-bituminous coal. Proc Combust Inst 30(2):2981–2989. doi:10.1016/j.proci.2004.08.059

    Google Scholar 

  173. Woolard C, Petrus K, Van der Horst M (2000) The use of a modified fly ash as an adsorbent for lead. WATER SA-PRETORIA 26(4):531–536

    CAS  Google Scholar 

  174. Woolard CD, Strong J, Erasmus CR (2002) Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams. Appl Geochem 17(8):1159–1164. doi:10.1016/s0883-2927(02)00057-4

    CAS  Google Scholar 

  175. Wu D, Sui Y, He S, Wang X, Li C, Kong H (2008) Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J Hazard Mater 155(3):415–423. doi:10.1016/j.jhazmat.2007.11.082

    CAS  Google Scholar 

  176. Xenidis A, Mylona E, Paspaliaris I (2002) Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manag 22(6):631–641. doi:10.1016/s0956-053x(01)00053-8

    CAS  Google Scholar 

  177. Yang EH, Yang Y, Li VC (2007) Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Mater J 104(6):620–628

    CAS  Google Scholar 

  178. Yao Z, Xia M, Ye Y (2011) Dilithium dialuminium trisilicate crystalline phase prepared from coal fly ash. J Mater Eng Perform 1–5. doi:10.1007/s11665-011-9959-3

  179. Yunusa IAM, Manoharan V, Odeh IOA, Shrestha S, Skilbeck CG, Eamus D (2011) Structural and hydrological alterations of soil due to addition of coal fly ash. J Soils Sediments 11(3):423–431. doi:10.1007/s11368-010-0312-5

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Annachhatre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jayaranjan, M.L.D., van Hullebusch, E.D. & Annachhatre, A.P. Reuse options for coal fired power plant bottom ash and fly ash. Rev Environ Sci Biotechnol 13, 467–486 (2014). https://doi.org/10.1007/s11157-014-9336-4

Download citation

Keywords

  • Power plant
  • Bottom ash
  • Fly ash
  • Reuse
  • Materials recovery