Skip to main content
Log in

Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism

  • Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Black shales are high organic matter-rich dark coloured mudstones those are often deposited during ‘oceanic anoxia events’. Most of the black shale horizons are rich in arsenic far above their average crustal abundance and are susceptible to weathering eventually leaching high As contents to the surrounding environment causing As enrichment in soil and water which adversely affect the living beings. Numerous arsenic contaminations are being reported from black shale hosted areas globally, hence, making extremely crucial to understand the processes of enrichment, leaching and broader prospective of environmental hazards. Few studies have shown arsenic concentrations as high as 6,000 mg/kg within black shales causing groundwater enrichment up to hundreds mg/L. Arsenic is commonly attached to sulphide mineral structure and partly to organic matter and clay contents during deposition and diagenetic processes. Majority of sulphide bound arsenic becomes available to oxidative dissolution processes in presence of atmospheric oxygen and water which is further triggered by certain microbial community such as Acidophilus ferrooxidans hence, enhancing arsenic release. Physical weathering processes carry the arsenic-rich shale constituents to the depositional site where it is dissolved subsequently. Chemical diffusion and mechanical transport are two prime processes transporting arsenic from black shale horizons to the water bodies or soil columns, while air pollutions are caused by combustions of organic matter-rich coaly shales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed F, Bibi MH, Seto K, Ishiga H, Fukushima T, Roser BP (2010) Abundances, distribution, and sources of trace metals in Nakaumi–Honjo coastal lagoon sediments, Japan. Environ Monit Assess 167:473–491

    Article  CAS  Google Scholar 

  • Arthur MA, Sageman BB (1994) Marine black shales: depositional mechanisms and environments of ancient deposits. Ann Rev Earth Planet Sci 22:499–551

    Article  CAS  Google Scholar 

  • Banerjee S, Dutta S, Paikaray S, Mann U (2006) Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). J Earth Syst Sci 115:37–48

    Article  CAS  Google Scholar 

  • Banning A, Rüde TR (2010) Enrichment processes of arsenic in oxidic sedimentary rocks-from geochemical and genetic characterization to potential mobility. Water Res 44:5512–5531

    Article  CAS  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    Article  CAS  Google Scholar 

  • Bodin S, Godet A, Matera V, Steinmann P, Vermeulen J, Gardin S, Adatte T, Coccioni R, Föllmi KB (2007) Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event. Int J Earth Sci 96:327–341

    Article  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London

    Google Scholar 

  • Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2:251–296

    Article  CAS  Google Scholar 

  • Brumsack H (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol 232:344–361

    Article  Google Scholar 

  • Camacho-lbar VF, Wrench JJ, Head PC (1992) Contrasting behaviour of arsenic and mercury in Liverpool bay sediments. Estuar Coast Shelf Sci 34:23–36

    Article  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58:3–22

    Article  CAS  Google Scholar 

  • Chon H, Cho C, Kim K, Moon H (1996) The occurrence and dispersion of potentially toxic elements in areas covered with black shales and slates in Korea. Appl Geochem 11:69–76

    Article  CAS  Google Scholar 

  • Cramer SP, Siskin M, Brown LD, Georget GN (1988) Characterization of arsenic in oil shale and oil shale derivatives by X-ray absorption spectroscopy. Energy Fuels 2:175–180

    Article  CAS  Google Scholar 

  • Crespo JL, Moro MC, Fadón O, Cabrera R, Fernández A (2000) The Salamón gold deposit (León, Spain). J Geochem Explor 71:191–208

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Ding Z, Zheng B, Zhang J, Belkin HE, Finkelman HB, Zhao F, Zhou D, Zhou Y, Chen C (1999) Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province. Sci China D Earth Sci 42:655–661

    Article  CAS  Google Scholar 

  • Eskenazy GM (1995) Geochemistry of arsenic and antimony in Bulgarian coals. Chem Geol 119:239–254

    Article  CAS  Google Scholar 

  • Finkelman RB, Belkin HE, Zheng B (1999) Health impacts of domestic coal use in China. Proc Natl Acad Sci USA 96:3427–3431

    Article  CAS  Google Scholar 

  • Fish RH, Walker W, Tannous RS (1987) Organometallic geochemistry 2. The molecular characterization of trace organometallic and inorganic compounds of arsenic found in green river formation oil shale and its pyrolysis product. Energy Fuels 1:243–247

