Skip to main content
Log in

From geochemical background determination to pollution assessment of heavy metals in sediments and soils

  • Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Establishing geochemical background concentrations to distinguish the natural background from anthropogenic concentrations of heavy metals in sediments and soils is necessary to develop guidelines for environmental legislation. Due to the fact that the background concentrations strongly depend on geological characteristics such as mineral composition, grain size distribution and organic matter content, several normalization methods have been developed. Empirical (geochemical), theoretical (statistical) and integrated methods (combining both empirical and theoretical methods) are the main approaches described in literature for determination of geochemical background concentrations. In this review paper, the different approaches as well as the main normalization methods for heavy metal concentrations in sediments and soils will be discussed. Both geochemical background concentrations and added risk level (maximum permissible addition) should be taken into account for setting up legal threshold limits. Moreover, different approaches to evaluate the pollution status of heavy metals in sediments and soils, from Sediment/Soil Quality Guidelines to quantitative indices (Geo-accumulation Index-Igeo, Enrichment Factor-EF, Pollution Load Index-PLI and Risk assessment Code-RAC) will be presented. Although guidelines to establish whether a sediment or soil is polluted or not are generally only related to total metal concentrations, the available/reactive pool i.e., availability/reactivity of metals should be taken into account for sediment/soil pollution assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    CAS  Google Scholar 

  • Ackermann F (1980) A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environ Technol Lett 1:518–527

    CAS  Google Scholar 

  • Adokoh CK, Obodai EA, Essumang DK, Serfor-Armah Y, Nyarko BJB, Asabere-Ameyaw A (2011) Statistical evaluation of environmental contamination, distribution and source assessment of heavy metals (aluminum, arsenic, cadmium, and mercury) in some lagoons and an estuary along the coastal belt of Ghana. Arch Environ Contam Toxicol 61(3):389–400

    CAS  Google Scholar 

  • Alexander DE, Fairbridge WR (1999) Encyclopedia of environmental science. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution. Blackie Academic and Professional, London

    Google Scholar 

  • Aloupi M, Angelidis MO (2001) Geochemistry of natural and anthropogenic metals in the Coastal sediments of the island of Lesvos, Aegean Sea. Environ Pollut 113(2):211–219

    CAS  Google Scholar 

  • Baeyens W, Panutrakul S, Elskens M, Leermakers M, Navez J, Monteny F (1991) Geochemical processes in muddy and sandy tidal sediments. Geo Lett 11:188–193

    Google Scholar 

  • Batley GE (2012) “Heavy metal”—a useful term. Integr Environ Assess Manag 8(2):215

    Google Scholar 

  • Bing H, Wu Y, Sun Z, Yao S (2011) Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. J Environ Sci 23(10):1671–1678

    CAS  Google Scholar 

  • Bini C, Sartori G, Wahsha M, Fontana S (2011) Background levels of trace elements and soil geochemistry at regional level in NE Italy. J Geochem Explor 109(1–3):125–133

    CAS  Google Scholar 

  • Birkeland PW (1999) Soils and geomorphology, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Bolviken B, Bogen J, Dematriades A, Devos W, Ebbing J, Hindel R, Langedal M, Locutura J, O’Connor P, Ottensen RT, Pulkkinen E, Salminen R, Schermann P, Swennen R, Van der Sluys J, Volden T (1996) Regional geochemical mapping of Western Europe towards the year 2000. J Geochem Expl 56:141–166

    Google Scholar 

  • Bordas F, Bourg A (2001) Effect of solid/liquid ratio on the remobilization of Cu, Pb, and Zn from polluted river sediment. Water Air Soil Pollut 128:391–400

    CAS  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils, 20th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Burton JGA (2002) Sediment quality criteria in use around the world. Limnology 3(2):65–76

    CAS  Google Scholar 

  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra AP, Medeiros G (2005) Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecol Indic 5(2):151–169

    CAS  Google Scholar 

  • Caeiro S, Costa MH, Del Valls A, Repolho T, Gonçalves M, Mosca A, Coimbra AP (2009) Ecological risk assessment of sediment management areas: application to Sado Estuary, Portugal. Ecotoxicology 18(8):1165–1175

    CAS  Google Scholar 

  • Cappuyns V (2004) Heavy metal behavior in overbank sediments and associated soils. Dissertation, KULeuven, Belgium

  • Cappuyns V (2012) A critical evaluation of single extractions from the SMT program to determine trace element mobility in sediments. Appl Environ Soil Sci 2012:1–15

  • Carlon C (2007) Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonisation. European Commission, Joint Research Centre, Ispra, EUR 22805-EN

  • CCME (Canadian Council of Ministers of the Environment) (2002) Canadian Sediment Quality Guidelines for the protection of aquatic life. http://www.ecy.wa.gov/programs/eap/psamp/BoundaryBay/PSAMP-BBAMP%20documents/Canadian%20guidelines%20for%20water%20quality/SedimentProtAquaticLifeSummaryTables(en).pdf. Accessed 20 Sept 2012

  • CCME (Canadian Council of Ministers of the Environment) (2007) Canadian soil quality guidelines for the protection of environmental and human health

  • Chapman PM (2007) Determining when contamination is pollution—weight of evidence determinations for sediments and effluents. Environ Int 33(4):492–501

    CAS  Google Scholar 

  • Chapman PM (2012) ‘‘Heavy metal’’—cacophony, not symphony. Integr Environ Assess Manag 8(2):216

    Google Scholar 

  • Chapman PM, Hyland J, Ingersoll C, Carr S, Engle V, Green R, Hameedi J, Harmon M (1997) General guidelines for using the sediment quality triad. Mar Pollut Bull 34:368–372

    CAS  Google Scholar 

  • Cheevaporn V, San Diego-McGlone ML (1997) Aluminium normalization of heavy metal data from estuarine and coastal sediments of the Gulf of Thailand. Int J Sci Tech 2(2):37–46

    Google Scholar 

  • Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168(2–3):1082–1091

    CAS  Google Scholar 

  • Church SE (1993) Geochemical and lead-isotope data from stream and lake sediments, and cores from the upper Arkansas River drainage: effects of mining at Leadville Colorado on heavy metal concentration in the Arkansas River, United States Geological survey, Open File Report 93–534

  • Church SE, Alpers CN, Vaughn RB, Briggs PH and Slotton DG (1999) Use of lead isotopes as natural tracers of metal contamination. In: Plumlee GS and Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A. Processes, techniques, and health issues. Rev Econ Geol 6A, Society of Economic Geologists Littleton, pp 567–583

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30(1/2):34–45

    CAS  Google Scholar 

  • De Saedeleer V, Cappuyns V, De Cooman W, Swennen R (2010) Influence of major elements on heavy metal composition of river sediments. Geol Belg 3:257–268

    Google Scholar 

  • De Temmerman LDE, Vanongeval L, Boon W, Hoenig M, Geypens M (2003) Heavy metal content of arable soils in northern Belgium. Water Air Soil Pollut 148:61–76

    Google Scholar 

  • De Vos W, Ebbing J, Hindel R, Schalich J, Swennen R, Van Keer I (1996) Geochemical mapping based on overbank sediments in the heavily industrialized border area of Belgium, Germanny and the Netherlands. J Geochem Expl 56:91–104

    Google Scholar 

  • Desaules A (2012) Critical evaluation of soil contamination assessment methods for trace metals. Sci Total Environ 426:120–131

    CAS  Google Scholar 

  • Duffus JH (on behalf of IUPAC, Chemistry and Human Health Division, Clinical Chemistry Section, Commission on Toxicology) (2002) “Heavy metals”—a meaningless term?. Pure Appl Chem 74:793–807

    Google Scholar 

  • Duzgoren-Aydn NS, Weiss AL (2008) Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies. Environ Geochem Health 30(6):577–588

    CAS  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monitor 4(6):823–857

    CAS  Google Scholar 

  • Forstner U, Ahlf W, Calmano W (1989) Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: combined effects of salinity and redox variation. Mar Chem 28:145–158

    Google Scholar 

  • Gałuszka A (2007) A review of geochemical background concepts and an example using data from Poland. Environ Geol 52(5):861–870

    Google Scholar 

  • Gałuszka A, Migaszewski ZM (2011) Geochemical background–an environmental perspective. Miner 42(1):7–17

    Google Scholar 

  • Garrett RG (1991) The management, analysis and display of exploration geochemical data. Exploration geochemistry workshop, Ottawa Geological Survey of Canada, Open File 2390

  • Garrett RG and Grunsky EC (2011) Geochemical background—what it is and how it varies. In: Proceedings and recommendations from the Workshop on the role of geochemical data in environmental and human health risk assessment, Halifax, 2010, (ed) Rencz AN and Kettles IM, Geological Survey of Canada, Open File 6645, 1 CD-ROM

  • Görlich K, Görlich E, Tomala K, Hrynkiewicz A, Hung PQ (1989) 57Fe Mossabauer study of a sediment column in the Gdansk basin, Baltic sea: palaeoenvironmental application. Mar Geo 88:49–69