    Article  CAS  Google Scholar 

  • Grauch RI, Murowchick JB, Coveney RM Jr, Nansheng C (1991) Extreme concentrations of Mo, Ni-PGE- and Au in anoxic basins, China and Canada. In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals. A.A. Balkema, Lisse, pp 31–534

    Google Scholar 

  • Grossl PR, Eick MJ, Grafe M (2004) Biogeochemistry of arsenic in iron oxide systems. In: Proceeding 3rd Australian New Zealand Soils Conference SuperSoil, 1–6. http://www.regional.org.au/au/asssi/supersoil2004/s3/poster/1624_grosslpr.htm

  • Hofstra AH, Leventhal JS, Northrop HR, Landis GP, Rye RO, Birak DJ, Dahl AR (1991) Genesis of sediment-hosted disseminated-gold deposit by fluid mixing and sulfidation. Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Cannon district, Nevada. Geology 19:36–40

    Article  Google Scholar 

  • Hong H, Yin K, Lai X, Du Y, Li Z, Jean JS (2010) Occurrence of arsenic in mudstone of the endemic blackfoot disease region, Taiwan. In: Bundschuh J, Bhattacharya P (eds) Arsenic in geosphere and human diseases. Taylor and Francis Group, London, pp 556–557

    Chapter  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148

    Article  CAS  Google Scholar 

  • Larson RL (1991) Geological consequences of superplumes. Geology 19:963–966

    Article  Google Scholar 

  • Lavergren U (2005) Black shale as a metal contamination source. The ESS Bull 3:18–31

    Google Scholar 

  • Lavergren U, Åström ME, Falk H, Bergbäck B (2009) Metal dispersion in groundwater in an area with natural and processed black shale—nationwide perspective and comparison with acid sulfate soils. Appl Geochem 24:359–369

    Article  CAS  Google Scholar 

  • Lee J, Chon H, Kim J, Kim K, Moon H (1998a) Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environ Geochem Health 20:135–147

    Article  CAS  Google Scholar 

  • Lee J, Chon H, Kim K (1998b) Migration and dispersion of trace elements in the rock–soil–plant system in areas underlain by black shales and slates of the Okchon Zone, Korea. J Geochem Explor 65:61–78

    Article  CAS  Google Scholar 

  • Lee P, Kang M, Choi S, Touray J (2005) Sulphide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl Geochem 20:1687–1703

    Article  CAS  Google Scholar 

  • Lee J, Moon S, Yun S (2010) Contamination of groundwater by arsenic and other constituents in an industrial complex. Environ Earth Sci 60:65–79

    Article  CAS  Google Scholar 

  • Lengke MF, Tempel RN (2001) Kinetic rates of amorphous As2S3 oxidation at 25–40 °C and initial pH of 7.3–9.4. Geochim Cosmochim Acta 65:2241–2255

    Article  CAS  Google Scholar 

  • Lengke MF, Tempel RN (2002) Reaction rates of natural orpiment oxidation at 25–40 °C and pH 6.8–8.2 and comparison with amorphous As2S3 oxidation. Geochim Cosmochim Acta 66:3281–3291

    Article  CAS  Google Scholar 

  • Lengke MF, Tempel RN (2003) Natural realgar and amorphous AsS oxidation kinetics. Geochim Cosmochim Acta 67:859–871

    Article  CAS  Google Scholar 

  • Lengke MF, Sanpawanitchakit C, Tempel RN (2009) The oxidation and dissolution of arsenic-bearing sulphides. Can Mineral 47:593–613

    Article  CAS  Google Scholar 

  • Leventhal JS (1991) Comparison of organic geochemistry and metal enrichment in two black shales: cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States. Miner Depos 26:104–112

    Article  CAS  Google Scholar 

  • Li S, Xiao T, Zheng B (2012) Medical geology of arsenic, selenium and thallium in China. Sci Total Environ 421–422:31–40

    Article  Google Scholar 

  • Lipinski M, Warning B, Brumsack H (2003) Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeogr Palaeoclimatol Palaeoecol 190:459–475

    Article  Google Scholar 

  • Luong HV, Braddock JF, Brown EJ (1985) Microbial leaching of arsenic from low-sulphide gold mine material. Geomicrobiol J 4:73–86

    Article  CAS  Google Scholar 

  • Maud J, Rumsby P (2008) A review of the toxicity of arsenic in air. Science Report—SC020104/SR4, Environment Agency, Rio House, Bristol, BS32 4UD