    Google Scholar 

  • Grant A, Middleton R (1990) An assessment of metal contamination of sediments in the Humber estuary, U K. Estuar Coast Shelf Sci 31:71–85

    CAS  Google Scholar 

  • Grousset FE, Quetel CR, Thomas B, Donard OFX, Lambert CE, Quillard F, Monaco A (1995) Anthropogenic vs. lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc, Sn, Zn) in water column particles: northwestern Mediterranean Sea. Mar Chem 48:291–310

    CAS  Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper, New York

    Google Scholar 

  • Herut B and Sandler A (2006) Normalization methods for pollutants in Marine sediments: review and recommendations for the Mediterranean Israel Oceanographic and Limnological Research, IOLR Report, pp 1–23

  • Herut B, Hornung H, Kress N, Krom MD, Shirav M (1995) Trace metals in sediments at the lower reaches of Mediterranean coastal rivers, Israel. Wat Sci Tech 32:239–246

    CAS  Google Scholar 

  • Hlavay J, Prohaska T, Weisz M, Wenzel WW, Stingeder GJ (2004) Determination of trace elements bound to soils and sediment fractions (IUPAC Technical Report). Pure App Chem 76(2):415–442

    CAS  Google Scholar 

  • Ho HH, Swennen R, Van Damme A (2010) Distribution and contamination status of heavy metals in estuarine sediments near Cua ong harbor, Ha Long bay, Vietnam. Geol Belg 13:37–47

    CAS  Google Scholar 

  • Ho HH, Swennen R, Cappuyns V, Vassilieva E, Tran TV (2012) Necessity of normalization to aluminum to assess the contamination by heavy metals and arsenic in sediments near Haiphong Harbor, Vietnam. J Asian Earth Sci 56:229–239

    Google Scholar 

  • Hoefs J (2009) Stable Isotope geochemistry. Springer, New York

    Google Scholar 

  • Holdgate MW (1979) A perspective of environmental pollution. Cambridge University Press, Cambridge

    Google Scholar 

  • Hong-gui D, Teng-feng G, Ming-hui L, Xu D (2012) Comprehensive assessment model on heavy metal pollution in soil. Int J Electrochem Sci 7:5286–5296

    Google Scholar 

  • Horowitz J (1985) A primer on trace metal- sediment chemistry. United States Geological survey water-supply paper, pp 72

  • Injuk J, Van Grieken R, De Leeuw G (1998) Deposition of atmospheric trace elements into the North sea: coastal, ship, platform measurements and model predictions. Atmos Environ 32(17):3011–3025

    CAS  Google Scholar 

  • Izbicki JA, Ball JW, Bullen TD, Sutley SJ (2008) Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl Geochem 23:1325–1352

    CAS  Google Scholar 

  • Jan E, Joanna Z, Szymon U, Cees L (2002) Normalisation as a tool for environmental impact studies: the Gulf of Gdansk as a case study. Baltica 15:49–62

    Google Scholar 

  • Jokšas K, Stakėnienė R, Galkus A, Lagunavičienė L (2008) Metals in bottom sediments of Šventoji Port area (Lithuania). Geology 50(3):143–155

    Google Scholar 

  • Jumbe A, Nandini N (2009) Heavy metals analysis and sediment quality values in urban Lakes. Am J Environ Sci 5(6):678–687

    CAS  Google Scholar 

  • Kersten M, Förstner U (1991) Geochemical characterization of pollutants mobility in cohesive sediments. Geo Lett 11:184–197

    Google Scholar 

  • Loring DH (1990) Lithium—a new approach for the granulometric noramalization of trace metal data. Mar Chem 29:155–168

    CAS  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283

    CAS  Google Scholar 

  • Loska K, Cebula J, Pelczar J, Wiechula D, Kwapulinski J (1997) Use of Enrichment, and Contamination factors together with Geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365

    CAS  Google Scholar 

  • Luthy RG, Allen-King RM, Brown SL, Dzombak DA, Fendorf SE, Giesy JP, Hughes JB, Louma SN, Malone LA, Menzie CA, Roberts SM, Ruby GMV, Schultz TW, Smets KBF (2003) Bioavailability of contaminants in soils and sediments: process, tools and applications. The National Academies Press, Washington, p 433

    Google Scholar 

  • Manceau A, Matthew AM, Nobumichi T (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev Miner Geochem 49:341–428

    CAS  Google Scholar 

  • Massas I, Ehaliotis C, Kalivas D, Panagopoulou G (2010) Concentrations and availability indicators of soil heavy metals; the case of children’s playgrounds in the city of Athens (Greece). Water Air Soil Pollut 212(1–4):51–63

    CAS  Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000

    CAS  Google Scholar 

  • Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Rev 24:1–42

    CAS  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2:109–118

    Google Scholar 

  • Muller-Karulis B, Poikane R, Seglins V (2003) Heavy metals in the Ventspils Harbour: normalization based on a multi-parameter dataset. Environ Geol 43:445–456

    Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298

    CAS  Google Scholar 

  • Paikaray S (2012) Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism. Rev Environ Sci Biotechnol 11:289–303

    CAS  Google Scholar 

  • Passos EA, Alves JPH, Garcia CAB, Costa AC (2011) Metal fractionation in sediments of the Sergipe River, northeast, Brazil. J Braz Chem Soc 22(5):828–835

    CAS  Google Scholar 

  • Peirson DH, Cawse PA (1979) Trace elements in the atmosphere. Phil Trans R Soc Lond B288:41–49

    Google Scholar 

  • Peltier E, Dahl AL, Gaillard JF (2005) Metal speciation in anoxic sediments: when sulfides can be construed as oxides. Environ Sci Tech 39(1):311–316

    CAS  Google Scholar 

  • Pérez-Sirvent C, Martínez-Sánchez MJ, García-Lorenzo ML, Molina J, Tudela ML (2009) Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain). Geoderma 148(3–4):307–317

    Google Scholar 

  • Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanetta ML, Oro AA (1985) Heavy metal speciation in the sediments of Northern Adriatic Sea. A new approach for environmental toxicity determination. In: Lakkas TD (ed) Heavy metals in the environment, vol 2. CEP Consultants, Edinburg

    Google Scholar 

  • Pfannkuch H (1990) Elsevier’s dictionary of environmental hydrogeology. Elsevier, Amsterdam

    Google Scholar 

  • Porteous A (1996) Dictionary of environmental science and technology, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Praveena SM, Radojevic M, Abdullah MH (2007) The Assessment of mangrove sediment quality in Mengkabong Lagoon: an index analysis approach. Int J Environ Sci Educ 2(3):60–68

    Google Scholar 

  • Prohic E, Miko S, Peh Z (1995) Nomarlisation and trace element contamination of soils in a Karstic Polje-An example from the Sinjsko Polje, Croatia. Geol Croat 48(1):67–86

    CAS  Google Scholar 

  • Qi S, Leipe T, Rueckert P, Di Z, Harff J (2010) Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River Estuary, Southern China. J Mar Syst 82:S28–S42

    Google Scholar 

  • Ramos-Miras JJ, Roca-Perez L, Guzmán-Palomino M, Boluda R, Gil C (2011) Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J Geochem Explor 110(2):186–192

    CAS  Google Scholar 

  • Rao CRM, Sahuquillo A, Lopez Sanchez JF (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut 189:291–333

    CAS  Google Scholar 

  • Rath P, Panda UC, Bhatta D, Sahu KC (2009) Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments-a case study: Brahmani and Nandira Rivers, India. J Hazard Mater 163:632–644

    CAS  Google Scholar 

  • Reimann C, De Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337:91–107

    CAS  Google Scholar 

  • Reimann C, Garrett RG (2005) Geochemical background–concept and reality. Sci Total Environ 350(1–3):12–27

    CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1–3):1–16

    CAS  Google Scholar 

  • Rencz AN, Garrett RG, Adcock SW, Spirito WA, Bonham-Carter GF (2006) Geochemical background in soil and till. Geological Survey of Canada, Open File 6645, 1 CD-ROM

  • Roca N, Pazos MS, Bech J (2012) Background levels of potentially toxic elements in soils: a case study in Catamarca (a semi—arid region in Argentina). Catena 92:55–66

    CAS  Google Scholar 

  • Romano S, Mugnai C, Giuliani S, Nguyen HC, Bellucci L, Dang HN, Capodaglio G, Frignani M (2012) Metals in sediment cores from nine coastal lagoons in Central Vietnam. Am J Environ Sci 8(2):130–142

    CAS  Google Scholar 

  • Roussiez V, Ludwig W, Probst JL, Monaco A (2005) Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environ Pollut 138(1):167–177

    CAS  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40(11):968–980

    CAS  Google Scholar 

  • Saby NP, Thioulouse J, Jolivet CC, Ratié C, Boulonne L, Bispo A, Arrouays D (2009) Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data. Sci Total Environ 407(21):5644–5652

    CAS  Google Scholar 

  • Saby NP, Marchant BP, Lark RM, Jolivet CC, Arrouays D (2011) Robust geostatistical prediction of trace elements across France. Geoderma 162(3–4):303–311

    CAS  Google Scholar 

  • Sahuquillo A (2003) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal Chem 22(3):152–159