  • Meyer KM, Kump LR (2008) Oceanic euxinia in earth history: causes and consequences. Ann Rev Earth Planet Sci 36:251–288

    Article  CAS  Google Scholar 

  • Meyers PA (1996) Insights into deposition of lower cretaceous black shales from meager accumulation of organic matter in Albian sediments from ODP site 763, Exmouth Plateau, Northwest Australia. Geo-Mar Lett 16:108–114

    Article  CAS  Google Scholar 

  • Nijenhuis IA, Bosch HJ, Damste JSS, Brumsack HJ, De Lange GJ (1999) Organic matter and trace element rich sapropels and black shales: a geochemical comparison. Earth Planet Sci Lett 169:277–290

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of the air, water and soils with trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Onishi H, Sandell EB (1955) Geochemistry of arsenic. Geochim Cosmochim Acta 7:1–33

    Article  CAS  Google Scholar 

  • Orberger B, Pasava J, Gallien JP, Daudin L, Trocellier P (2003a) Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from Black Shales (Selwyn Basin, Yukon territories, Canada): a nuclear microprobe study. Nucl Instrum Methods in Phys Res B 210:441–448

    Article  CAS  Google Scholar 

  • Orberger B, Pasava J, Gallien JP, Daudin L, Pinti DL (2003b) Biogenic and abiogenic hydrothermal sulfides: controls of rare metal distribution in black shales (Yukon Territories, Canada). J Geochem Explor 78–79:559–563

    Article  Google Scholar 

  • Paikaray S, Peiffer S (2012) Biotic and abiotic schwertmannites as scavengers for As(III): mechanisms and effects. Water Air Soil Pollut. doi:10.1007/s11270-012-1077-9

  • Paikaray S, Banerjee S, Mukherjee S (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan supergroup: implications on provenance, tectonics and paleo weathering. J Asian Earth Sci 32:34–48

    Article  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2011) Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway. Chem Geol 283:134–142

    Article  CAS  Google Scholar 

  • Pašava J, Kříbek B, Žák K, Li C, Deng H, Liu J, Gao Z, Luo T, Zeng M (2003) Environmental impacts of mining of Ni-Mo black shale-hosted deposits in the Zunyi region, southern China: preliminary results of the study of toxic metals in the system rock–soil–plant. Bull Geosci 78:251–260

    Google Scholar 

  • Peng B, Song Z, Tu X, Xiao M, Wu F, Lv H (2004) Release of heavy metals during weathering of the Lower Cambrian Black Shales in western Hunan, China. Environ Geol 45:1137–1147

    CAS  Google Scholar 

  • Pesch B, Ranft U, Jakubis P, Nieuwenhuijsen MJ, Hergemöller A, Unfried K, Jakubis M, Miskovic P, Keegan T, The EXPASCAN Study Group (2002) Environmental arsenic exposure from a coal-burning power plant as a potential risk factor for nonmelanoma skin carcinoma: results from a case-control study in the district of Prievidza, Slovakia. Ame J Epidemiol 155:798–809

    Google Scholar 

  • Peters SC, Burkert L (2008) The occurrence and geochemistry of arsenic in groundwaters of the Newark basin of Pennsylvania. Appl Geochem 23:85–98

    Article  CAS  Google Scholar 

  • Piper DZ, Calvert SE (2009) A marine biogeochemical perspective on black shale deposition. Earth Sci Rev 95:63–96

    Article  CAS  Google Scholar 

  • Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2004) Arsenic and selenium. In: Holland HD, Turekian KK (eds) Treatise on geochemistry 9, Environmental geochemistry. Elsevier, Amsterdam, pp 17–66

    Google Scholar 

  • Potter PE, Maynard JB, Pryor WA (1980) Sedimentology of shale. Springer, New York

    Book  Google Scholar 

  • Ramos AB (2005) Geochemistry of arsenic and sulfur in Southwest Ohio: bedrock, outwash deposits and groundwater. University of Cincinnati, Dissertation

    Google Scholar 

  • Rhine ED, Onesios KM, Serfes ME, Reinfelder JR, Young LY (2008) Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO. Environ Sci Technol 42:1423–1429

    Article  CAS  Google Scholar 

  • Rimmer SM, Thompson JA, Goodnight SA, Robl TL (2004) Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol 215:125–154

    Google Scholar 

  • Ronkos CJ (1986) Geology and the interpretation of geochemistry at the standard mine, Humboldt Country, Nevada. J Geochem Explor 25:129–137