    CAS  Google Scholar 

  • Salminen R, Tarvainen T, Demetriades A, Duris M, Fordyce FM, Gregorauskiene V, Kahelin H, Kivisilla J, Klaver G, Klein H, Larson JO, Lis J, Locutura J, Marsina K, Mjartanova H, Mouvet C, O’Connor P, Odor L, Ottonello G, Paukola T, Plant JA, Reimann C, Schermann O, Siewers U, Steenfelt A, Van der Sluys J, De Vivo B, Williams L (1998) FOREGS geochemical mapping field manual. Geological Survey of Finland, Espoo, Guide 47, p 36

  • Schiff K, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar Environ Res 48(2):161–176

    CAS  Google Scholar 

  • SDD (1976) Development of a water quality index (Report AR3). Scottish Development Department, Edinburgh

    Google Scholar 

  • Sekabira K, Origa HO, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Tech 7(3):435–446

    CAS  Google Scholar 

  • Shin PK, Lam WK (2001) Development of a marine sediment pollution index. Environ Pollut 113(3):281–291

    CAS  Google Scholar 

  • Singh M, Müller G, Singh IB (2002) Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga plain, India. Water, Air and Soil Pollut 141:35–54

    CAS  Google Scholar 

  • Soto-Jiménez M, Páez-Osuna F (2001) Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán Harbor (SE Gulf of California). Estuar Coast Shelf Sci 53(3):259–274

    Google Scholar 

  • Spijker J (2012) The Dutch soil type correction: an alternative approach. Natl. Inst. Public Health Environ. (RIVM report 607711005/2012)

  • Spijker J, Mol G, Posthuma L (2011) Regional ecotoxicological hazards associated with anthropogenic enrichment of heavy metals. Environ Geochem Health 33(4):409–426

    CAS  Google Scholar 

  • Struijs J, Van de Meent D, Peijnenburg WJGM, Van den Hoop MAGT, Crommentuijn T (1997) Added risk approach to derive maximum permissible concentrations for heavy metals: how to take natural background levels into account. Ecotoxicol Environ Saf 37:112–118

    CAS  Google Scholar 

  • Swennen R, Van der Sluys J (1998) Zn, Pb, Cu and As distribution patterns in overbank and medium-order stream sediment samples: their use in exploration and Environmental geochemistry. J Geochem Explor 65(1):27–45

    CAS  Google Scholar 

  • Tack FMG, Verloo MG, Vanmechelen L, Van Ranst E (1997) Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Sci Total Environ 201(2):113–123

    CAS  Google Scholar 

  • Tessier A, Campbell PGC and Bisson M (1979) Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analyt Chem 51(7):844–850

    Google Scholar 

  • Tomlinson DJ, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoland Mar Res 33(1–4):566–575

    Google Scholar 

  • Tume P, Bech J, Longan L, Tume L, Reverter F, Sepulveda B (2006) Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecol Eng 27(2):145–152

    Google Scholar 

  • UNEP/IOC/IAEA (1995) Manual for the geochemical analyses of marine sediment and suspended particular matter. Reference methods for marine pollution studies No 63, UNEP 1995

  • Ungaro F, Ragazzi F, Cappellin R, Giandon P (2008) Arsenic concentration in the soils of the Brenta Plain (Northern Italy): mapping the probability of exceeding contamination thresholds. J Geochem Explor 96(2–3):117–131

    CAS  Google Scholar 

  • Ure AM (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178(1–3):3–10

    CAS  Google Scholar 

  • US EPA (United States Environmental protection Agency) (2000) EPA’s Terms of Environment

  • van der Weijden CH (2002) Pitfalls of normalization of marine geochemical data using a common divisor. Mar Geol 184:167–187

    Google Scholar 

  • van Hullebusch ED, Lens PNL, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Biotechnol 4(3):185–212

    Google Scholar 

  • VLAREBO (2006) Vlaams reglement betreffende de bodemsanering. Decree on Soil remediation and Soil protection; ratified by the Flemish government on 27 October 2006

  • Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P (2003) Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere 51:633–642

    CAS  Google Scholar 

  • Wong CSC, Li XD (2004) Pb contamination and isotopic composition of urban soils in Hong Kong. Sci Total Environ 319(1–3):185–195

    CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Merrington G (2007) Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environ Pollut 148(1–3):221–229

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thi Thu Dung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dung, T.T.T., Cappuyns, V., Swennen, R. et al. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev Environ Sci Biotechnol 12, 335–353 (2013). https://doi.org/10.1007/s11157-013-9315-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9315-1

Keywords

Navigation