    Article  CAS  Google Scholar 

  • Schieber J, Riciputi L (2004) Pyrite ooids in Devonian black shales record intermittent sea-level drop and shallow-water conditions. Geology 32:305–308

    Article  Google Scholar 

  • Serfes ME (2005) Arsenic occurrences, sources, mobilization, transportation and prediction in the major bedrock aquifers of the Newark Basin. The State University of New Jersey, Dissertation

    Google Scholar 

  • Shpirt MY, Punanova SA, Strizhakova YA (2007) Trace elements in black and oil shales. Solid Fuel Chem 41:119–127

    Article  Google Scholar 

  • Singh IB (1980) The Bijaigarh Shale, Vindhyan System (Precambrian), India—An example of a lagoonal deposit. Sediment Geol 25:83–103

    Article  CAS  Google Scholar 

  • Šlejkovec Z, Kandu T (2005) Unexpected arsenic compounds in low-rank coals. Environ Sci Technol 39:3450–3454

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Stow DAV, Huc AY, Bertrand P (2001) Depositional processes of black shales in deep water. Mar Pet Geol 18:491–498

    Article  CAS  Google Scholar 

  • Strawn D, Doner H, Zavarin M, McHugo S (2002) Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma 108:237–257

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry-chemical equilibria and rates in natural waters. John Wiley, New York

    Google Scholar 

  • Szabo Z, Barringer JL, Spayd S (2010) Geological sources of radionuclides and arsenic in Triassic age rift-valley sediments (Newark Supergroup) and implications for distribution in groundwater in Mercer County, New Jersey. Geological Association of New Jersey XXVII Annual Meeting, pp 89–91

  • Tourtelot HA (1979) Black shale-its deposition and diagenesis. Clays Clay Miner 27:313–321

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  CAS  Google Scholar 

  • Tuttle MLW, Breit GN, Goldhaber MB (2009) Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements. Appl Geochem 24:1565–1578

    Article  CAS  Google Scholar 

  • Vine JD, Tourtelot EB (1970) Geochemistry of black shale deposits—a summary report. Econ Geol 65:253–272

    Article  CAS  Google Scholar 

  • Walker FP, Schreiber ME, Rimstidt JD (2006) Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim Cosmochim Acta 70:1668–1676

    Article  CAS  Google Scholar 

  • Wang X, He M, Xie J, Xi J, Lu X (2010) Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). J Soils Sediments 10:827–837

    Article  CAS  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) The occurrence and distribution of trace metals in halophytes. Chemosphere 28:1189–1199

    Article  CAS  Google Scholar 

  • Woo NC, Choi MJ, Lee KS (2002) Assessment of groundwater quality and contamination from uranium-bearing black shale in Goesan–Boeun areas, Korea. Environ Geochem Health 24:264–273

    Article  Google Scholar 

  • Yan XP, Kerrich R, Hendry MJ (2000) Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick, clay-rich aquitard sequence, Saskatchewan, Canada. Geochim Cosmochim Acta 62:2637–2648

    Article  Google Scholar 

  • Yu Y, Zhu Y, Williams-Jones AE, Gao Z, Li D (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444

    Article  CAS  Google Scholar 

  • Yu Y, Zhu Y, Gao Z, Gammons CH, Li D (2007) Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8–12.6 and 15–45 °C. Environ Sci Technol 41:6460–6464

    Article  CAS  Google Scholar 

  • Zhai M, Totolo O, Modisi MP, Finkelman RB, Kelesitse SM, Menyatso M (2009) Heavy metal distribution in soils near Palapye, Botswana: an evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environ Geochem Health 31:759–777

    Article  CAS  Google Scholar 

  • Zhang XP, Xueming WD, Yang M (2002) The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. J Asian Earth Sci 21:167–174

    Article  CAS  Google Scholar 

  • Zhu W (2010) Chemical and microbial control of pyrite weathering and its implications to arsenic mobility and sulfur and iron geochemistry. The State University of New Jersey, Dissertation

    Google Scholar 

  • Zhu W, Young LY, Yee N, Serfes M, Rhine ED, Reinfelder JR (2008) Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochim Cosmochim Acta 72(5):243–5250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Paikaray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paikaray, S. Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism. Rev Environ Sci Biotechnol 11, 289–303 (2012). https://doi.org/10.1007/s11157-012-9281-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9281-z

Keywords

Navigation